Sampling in linear-Gaussian inverse problems
(is faster than regularized inversion)

Colin Fox fox@physics.otago.ac.nz
Richard A. Norton, J. Andrés Christen
Al Parker
Topics ...

- Sampling from multivariate Gaussians is numerical linear algebra
 - direct methods
 - iterative methods

- Sampling in linear-Gaussian hierarchical models (posterior NOT Gaussian)
 - A problem in image deblurring
 - Regularized inversion
 - Bayesian hierarchical model
 - Marginal then conditional sampling (new)
 * MCMC on posterior
 * Block Gibbs sampling
 * One block method
 - Timing

THM :: MCMC is barely needed, sampling can be faster than regularized deconvolution
Multivariate normal distributions

\[\pi \left(x; \mu = A^{-1} b, \Sigma = A^{-1} \right) = \sqrt{\frac{\det(A)}{2\pi^n}} \exp \left\{ -\frac{1}{2} x^T A x + b^T x \right\} \]

Particularly interested in cases where precision matrix A is sparse (GMRF) and n large
Direct methods :: mutually conjugate vectors

Definition 1 A set of non-zero vectors \(s^{(i)} \), \(i = 0, 1, \ldots, m - 1 \), is mutually conjugate w.r.t. \(A \) (SPD) if

\[
s^{(i)^T} A s^{(j)} = 0 \quad \forall i \neq j
\]

Note that \(s^{(i)^T} A s^{(i)} > 0 \) \(\forall i \), as \(A \) is strictly positive definite. Denote \(s^{(i)^T} A s^{(i)} = d_i \), hence, if \(S \in R^{m \times m} \) is the matrix with columns \(s^{(i)} \), \(i = 0, 1, \ldots, m - 1 \) and \(D = \text{diag} \left(d_0, d_1, \ldots, d_{m-1} \right) \) (also pd), then

\[
S^T A S = D
\]

Hence if \(z \sim N \left(0, I_m \right) \), \(y = \sqrt{D^{-1}} z \sim N \left(0, D^{-1} \right) \), and \(x = S y \sim N \left(0, \Sigma \right) \). This follows since \(S^T A S = D \) so \(A^{-1} = S D^{-1} S^T \).

The expression for \(x \) can be written \(x = \sum_{i=0}^{m-1} \left(z_i / \sqrt{d_i} \right) s^{(j)} \). Since the \(z_i \) are i.i.d. \(\sim N \left(0, 1 \right) \), this shows a sample from \(\pi \) may be generated using a sequence of standard normal random numbers.
Some examples you know of

Example 2 Cholesky factorization of Σ. Since $RR^T = \Sigma$, $R^TAR = I$, so the columns of R are mutually conjugate w.r.t. A.

Example 3 Cholesky factorization of A. Since $LL^T = A$, $(L^T)^{-1}L^{-1} = A^{-1}$, so $(L^T)^{-1} = R$ and so the columns of $(L^T)^{-1}$ are mutually conjugate w.r.t. A.

Example 4 Eigen decomposition of A or Σ. Consider

$$A = UDU^T$$

where U is unitary (columns are normalised eigenvectors) and D is diagonal (eigenvalues on diagonal). Then $U^TAU = D$, so the eigenvectors are mutually conjugate w.r.t. A.

These examples show that the algorithms based on the Cholesky and eigen factorizations are examples of the more general notion of mutually conjugate w.r.t. A, and also establishes that these algorithms do indeed sample from π.
Generate conjugate vectors via CG

Algorithm 1 (CG sampler from $N(0, A^{-1})$). Given b and x^0, let $r^0 = b^0 - Ax^0$, $p^0 = r^0$, $d_0 = p^{(0)T}Ap^0$, $y^0 = x^0$, and $k := 1$. Specify some stopping tolerance ϵ.

Iterate:
1. $\gamma_{k-1} = \frac{r^{(k-1)T}r^{k-1}}{d_{k-1}}$ is the 1-D minimizer of ϕ in the direction $x^{k-1} + \gamma p^{k-1}$
2. $x^k = x^{k-1} + \gamma_{k-1}p^{k-1}$
3. Sample $z \sim N(0, 1)$, and set $y^k = y^{k-1} + \frac{z}{\sqrt{d_{k-1}}}p^{k-1}$
4. $r^k = -\nabla_x \phi(x^k) = r^{k-1} - \gamma_{k-1}Ap^{k-1}$ is the residual
5. $\beta_k = -\frac{r^{kT}r^k}{r^{(k-1)T}r^{k-1}}$
6. $p^k = r^k - \beta_kp^{k-1}$ is the next conjugate search direction.
7. $d_k = p^{(k)T}Ap^k$
8. Quit if $\|r^k\|^2 < \epsilon$. Else set $k := k + 1$ and go to step 1.

- Apart from step 3, this is exactly (linear) CG optimization
- $\text{Var}(x^k)$ is the CG polynomial

Parker & F SISC 2012
Best approximation property

Theorem 5 (Parker 2009)

The covariance matrix

$$\text{Var}(x^k|x^0, b^0) = V_k T_k^{-1} V_k^T$$

has k non-zero eigenvalues which are the Lanczos estimates of the eigenvalues of A^{-1}, $\sigma_i(\text{Var}(x^k|x^0, b^0)) = \frac{1}{\theta_i^k}$. The eigenvectors of $\text{Var}(x^k|x^0, b^0)$ are the Ritz vectors $V_k v^i$ which estimate the eigenvectors of A. When $\|r^k\|_2 = 0$, then

$$\text{Var}(b^k|x^0, b^0) = V_k T_k V_k^T$$

and the k non-zero eigenpairs of $\text{Var}(b^k|x^0, b^0)$ are the Lanczos Ritz pairs $(\theta_i^k, V_k v^i)$.

$\text{Var}(x^k|x^0, b^0)$ approximates A^{-1} and $\text{Var}(b^k|x^0, b^0)$ approximates A in the eigenspaces corresponding to the extreme and well separated eigenvalues of A.

Parker & F SISC 2012
Finite precision CG vs Cholesky samples

Fig. 4.2. In the left panel is a CG sample $y^k \sim N(0, A^{-1})$ from a 10^4-dimensional Gaussian over a 2D domain with a second order locally linear precision matrix. The realized variance $\text{Var}(y^k)$ accounts for 80% of the variability in A^{-1}. A Cholesky sample is shown in the right panel.

CG (by itself) over-smooths: initialize Gibbs with CG

Parker & F SISC 2012, Schneider & Willsky 2003
Iterative methods :: Gibbs sampling

Gibbs sampling\(^a\) repeatedly samples from (block) conditional distributions

Algorithm 1: One sweep of the component-wise Gibbs sampler targeting \(\pi(x)\)

\[
\text{for } i = 1, \ldots, n \text{ do} \\
\text{sample } z \sim \pi(x_i|x_{-i}) \\
x_i = z \\
\text{end}
\]

Forward and reverse sweep simulates a reversible kernel (self-adjoint wrt \(\pi\))

When is \(x \sim \pi^{(0)}\) is normal, then so is the k-step distribution

\[
A^{(k)} \rightarrow A \quad \Sigma^{(k)} \rightarrow \Sigma
\]

In what sense is “stochastic relaxation” related to “relaxation”?
What decomposition of \(A\) is this performing?

\(^a\)Glauber 1963 (heat-bath algorithm), Turcin 1971, Geman and Geman 1984
Matrix splitting form of stationary iterative methods

Want to solve

\[Ax = b \]

The splitting \(A = M - N \) converts \(Ax = b \) to \(Mx = Nx + b \)

If \(M \) is nonsingular

\[x = M^{-1}Nx + M^{-1}b \]

Iterative methods compute successively better approximations by

\[x^{(k+1)} = M^{-1}Nx^{(k)} + M^{-1}b \]

\[= Gx^{(k)} + g \]

Many splittings use terms in \(A = L + D + U \). Gauss-Seidel sets \(M = L + D \)

\[x^{(k+1)} = -D^{-1}Lx^{(k+1)} - D^{-1}L^T x^{(k)} + D^{-1}b \]
Matrix formulation of Gibbs sampling from $\mathcal{N}(0, A^{-1})$

Let $y = (y_1, y_2, ..., y_n)^T$

Component-wise Gibbs updates each component in sequence from the (normal) conditional distributions

One ‘sweep’ over all n components can be written

$$y^{(k+1)} = -D^{-1}Ly^{(k+1)} - D^{-1}L^Ty^{(k)} + D^{-1/2}z^{(k)}$$

where: $D = \text{diag}(A)$, L is the strictly lower triangular part of A, $z^{(k-1)} \sim \mathcal{N}(0, I)$

$$y^{(k+1)} = Gy^{(k)} + c^{(k)}$$

$c^{(k)}$ is iid 'noise' with zero mean, finite covariance

Goodman & Sokal 1989
Matrix formulation of Gibbs sampling from $\mathbf{N}(0, \mathbf{A}^{-1})$

Let $\mathbf{y} = (y_1, y_2, \ldots, y_n)^T$

Component-wise Gibbs updates each component in sequence from the (normal) conditional distributions

One ‘sweep’ over all n components can be written

$$\mathbf{y}^{(k+1)} = -\mathbf{D}^{-1}\mathbf{L}\mathbf{y}^{(k+1)} - \mathbf{D}^{-1}\mathbf{L}^T\mathbf{y}^{(k)} + \mathbf{D}^{-1/2}\mathbf{z}^{(k)}$$

where: $\mathbf{D} = \text{diag}(\mathbf{A})$, \mathbf{L} is the strictly lower triangular part of \mathbf{A}, $\mathbf{z}^{(k-1)} \sim \mathbf{N}(0, \mathbf{I})$

$$\mathbf{y}^{(k+1)} = \mathbf{G}\mathbf{y}^{(k)} + \mathbf{c}^{(k)}$$

$c^{(k)}$ is iid 'noise' with zero mean, finite covariance

Spot the similarity to Gauss-Seidel iteration for solving $\mathbf{A}\mathbf{x} = \mathbf{b}$

$$\mathbf{x}^{(k+1)} = -\mathbf{D}^{-1}\mathbf{L}\mathbf{x}^{(k+1)} - \mathbf{D}^{-1}\mathbf{L}^T\mathbf{x}^{(k)} + \mathbf{D}^{-1}\mathbf{b}$$

Goodman & Sokal 1989; Amit & Grenander 1991
Gibbs converges \iff linear solver converges

Theorem 6 Let $A = M - Ng$, M invertible. The stationary linear solver

$$x^{(k+1)} = M^{-1}Nx^{(k)} + M^{-1}b$$

$$= Gx^{(k)} + M^{-1}b$$

converges, if and only if the random iteration

$$y^{(k+1)} = M^{-1}Ny^{(k)} + M^{-1}c^{(k)}$$

$$= Gy^{(k)} + M^{-1}c^{(k)}$$

converges in distribution. Here $c^{(k)} \iid \pi_n$ has zero mean and finite variance

Proof. Both converge iff $\varrho(G) < 1$ \blacksquare

Any convergent splitting generates a convergent (generalized) Gibbs sampler

Error polynomials identical, hence convergence rates identical, hence acceleration methods transferable

Young 1971 Thm 3-5.1, Duflo 1997 Thm 2.3.18-4, Goodman & Sokal, 1989, Galli & Gao 2001

F Parker 2013
Gibbs samplers and equivalent linear solvers

Optimization ...

Gauss-Seidel
Cheby-GS
CG/Lanczos

Sampling ...

Gibbs
Cheby-Gibbs
Lanczos

Parker F SISC 2012
Chebyshev accelerated Gibbs sampling :: $d = 100$

$$[A]_{ij} = 10^{-4} \delta_{ij} + \begin{cases}
 n_i & \text{if } i = j \\
 -1 & \text{if } i \neq j \text{ and } ||s_i - s_j||_2 \leq 1 \\
 0 & \text{otherwise}
\end{cases}$$

$\approx 10^4$ times faster
The inverse problem is to recover the ‘true’ unblurry image. We use the satellite (upper right) as PSF k, so \textit{semi-blind} deconvolution.

$$y = k \ast x + \eta = Ax + \eta$$

In the continuous setting this is the prototypical ill-posed inverse problem; h is square integrable \implies A is Hilbert-Schmidt \implies compact
Discrete problem reflects ill-posedness
Regularized Fourier deconvolution

Evaluate convolution by a circular convolution – no need to zero pad as image is black (hence periodic) at boundaries, giving efficient evaluation by FFT\(^a\).

\[Ax = x \ast k \]

Introduce regularizing functional and regularizing parameter \(\lambda \). Solution \(\hat{x}_\lambda \) satisfies

\[\hat{x}_\lambda = \arg \min_x \left\{ \| Ax - y \|^2 + \lambda x^T L x \right\} \]

or the normal (generalized deconvolution) equations

\[\left(A^T A + \lambda L \right) \hat{x}_\lambda = A^T y \]

We use \(L \) is graph Laplacian on nearest-neighbour pixel lattice, with periodic boundaries\(^b\)

\[Lx \equiv x \ast \begin{pmatrix} -1 \\ -1 & 4 & -1 \\ -1 \end{pmatrix} \]

\(^a\)Numerical Recipes, section 13.1 \(^b\)Bardsley SISC 2014
Choose regularizing parameter by L-curve criterion

\[\lambda \]

Determining \(\lambda \) requires \(\approx 200 \) iterations/solves

0.517 seconds (0.507s for 200 solves) Matlab R2012b, Lenovo X230, Intel CORE i5

\(^a \)P. C. Hansen (1992)
Bayesian hierarchical model

All unknowns treated as random variables, use same components as regularization

\[y | x, \theta \sim N \left(Ax, (\gamma I)^{-1} \right) \] \hspace{1cm} \text{(likelihood)}

\[x | \theta \sim N \left(\mu, (\delta L)^{-1} \right) \] \hspace{1cm} \text{(prior)}

\[\theta = (\gamma, \delta) \sim \pi(\theta) \] \hspace{1cm} \text{(hyperprior)}

where \(\gamma \) is precision of measurements, \(\delta \) is lumping constant in true image.

This is a common model in statistics: \(y = \text{observed data}, x = \text{latent field}, \theta = \text{hyperparameter} \)

Since

\[\pi(y | x, \theta) = \frac{\gamma^{n/2}}{\sqrt{2\pi}} \exp \left\{ -\frac{\gamma}{2} \| Ax - y \|^2 \right\} \quad \text{and} \quad \pi(x | \theta) = \frac{\delta^{n/2} \sqrt{\det L}}{\sqrt{2\pi}} \exp \left\{ -\frac{\delta}{2} x^T L x \right\} \]

by Bayes rule

\[\pi(x | y, \theta) \propto \exp \left\{ -\frac{\gamma}{2} \left(\| Ax - y \|^2 - \frac{\delta}{\gamma} x^T L x \right) \right\} \]

so \(x_{\text{MAP}} = \hat{x}_\lambda \) when \(\lambda = \delta/\gamma \) (though expectations average over \(\theta \))
Posterior inference

The focus of inference is the posterior distribution

$$\pi(x, \theta | y) = \frac{\pi(y | x, \theta) \pi(x, \theta)}{\pi(y)}$$

Solutions and uncertainties are the posterior expectation of some function ϕ of x,

$$E[\phi(x)] = \int \phi(x) \pi(x, \theta | y) \, dx \, d\theta$$

which implicitly averages over the nuisance parameter θ.

When $(x, \theta)^{(1)}, \ldots, (x, \theta)^{(N)} \sim \pi(x, \theta | y)$ are iterates of an ergodic Markov chain

$$E[\phi(x)] \approx \frac{1}{N} \sum_{i=1}^{N} \phi(x^{(i)})$$

with convergence guaranteed by a CLT.

Kipnis Varadhan Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions Comm Math Phys 1986
Random-walk MCMC over the posterior

Most common is to form posterior distribution:

\[
\pi(x, \theta | y) = \frac{\pi(y | x, \theta) \pi(x | \theta) \pi(\theta)}{\pi(y)}
\]

The normalizing constant \(\pi(y) = \int \int \pi(y, x, \theta) \, dx \, d\theta \) is typically not available

Most applications perform MCMC with Metropolis-Hastings dynamics using random walk proposals (e.g. AM, MALA, HMC). This generates a Markov chain that converges in distribution to the posterior.

Convergence can be very slow due to correlations within the latent field \(x \), and between \(x \) and the hyperparameters \(\theta \).

Often need \(\sim 10^5 \) iterations for suitable convergence – to generate a sample for Monte Carlo estimates

Easy to implement – but gives MCMC it’s reputation for being very computationally expensive.
Some thoughts on Monte Carlo

John von Neumann (1951): *Any one who considers [Monte Carlo methods] is ... in a state of sin.*

Alan Sokal (1996): *Monte Carlo is an extremely bad method; it should be used only when all alternative methods are worse.*

Hammersley & Handscomb (1964): *... it will usually pay to scrutinize each part of a Monte Carlo experiment to see whether that part cannot be replaced by exact theoretical analysis ...*
Marginal then conditional sampling

First sample from the marginal posterior distribution over hyperparameters θ

$$\pi (\theta | y) = \int \pi (x, \theta | y) \, dx$$

then from the full conditional distribution over x

Algorithm 2: MTC sampling from the marginal for θ then the full conditional for x

1. draw $\theta \sim \pi (\theta | y)$
2. draw $x \sim \pi (x | y, \theta)$

Lemma 7 Algorithm 2 generates a sample from the posterior distribution, i.e.,

$$(x, \theta) \sim \pi (x, \theta | y).$$

Proof. The density function over x and θ is $\pi (x | y, \theta) \pi (\theta | y) = \pi (x, \theta | y)$ □

Independent θ gives independent (x, θ)
Marginal posterior for θ

Lemma 8

$$\pi (\theta | y) = \frac{\pi (y | \theta, x) \pi (x | \theta) \pi (\theta)}{\pi (x | \theta, y) \pi (y)}$$

Proof. $\pi (x, y, \theta) = \pi (x | \theta, y) \pi (y | \theta) \pi (\theta)$ and $\pi (x, y, \theta) = \pi (y | x, \theta) \pi (x | \theta) \pi (\theta)$. Since $\pi (y) \neq 0$, the result follows. \blacksquare

Can eliminate x to give

(general Gaussian-linear model: $\Sigma = \text{noise covariance}$, $Q = \text{prior precision}$)

$$\pi (\theta | y) \propto \sqrt{\frac{\det (\Sigma^{-1}) \det (Q)}{\det (Q + A^T \Sigma^{-1} A)}} \exp \left\{ -\frac{1}{2} (y - A\mu)^T \Sigma^{-1} A \left[(A^T \Sigma^{-1} A)^{-1} - (A^T \Sigma^{-1} A + Q)^{-1} \right] A^T \Sigma^{-1} (y - A\mu) \right\} \pi (\theta).$$

(1)
Full conditional for \(x \)

For the linear-Gaussian hierarchical model the full conditional for \(x \) is the multivariate normal

\[
x|y, \theta \sim N \left(\mu_{x|y,\theta}, Q_{x|y,\theta}^{-1} \right)
\]

where

\[
\mu_{x|y,\theta} = \mu + \left(Q + A^T \Sigma^{-1} A \right)^{-1} A^T \Sigma^{-1} (y - A \mu)
\]

\[
Q_{x|y,\theta} = Q + A^T \Sigma^{-1} A.
\]

I have omitted the dependence of matrices on \(\theta \) for brevity.

For the Jupiter example

\[
x|\theta, y \sim N \left((A^T A + (\delta/\gamma) L)^{-1} A^T y, (\gamma A^T A + \delta L)^{-1} \right)
\]

An independent sample from this distribution may be computed in \(O(n \log n) \) operations by solving (the generalized deconvolution eqns)

\[
\left(\gamma A^T A + \delta L \right) x = \gamma A^T y + w
\]

where \(w = v_1 + v_2 \) with independent \(v_1 \sim N \left(0, \gamma A^T A \right) \) and \(v_2 \sim N \left(0, \delta L \right) \)
Block Gibbs sampling

Cycles through sampling from full conditional distributions (aka Glauber, heat bath)

Algorithm 3: Gibbs sampling algorithm with blocking of the latent field

at state $x, \theta = (\gamma, \delta)$

- draw $x|\gamma, \delta, y \sim N \left((A^T A + (\delta/\gamma)L)^{-1} A^T y, (\gamma A^T A + \delta L)^{-1} \right)$
- draw $\gamma|x, \delta, y \sim \Gamma \left(\frac{n}{2} + \lambda \gamma, \frac{1}{2} \|Ax - y\|^2 + \beta \gamma \right)$
- draw $\delta|x, \gamma, y \sim \Gamma \left(\frac{n}{2} + \lambda \delta, \frac{1}{2} \|Ax - y\|^2 + \beta \delta \right)$

Most of the computational cost is the $O(n \log n)$ draw from the large Gaussian latent field

Conjugate priors $\pi(\gamma) = \Gamma(\alpha_\gamma, \beta_\gamma)$ and $\pi(\delta) = \Gamma(\alpha_\delta, \beta_\delta)$ make full conditionals available: (shape and scale parameters chosen, as Bardsley, to be “uninformative”)

$$\lambda|x, \delta, y \sim \Gamma \left(\frac{n}{2} + \alpha_\lambda, \frac{1}{2} \|Ax - y\|^2 + \beta_\lambda \right)$$

$$\delta|x, \lambda, y \sim \Gamma \left(\frac{n}{2} + \alpha_\delta, \frac{1}{2} \|Ax - y\|^2 + \beta_\delta \right)$$
One-block sampler

Algorithm 4: One-block algorithm

at state x, θ

draw $\theta' \sim q(\theta'|\theta)$

draw $x' \sim \pi(x'|\theta', y)$

accept (x', θ') w.p. $\alpha((x, \theta) \rightarrow (x', \theta')) = 1 \land \frac{\pi(x', \theta'|y) \pi(x|\theta, y) q(\theta'|\theta)}{\pi(x, \theta|y) \pi(x'|\theta', y) q(\theta'|\theta)}$

otherwise reject

Transition kernel for the hyperparameter θ targets $\pi(\theta|y)$ since

$$\frac{\pi(x', \theta'|y) \pi(x|\theta, y) q(\theta'|\theta)}{\pi(x, \theta|y) \pi(x'|\theta', y) q(\theta'|\theta)} = \frac{\pi(\theta'|y) q(\theta'|\theta)}{\pi(\theta|y) q(\theta'|\theta)}.$$

Makes larger steps in marginal for θ, rather than conditional $\theta|x$.
Marginal then conditional (MTC) sampler

Implement MTC sampler by performing MH MCMC on $\pi(\theta|y)$ to get (effectively) independent sample $\theta \sim \pi(\theta|y)$, then draw $x \sim \pi(x|\theta, y)$ to get (effectively) independent sample (x, θ) from the full posterior distribution. Evaluate MH ratio using $\pi(\theta|y)$

Algorithm 5: Metropolis-Hastings algorithm on $\pi(\theta|y)$

at state θ

draw $\theta' \sim q(\theta'|\theta)$

accept θ' w.p. $\alpha(\theta \rightarrow \theta') = 1 \wedge \frac{\pi(\theta'|y) q(\theta|\theta')}{\pi(\theta|y) q(\theta'|\theta)}$

otherwise reject

General MCMC only over low-dimensional space of hyperparameters
high correlations between θ and x are irrelevant

General linear-Gaussian model requires ratios of determinants of Σ^{-1}, Q and $Q + A^T \Sigma^{-1} A$, and differences of arguments of the exponential.
\(\mathcal{O}(1) \) evaluation of ratio of determinants

For our Jupiter example the marginal posterior for \(\theta \) simplifies to

\[
\pi(\theta | y) \propto \delta^{n/2} \exp \left(-\frac{1}{2} g(\lambda) - \frac{\gamma}{2} f(\lambda) \right) \pi(\theta)
\]

\[
\lambda = \frac{\delta}{\gamma}, \quad f(\lambda) = (A^T y)^T ((A^T A)^{-1} - (A^T A + \lambda L)^{-1})(A^T y) \quad \text{and} \quad g(\lambda) = \log |A^T A + \lambda L|
\]

A range of techniques can be used to give accurate approximation and efficient computation.
Autocorrelation of $\lambda = \delta / \gamma$ for all four sampling algorithms
Posterior sample and histograms

Left; image component of a posterior sample, using the MTC Option 2 algorithm
Right; marginal posterior histograms for γ, δ and δ/γ
Computational efficiency

computing cost per effective sample \(\text{CCES} = \frac{\tau T}{N}\)

\(T\) is the total (on-line) compute time

\(N\) is the length of chain

integrated autocorrelation time \(\tau = 1 + 2 \sum_{k=1}^{\infty} \rho_k\)

length of chain with same variance reducing power as one independent sample

Table 1: Compute times and CCES (in seconds) for \(10^4\) steps of sampling algorithms

<table>
<thead>
<tr>
<th></th>
<th>burn in</th>
<th>total time</th>
<th>acceptance rate</th>
<th>CCES for (\lambda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block Gibbs</td>
<td>60</td>
<td>83.1</td>
<td>1</td>
<td>0.17</td>
</tr>
<tr>
<td>One block</td>
<td>20</td>
<td>127.8</td>
<td>0.33</td>
<td>0.090</td>
</tr>
<tr>
<td>MTC Option 1</td>
<td>20</td>
<td>63.1</td>
<td>0.33</td>
<td>0.050</td>
</tr>
<tr>
<td>MTC Option 2</td>
<td>20</td>
<td>11.8</td>
<td>0.46</td>
<td>0.015</td>
</tr>
</tbody>
</table>
Integrated autocorrelation times

Table 2: Integrated autocorrelation times (in iterations) of various statistics of interest

<table>
<thead>
<tr>
<th></th>
<th>γ</th>
<th>δ</th>
<th>$\lambda = \delta / \gamma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block Gibbs</td>
<td>1.6</td>
<td>22.3</td>
<td>21.0</td>
</tr>
<tr>
<td>One block</td>
<td>7.8</td>
<td>6.7</td>
<td>7.1</td>
</tr>
<tr>
<td>MTC Option 1</td>
<td>7.6</td>
<td>7.8</td>
<td>7.9</td>
</tr>
<tr>
<td>MTC Option 2</td>
<td>2.1</td>
<td>5.0</td>
<td>5.7</td>
</tr>
</tbody>
</table>
Compute time for images

Table 3: Compute time (seconds) for a regularized image or independent image sample

<table>
<thead>
<tr>
<th></th>
<th>time to λ</th>
<th>time to x</th>
<th>total time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regularization</td>
<td>0.52</td>
<td>0.0024</td>
<td>0.52</td>
</tr>
<tr>
<td>Block Gibbs</td>
<td>0.85</td>
<td>-</td>
<td>0.85</td>
</tr>
<tr>
<td>One block</td>
<td>0.44</td>
<td>0.0020</td>
<td>0.47</td>
</tr>
<tr>
<td>MTC Option 1</td>
<td>0.23</td>
<td>0.0096</td>
<td>0.24</td>
</tr>
<tr>
<td>MTC Option 2</td>
<td>0.037</td>
<td>0.0082</td>
<td>0.045</td>
</tr>
</tbody>
</table>
Conclusions

- GS ≡ GS
- Numerical linear algebra can really speed up sampling
- Structuring the stochastic calculation can substantially reduce the computational task
- Marginal posterior over hyperparameters allows selection/sampling before deconvolution
- We factorized the problem into a large Gaussian/linear part and a small non-Gaussian/non-linear part
- Small part independent of discretization or data size
- ... hence can perform inference over function space without approximation
- Trace class prior covariance potentially gives analytic ratio of determinants
Thank You

 Thanks also to Dan Simpson, Harvard Rue