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“Here we tackle the [protein folding] problem differently.  

First, we simplify the representation of a protein by 

averaging over fine details.  This is done both to make the 

calculations much more efficient and also to avoid having to 

distinguish between many conformations that differ only in 

these finer details.  Second, we simulate the folding of this 

simple structure …”

“Our method … is based on two assumptions: (1) that much 

of the protein’s fine structure can be eliminated by 

averaging, and (2) that the overall chain folding can be 

obtained by considering only the most effective variables

(those that vary most slowly yet cause the greatest changes 

in conformation).”

Inspiration
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CG Mapping
Atomistic CG

Mapping

Operator

The mapping operator transforms an atomistic configuration onto a CG 

configuration by defining the coordinates of each site as a linear combination

of the coordinates defining each site.
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Consistent CG Models

Atomistic Configuration Space CG Configuration Space

For a consistent CG model that reproduces the distribution of structures generated 

by the atomistic model, the appropriate CG potential is a many-body PMF.

Consistency

Noid, Chu, …, Voth, Andersen

J Chem Phys (2008)
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Mean Force Field

In a consistent model, the CG force field is the conditioned expectation 

value of the atomistic force field (I.e., the mean force field).  
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MS-CG Variational Principle for the PMF
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The MS-CG variational principle determines the many-body PMF 

through a geometric optimization problem in the space of CG force fields.  

Noid, Chu, …, Voth, Andersen

J Chem Phys (2008)
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Linear Least Squares Problem
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The MS-CG variational principle determines          by projecting the 

PMF onto the space of CG force fields spanned by the given basis.
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Simple Liquid Analog
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For a simple liquid with central pair potentials, the basis function        describes 

the distribution of sites at a given distance,       , around a given site. RD
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Role of Three-Body Correlations
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Projecting the atomistic force field onto a central pair potential results in 

the Yvon-Born-Green equation.

Yvon-Born-Green Equation
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Noid, Chu, Ayton, Voth.  

J Phys Chem B (2007)



Role of 3-Body Correlations II
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The optimal approximation to the many-body PMF is obtained by treating 

the non-orthogonality (3-particle correlations) among the basis functions.

Noid, Chu, Ayton, Voth.  J Phys Chem B (2007)



Results - Methanol

CG pair potential CG pair structure

Calculations by Pu Liu

Noid, Liu, Wang, …, Andersen, Voth.  J Chem Phys (2008)

The approximate decomposition of the many-body PMF into central pair 

potentials quantitatively reproduces the pair distribution function.



Consistent Momenta Distribution

Restrictions upon the model: 

1. CG Mapping: 

No atom can be involved 

in more than one site.

2. Site Masses: 

In order to generate the correct momenta distribution, the mass of the CG site is 

equal to the net mass of the associated atoms only for the center-of-mass 

mapping.

Calculation by Pu Liu.

Noid, Liu, Wang, …, Andersen, Voth.  J Chem Phys (2008)
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EMIM+ cation

NO3
- anion

Results - Ionic Liquids

1-ethyl-3-methylimidazolium nitrate 

(EMIM+/NO3
-) ionic liquid (IL) pair

CG Potential

The many-body PMF is approximated with a CG potential including both 

bonded and pair-additive non-bonded terms.

Calculations by Yanting Wang

Noid, Liu, Wang, …, Andersen, Voth.  J Chem Phys (2008)
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Intramolecular CG Interactions

EMIM+ cation
Bond-

Stretch

Bond-

Angle

A-C

A-C-E

B-A-C-E

Dihedral-

Angle

Calculations by Yanting Wang

Noid, Liu, Wang, …, Andersen, Voth.  J Chem Phys (2008)

Intramolecular CG bond-stretch and bond-angle interactions are 

remarkably well fit by harmonic forms.



Intermolecular CG Interactions

Short-ranged Nonbonded

A-A A-D

D-D E-E

EMIM+ cation

NO3
- anion

Calculations by Yanting Wang

Noid, Liu, Wang, …, Andersen, Voth.  J Chem Phys (2008)

CG pair potentials are primarily repulsive but not Lennard-Jones in form.



Bond-

Stretch

Bond-

Angle

Dihedral-

Angle

A-C

A-C-E

B-A-C-E

EMIM+ cation

Intramolecular CG Distributions

CG

Atomistic

exp[Ui
 ( i ) / kBT ]

Calculations by Yanting Wang

Noid, Liu, Wang, …, Andersen, Voth.  J Chem Phys (2008)

While the bond-stretch and bond-angle distributions are nearly quantitatively 

reproduced, the bond dihedral angle distribution is not well reproduced.



EMIM+ cation

NO3
- anion

Intermolecular CG Distributions

CG

Atomistic

Calculations by Yanting Wang

Noid, Liu, Wang, …, Andersen, Voth.  J Chem Phys (2008)

A-A A-D

D-D E-E

Nonbonded pair distributions in the IL system are reproduced with reasonable 

accuracy.



Temperature Transferability
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Summary
• CG models “liberate” us from the shackles of atomistic MD, but may be misleading 

unless they are consistent with the underlying physics.

• The MS-CG variational principle, in principle, determines the many-body PMF, which 

is the appropriate potential for a consistent CG model.

• When implemented with a finite basis set, the MS-CG variational principle 

determines an optimal approximation to the many-body PMF.

• Many-body correlations must be considered when determining an optimal pair 

decomposition of the many-body PMF.  

• The MS-CG method systematically incorporates such correlations in determining a 

molecular CG force field.

• A generalized MS-CG variational principle incorporates temperature transferrability.


