Parallel Sections and Related Problems in Convex Geometry

María de los Angeles Alfonseca-Cubero

North Dakota State University

May 30, 2012
Definitions and notation

Definition
A body K is a compact subset of \mathbb{R}^n with non-empty interior.

Definition
A body K is centrally symmetric if $K = -K$.

Definition
A body K is convex if given any two points $P, Q \in K$, the segment PQ is contained in K.
Definitions and notation

Definition
A body K is a compact subset of \mathbb{R}^n with non-empty interior.

Definition
A body K is centrally symmetric if $K = -K$.

Definitions and notation

Definition
A body K is a compact subset of \mathbb{R}^n with non-empty interior.

Definition
A body K is centrally symmetric if $K = -K$.

Definition
A body K is convex if given any two points $P, Q \in K$, the segment \overline{PQ} is contained in K.
Parallel Section Function

Let K be a convex body in \mathbb{R}^n, $n \geq 2$, such that the origin is contained in K.

Parallel Section Function

Let K be a convex body in \mathbb{R}^n, $n \geq 2$, such that the origin is contained in K.

Definition

For $\xi \in S^{n-1}$, let $A_{K,\xi}(t) = \text{vol}_{n-1}(K \cap \{t\xi + \xi^\perp\})$. For $t \in \mathbb{R}$ fixed, the function

$$\xi \rightarrow A_{K,\xi}(t)$$

is called the parallel section function of K.
Let K be a convex body in \mathbb{R}^n, $n \geq 2$, such that the origin is contained in K.

Definition

For $\xi \in S^{n-1}$, let $A_{K,\xi}(t) = vol_{n-1}(K \cap \{ t\xi + \xi^\perp \})$. For $t \in \mathbb{R}$ fixed, the function

$$\xi \mapsto A_{K,\xi}(t)$$

is called the parallel section function of K.
Definition

\[M_K(\xi) = \sup_{t \in \mathbb{R}} A_{K,\xi}(t) \] is the maximal section function of \(K \).
Definition

\[M_K(\xi) = \sup_{t \in \mathbb{R}} A_{K,\xi}(t) \] is the \textit{maximal section function of K}.

- **Brunn-Minkowski**: If \(K \) is centrally symmetric, \(M_K(\xi) = A_{K,\xi}(0) \), i.e. the central section is the maximal one.
Definition

\[M_K(\xi) = \sup_{t \in \mathbb{R}} A_{K,\xi}(t) \] is the \textit{maximal section function} of \(K \).

- **Brunn-Minkowski**: If \(K \) is centrally symmetric, \(M_K(\xi) = A_{K,\xi}(0) \), i.e. the central section is the maximal one.

General problem

Reconstruct \(K \) from information about the sections of \(K \).
Minkowski Uniqueness:
Every centrally-symmetric convex (or star) body K is determined by
$\{A_{K,\xi(0)}\}_{\xi \in S^{n-1}}$.
Reconstruction from Sections

- **Minkowski Uniqueness:**
 Every centrally-symmetric convex (or star) body K is determined by $\{A_K,\xi(0)\}_{\xi \in S^{n-1}}$.

- **Maximal section problem:**
 If $M_K(\xi) = C$ for all $\xi \in S^{n-1}$, is K a ball?
Minkowski Uniqueness:
Every centrally-symmetric convex (or star) body \(K \) is determined by \(\{A_K, \xi(0)\}_{\xi \in S^{n-1}} \).

Maximal section problem:
If \(M_K(\xi) = C \) for all \(\xi \in S^{n-1} \), is \(K \) a ball?
If for all \(\xi \in S^{n-1} \), \(M_K(\xi) = M_L(\xi) \), is \(K = L \)?
Minkowski Uniqueness:
Every centrally-symmetric convex (or star) body K is determined by
$\{A_K, \xi(0)\}_{\xi \in S^{n-1}}$.

Maximal section problem:
If $M_K(\xi) = C$ for all $\xi \in S^{n-1}$, is K a ball?
If for all $\xi \in S^{n-1}$, $M_K(\xi) = M_L(\xi)$, is $K = L$?

Busemann-Petty problem: Given two centrally-symmetric convex
figures K, L, such that for all $\xi \in S^{n-1}$,
$vol_{n-1}(K \cap \xi^\perp) \leq vol_{n-1}(L \cap \xi^\perp)$,
Reconstruction from Sections

- **Minkowski Uniqueness:**
 Every centrally-symmetric convex (or star) body K is determined by $\{A_K, \xi(0)\}_{\xi \in S^{n-1}}$.

- **Maximal section problem:**
 If $M_K(\xi) = C$ for all $\xi \in S^{n-1}$, is K a ball?
 If for all $\xi \in S^{n-1}$, $M_K(\xi) = M_L(\xi)$, is $K = L$?

- **Busemann-Petty problem:**
 Given two centrally-symmetric convex bodies K, L, such that for all $\xi \in S^{n-1}$, $\text{vol}_{n-1}(K \cap \xi) \leq \text{vol}_{n-1}(L \cap \xi)$,
 does it follow that $\text{vol}_n(K) \leq \text{vol}_n(L)$?
Minkowski Uniqueness:
Every centrally-symmetric convex (or star) body K is determined by $\{A_K, \xi(0)\}_{\xi \in S^{n-1}}$.

Maximal section problem:
If $M_K(\xi) = C$ for all $\xi \in S^{n-1}$, is K a ball?
If for all $\xi \in S^{n-1}$, $M_K(\xi) = M_L(\xi)$, is $K = L$?

Busemann-Petty problem: Given two centrally-symmetric convex bodies K, L, such that for all $\xi \in S^{n-1}$,
$\text{vol}_{n-1}(K \cap \xi^\perp) \leq \text{vol}_{n-1}(L \cap \xi^\perp)$,
does it follow that $\text{vol}_n(K) \leq \text{vol}_n(L)$?

Parallel section problem: If for a fixed t and all $\xi \in S^{n-1}$,
$A_{K,\xi}(t) = C$, is K a ball?
Reconstruction from Sections

- **Minkowski Uniqueness:**
 Every centrally-symmetric convex (or star) body K is determined by $\{A_{K,\xi}(0)\}_{\xi \in S^{n-1}}$.

- **Maximal section problem:**
 If $M_K(\xi) = C$ for all $\xi \in S^{n-1}$, is K a ball?
 If for all $\xi \in S^{n-1}$, $M_K(\xi) = M_L(\xi)$, is $K = L$?

- **Busemann-Petty problem:** Given two centrally-symmetric convex bodies K, L, such that for all $\xi \in S^{n-1}$, $\text{vol}_{n-1}(K \cap \xi^\perp) \leq \text{vol}_{n-1}(L \cap \xi^\perp)$, does it follow that $\text{vol}_n(K) \leq \text{vol}_n(L)$?

- **Parallel section problem:** If for a fixed t and all $\xi \in S^{n-1}$, $A_{K,\xi}(t) = C$, is K a ball?
 If for a fixed t and all $\xi \in S^{n-1}$, $A_{K,\xi}(t) = A_{L,\xi}(t)$, is $K = L$?
For $x \in \mathbb{R}^n$, the Minkowski functional of K is defined by

$$\|x\|_K = \sup\{\lambda \geq 0 : x \in \lambda K\}.$$
Minkowski Uniqueness

- For $x \in \mathbb{R}^n$, the Minkowski functional of K is defined by
 \[\|x\|_K = \sup\{ \lambda \geq 0 : x \in \lambda K \} \].
- If K is convex, the Minkowski functional is a norm on \mathbb{R}^n, whose unit ball is K.

Theorem (Minkowski Uniqueness Theorem)

Every centrally-symmetric star body K is determined by the volumes of their central hyperplane sections.

Proof. A Fourier Analytical proof by Koldobsky is based on the fact that
\[A_K,\xi(0) = \text{vol}^{n-1}(K \cap \xi^\perp) = \frac{1}{\pi^{(n-1)}\|\cdot\|^{n+1}K \wedge (\xi)} \].

María de los Angeles Alfonseca-Cubero (North Dakota State University)
For $x \in \mathbb{R}^n$, the Minkowski functional of K is defined by
\[
\|x\|_K = \sup\{\lambda \geq 0 : x \in \lambda K\}.
\]

If K is convex, the Minkowski functional is a norm on \mathbb{R}^n, whose unit ball is K.

Theorem (Minkowski Uniqueness Theorem)

Every centrally-symmetric star body K is determined by the volumes of their central hyperplane sections.
Minkowski Uniqueness

- For \(x \in \mathbb{R}^n \), the Minkowski functional of \(K \) is defined by
 \[
 \|x\|_K = \sup\{\lambda \geq 0 : x \in \lambda K\}.
 \]
- If \(K \) is convex, the Minkowski functional is a norm on \(\mathbb{R}^n \), whose unit ball is \(K \).

Theorem (Minkowski Uniqueness Theorem)

Every centrally-symmetric star body \(K \) is determined by the volumes of their central hyperplane sections.

Proof.

A Fourier Analytical proof by Koldobsky is based on the fact that

\[
A_{K,\xi}(0) = \text{vol}_{n-1}(K \cap \xi^\perp) = \frac{1}{\pi(n-1)}(\| \cdot \|_K^{n+1})^\wedge(\xi).
\]
Maximal Section Problem

1. If $M_K(\xi) = C$ for all $\xi \in S^{n-1}$, is K a ball?
2. If for all $\xi \in S^{n-1}$, $M_K(\xi) = M_L(\xi)$, is $K = L$?

In dimension 2, both problems have long been known to have a negative answer: there exist bodies of constant width that are not discs. The answer is also no in higher dimensions: for problem 1, Nazarov, Ryabogin, Zvavitch (2012). For problem 2, Gardner, Ryabogin, Yaskin, Zvavitch (2011).
Maximal Section Problem

1. If $M_K(\xi) = C$ for all $\xi \in S^{n-1}$, is K a ball?
2. If for all $\xi \in S^{n-1}$, $M_K(\xi) = M_L(\xi)$, is $K = L$?

- In dimension 2, both problems have long been known to have a negative answer:
Maximal Section Problem

1. If $M_K(\xi) = C$ for all $\xi \in S^{n-1}$, is K a ball?
2. If for all $\xi \in S^{n-1}$, $M_K(\xi) = M_L(\xi)$, is $K = L$?

- In dimension 2, both problems have long been known to have a negative answer: There exist bodies of constant width that are not discs.
Maximal Section Problem

1. If $M_K(\xi) = C$ for all $\xi \in S^{n-1}$, is K a ball?
2. If for all $\xi \in S^{n-1}$, $M_K(\xi) = M_L(\xi)$, is $K = L$?

- In dimension 2, both problems have long been known to have a negative answer: There exist bodies of constant width that are not discs.

- The answer is also no in higher dimensions:
 For problem 1, Nazarov, Ryabogin, Zvavitch (2012).
Let K, L be two centrally-symmetric convex bodies in \mathbb{R}^n, $n \geq 2$. If for any $\xi \in S^{n-1}$, $\text{vol}_{n-1}(K \cap \xi^\perp) \leq \text{vol}_{n-1}(L \cap \xi^\perp)$, does it follow that $\text{vol}_n(K) \leq \text{vol}_n(L)$?
The Busseman-Petty Problem (1956)

Let K, L be two centrally-symmetric convex bodies in \mathbb{R}^n, $n \geq 2$. If for any $\xi \in S^{n-1}$, $vol_{n-1}(K \cap \xi^\perp) \leq vol_{n-1}(L \cap \xi^\perp)$, does it follow that $vol_n(K) \leq vol_n(L)$?

- Larman and Rogers (1975): No for $n \geq 12$.

Ball (1987): No for $n \geq 10$.

Giannopoulos, Bourgain, Papadimitrakis, Gardner, Zhang (1990s): Counterexamples in several dimensions $n \geq 5$.

Gardner, Koldobsky, Schlumprecht (1999), analytic proof in all dimensions: Yes if $n = 2, 3, 4$; No for $n \geq 5$.

María de los Angeles Alfonseca-Cubero (North Dakota State University)

Parallel Sections

May 30, 2012
Let K, L be two centrally-symmetric convex bodies in \mathbb{R}^n, $n \geq 2$. If for any $\xi \in S^{n-1}$, $\text{vol}_{n-1}(K \cap \xi^\perp) \leq \text{vol}_{n-1}(L \cap \xi^\perp)$, does it follow that $\text{vol}_n(K) \leq \text{vol}_n(L)$?

- Larman and Rogers (1975): No for $n \geq 12$.
- Ball (1987): No for $n \geq 10$.

![Diagram of centrally-symmetric convex bodies](image-url)
Let K, L be two centrally-symmetric convex bodies in \mathbb{R}^n, $n \geq 2$. If for any $\xi \in S^{n-1}$, $vol_{n-1}(K \cap \xi^\perp) \leq vol_{n-1}(L \cap \xi^\perp)$, does it follow that $vol_n(K) \leq vol_n(L)$?

- Larman and Rogers (1975): No for $n \geq 12$.
- Ball (1987): No for $n \geq 10$.

- Giannopoulos, Bourgain, Papadimitrakis, Gardner, Zhang (1990s): Counterexamples in several dimensions $n \geq 5$
Let K, L be two centrally-symmetric convex bodies in \mathbb{R}^n, $n \geq 2$. If for any $\xi \in S^{n-1}$, $\text{vol}_{n-1}(K \cap \xi^\perp) \leq \text{vol}_{n-1}(L \cap \xi^\perp)$, does it follow that $\text{vol}_n(K) \leq \text{vol}_n(L)$?

- Larman and Rogers (1975): No for $n \geq 12$.
- Ball (1987): No for $n \geq 10$.
- Giannopoulos, Bourgain, Papadimitrakis, Gardner, Zhang (1990s): Counterexamples in several dimensions $n \geq 5$
- Gardner, Koldobsky, Schlumprecht (1999), analytic proof in all dimensions: Yes if $n = 2, 3, 4$; No for $n \geq 5$
The t-section problem

1. If for a fixed t and all $\xi \in S^{n-1}$, $A_{K,\xi}(t) = C$, is K a ball?
2. If for a fixed t, $A_{K,\xi}(t) = A_{L,\xi}(t)$, is $K = L$?
The t-section problem

1. If for a fixed t and all $\xi \in S^{n-1}$, $A_{K,\xi}(t) = C$, is K a ball?
2. If for a fixed t, $A_{K,\xi}(t) = A_{L,\xi}(t)$, is $K = L$?

- The answer to Problem 1 is yes in dimension 2.
1. If for a fixed t and all $\xi \in S^{n-1}$, $A_{K,\xi}(t) = C$, is K a ball?
2. If for a fixed t, $A_{K,\xi}(t) = A_{L,\xi}(t)$, is $K = L$?

- The answer to Problem 1 is yes in dimension 2.
- We will present a partial result in dimension 4.
The t-section problem

1. If for a fixed t and all $\xi \in S^{n-1}$, $A_{K,\xi}(t) = C$, is K a ball?
2. If for a fixed t, $A_{K,\xi}(t) = A_{L,\xi}(t)$, is $K = L$?

- The answer to Problem 1 is yes in dimension 2.
- We will present a partial result in dimension 4.
- The answer to Problem 2 is unknown in any dimension.
The t-section problem

1. If for a fixed t and all $\xi \in S^{n-1}$, $A_{K,\xi}(t) = C$, is K a ball?
2. If for a fixed t, $A_{K,\xi}(t) = A_{L,\xi}(t)$, is $K = L$?

- The answer to Problem 1 is yes in dimension 2.
- We will present a partial result in dimension 4.
- The answer to Problem 2 is unknown in any dimension.
Nazarov, Ryabogin, Zvavitch (2012) prove the following formula for sections of bodies of revolution:

$$vol_{n-1}(K \cap H(L)) = \kappa_{n-2} \sqrt{1 + s^2} \int_{-x}^{y} (f^2(x_1) - L^2(t, s, x_1))^{(n-2)/2} \, dx_1.$$
Let $t > 0$ and let K be a 4-dimensional body of revolution containing the ball of radius t centered at the origin. We assume that all 3-dimensional t-sections of K have constant volume.
Let $t > 0$ and let K be a 4-dimensional body of revolution containing the ball of radius t centered at the origin. We assume that all 3-dimensional t-sections of K have constant volume.

By dilating K, we may assume $(t, \sqrt{1 - t^2}) \in \partial K$ (and then the point $(-t, \sqrt{1 - t^2})$ must also be on ∂K).
In dimension 4, the formula for sections becomes

$$\text{vol}_3(K \cap H(L)) = \pi \sqrt{1 + s^2} \int_{-x}^{y} (f^2(x_1) - L^2(s, t, x_1)) \, dx_1$$
In dimension 4, the formula for sections becomes

$$vol_3(K \cap H(L)) = \pi \sqrt{1 + s^2} \int_{-x}^{y} (f^2(x_1) - L^2(s, t, x_1)) \, dx_1 = \frac{4}{3} \pi (1 - t^2)^{3/2}.$$
In dimension 4, the formula for sections becomes

$$\text{vol}_3(K \cap H(L)) = \pi \sqrt{1 + s^2} \int_{-x}^{y} (f^2(x_1) - L^2(s, t, x_1)) \, dx_1 = \frac{4}{3} \pi (1-t^2)^{3/2}.$$

Differentiating with respect to s, we obtain a cubic equation in terms of x and y.
In dimension 4, the formula for sections becomes

\[
\text{vol}_3(K \cap H(L)) = \pi \sqrt{1 + s^2} \int_{-x}^{y} \left(f^2(x_1) - L^2(s, t, x_1) \right) \, dx_1 = \frac{4}{3} \pi (1-t^2)^{3/2}.
\]

Differentiating with respect to \(s \), we obtain a cubic equation in terms of \(x \) and \(y \), that does not depend on \(f \).
\[
(y^3 + x^3) \pm \frac{3t(1 + 2s^2)}{2s\sqrt{1 + s^2}} (y^2 - x^2) + 3t^2(y + x) = 2 \left(\frac{1 - t^2}{1 + s^2} \right)^{3/2}.
\]
Given a point \((y, f(y)) \in \partial K\), we can solve the equation and find \((-x, -f(-x)) \in \partial K\). Then we can iterate, starting now at \((-x, -f(-x))\).
Iteration

Given a point \((y, f(y)) \in \partial K\), we can solve the equation and find \((-x, -f(-x)) \in \partial K\). Then we can iterate, starting now at \((-x, -f(-x))\).

If \((y, f(y))\) is on the unit sphere, so is \((-x, -f(-x))\).
Iteration

\[(y^3 + x^3) \pm \frac{3t(1 + 2s^2)}{2s\sqrt{1 + s^2}} (y^2 - x^2) + 3t^2(y + x) = 2 \left(\frac{1 - t^2}{1 + s^2}\right)^{3/2}.\]

- Given a point \((y, f(y)) \in \partial K\), we can solve the equation and find \((-x, -f(-x)) \in \partial K\). Then we can iterate, starting now at \((-x, -f(-x))\).
- If \((y, f(y))\) is on the unit sphere, so is \((-x, -f(-x))\).
- By assumption, \(\partial K\) contains four points that are on the unit sphere.

María de los Angeles Alfonseca-Cubero (North Dakota State University)
Parallel Sections
May 30, 2012 13 / 14
\[(y^3 + x^3) \pm \frac{3t(1 + 2s^2)}{2s\sqrt{1 + s^2}} (y^2 - x^2) + 3t^2(y + x) = 2 \left(\frac{1 - t^2}{1 + s^2}\right)^{3/2}.\]

- Given a point \((y, f(y)) \in \partial K\), we can solve the equation and find \((-x, -f(-x)) \in \partial K\). Then we can iterate, starting now at \((-x, -f(-x))\).
- If \((y, f(y))\) is on the unit sphere, so is \((-x, -f(-x))\).
- By assumption, \(\partial K\) contains four points that are on the unit sphere. If \(\arccos(t)\) is an irrational multiple of \(\pi\), the iteration will give us a dense set of points, both on \(\partial K\) and on the unit sphere, and hence \(K = S^3\).
Currently working on
Currently working on

- Proving the 4-dimensional result for all t.
Currently working on

- Proving the 4-dimensional result for all t.
- Extending to dimension n.
Currently working on

- Proving the 4-dimensional result for all t.
- Extending to dimension n.

Thank you!