Mechanism and Robot Kinematics, Part I: Algebraic Foundations

Charles Wampler
General Motors R&D Center

In collaboration with
Andrew Sommese
University of Notre Dame
Overview

- Why kinematics is (mostly) algebraic geometry
 - Rigid bodies with algebraic surfaces in contact
 - A good approximation to the most common devices
- Mechanism & robot types
 - Families and sub-families
 - Classification via type graphs
- Types of kinematic problems
 - Analysis: how does this mechanism move?
 - Motion paths, workspace limits, singularities
 - Synthesis: what mechanism will move this way?
 - Exceptional ("overconstrained") mechanisms
Kinematics: Then & Now

Model of Watt Engine, 1784
(http://kmoddl.library.cornell.edu/tutorials/05/)

Stewart-Gough robot
(Fanuc F200)
Griffis-Duffy Platform

This is an algebraic curve of degree 40
Definition of a Mechanism

- A collection of links connected by joints.
 - Links are rigid bodies
 - In reality, not quite, but a good approximation
 - “Compliant mechanisms” are another story
 - Joints are mechanical contacts between surfaces of two links
 - Pin joint (hinge), Ball-and-socket, etc.
Rigid-Body Motion

- A rigid body has two defining properties:
 - Preservation of distance
 - Preservation of chirality (handedness)
Rigid-Body Motion (cont.)

- Suppose \(a, b, c, d \in \mathbb{R}^3 \) are given, non-coplanar.
- What is the set \(a', b', c', d' \in \mathbb{R}^3 \) such that homologous distances are preserved?

\[
(b'-a')^T(b'-a') = (b-a)^T(b-a) \\
(c'-b')^T(c'-b') = (c-b)^T(c-b)
\]

Etc.

\(\rightarrow 6 \) polynomials in 12 variables

\(\rightarrow \) Has 2 components, each 6 dimensional.

One component contains \((a,b,c,d) \)

Other component: mirror image
Rigid Body Motion (Spatial)

- \(SE(3) = \mathbb{R}^3 \times SO(3) \) (Lie Group \(\mathbb{R}^3 \times SO(3) \))
 - Preserves distance & chirality
 - Let \(T \in SE(3) \) be given by \((p, Q) \)
 - \(p \in \mathbb{R}^3, Q \in SO(3) \subset \mathbb{R}^{3 \times 3} \)
 - \(Q^T Q = I, \quad \det Q = 1 \)
 - \(T: \mathbb{R}^3 \to \mathbb{R}^3 \)
 - Operates on point \(x \in \mathbb{R}^3 \) as \(T(x) = p + Q \cdot x \)

- Facts
 - \(SE(3) \) is a 6-dimensional, algebraic subset of \(\mathbb{R}^{3 \times 4} \)
 - 3 translations, 3 rotations
 - \(T: \mathbb{R}^3 \to \mathbb{R}^3 \) is an algebraic map
Isomorphisms of SE(3)

- 4x4 Homogeneous matrix group
 - Products and inverses are in the same form
 - Transforms may be written as $T(x) = \begin{bmatrix} Q & p \\ 0 & 1 \end{bmatrix} x$
- SO(3) isomorphic to P^3
 - Quaternions
 - Unit quaternions double cover SO(3)
- Study’s soma (Study coordinates)
 - Study quadric in P^7 $[a \ b \ c \ d \ q \ r \ s \ t] \in P^7$
 - $aq + br + cs + dt = 0$
Subgroups of SE(3)

- Planar rigid-body motion
 - $SE(2) = \mathbb{R}^2 \times SO(2) \subset SE(3)$
 - $\text{dim } SE(2) = 3$

- Spherical rigid-body motion
 - $SO(3) = 0 \times SO(3) \subset SE(3)$
 - $\text{dim } SO(3) = 3$

- These are both of interest in kinematics too.
Definition: Link and Framed Link

- Let a **link** be a collection of features
 - Assume features are algebraic sets in \(\mathbb{R}^3 \).
 - Points, curves, surfaces
- Call an element of \(\text{SE}(3) \) a **frame**.
- Let **framed link** = link plus a frame.
Transformed features

- Let A be a link
- Let $A = \{T,A\}$, $T \in SE(3)$, a framed link
- Feature point $x \in A$ transforms to $x' = T(x)$
- Feature given by $f(x) = 0$ transforms to $f(T^{-1}(x')) = 0$
\textbf{Joints}

- **Joint** = tangential contact between transformed features of two framed links.
 - Tangential contact =
 - Share at least one point, called “contact” point(s)
 - Surface tangent plane contains the tangent space of the opposing feature at contact point
Contact types

<table>
<thead>
<tr>
<th></th>
<th>A ? B</th>
<th>B</th>
<th>point</th>
<th>curve</th>
<th>surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>point</td>
<td>equality</td>
<td>inclusion</td>
<td>inclusion</td>
<td></td>
</tr>
<tr>
<td>curve</td>
<td>equality meet</td>
<td>inclusion</td>
<td>point contact</td>
<td></td>
<td></td>
</tr>
<tr>
<td>surface</td>
<td>equality curve contact</td>
<td>point contact</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table showing contact types and their relationships.
Linear contact types

<table>
<thead>
<tr>
<th>A ⊗ B</th>
<th>B</th>
<th>point</th>
<th>line</th>
<th>plane</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>point</td>
<td>equality</td>
<td>inclusion</td>
<td>inclusion</td>
</tr>
<tr>
<td>point</td>
<td>equality</td>
<td>meet</td>
<td>inclusion</td>
<td></td>
</tr>
<tr>
<td>line</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>plane</td>
<td></td>
<td></td>
<td>equality</td>
<td></td>
</tr>
</tbody>
</table>
Example: Planar 7-bar Structure

Problem:
Assemble these 7 pieces, as labeled.
Example 2 Preparation

- Ball bar \leftrightarrow Spherical surface
Example: Stewart-Gough platforms

- **Top link, B**
 - 6 feature points
 - $b_1, b_2, b_3, b_4, b_5, b_6$

- **Base link, A**
 - 6 feature spheres
 - Centers $a_1, a_2, a_3, a_4, a_5, a_6$
 - Radii $r_1, r_2, r_3, r_4, r_5, r_6$

- **Joints: point in surface**
 - Point i of top link lies on sphere i of base link, $i=1,\ldots,6$
Example (cont): Forming equations

- For $i=1,\ldots,6$
- Sphere equation:
 $$f_i(x) = (x-a_i)^T(x-a_i) - r_i^2 = 0$$
- Point inclusions:
 $$f_i(T(b_i)) = 0 \quad (*)$$
 Where T is the transform for framed link B
- For given links, the T that satisfy $(*)$ are the possible locations of B w.r.t. A
Joints: Lower-order pairs

- What surface=surface joints allow relative motion?
 - Answer given by Reuleaux, 1875
 - Rigorous proof by Selig, 1989, IJRR
 - Lie groups

- Why engineers care:
 - Distributed stress = less wear

- And the answer is...
Joints: Lower-order pairs

- **Prismatic**: $f=1$, $c=5$
- **Rotational**: $f=2$, $c=4$
- **Helical (Screw)**: $f=1$, $c=5$ (Not Algebraic)
- **Cylindrical**: $f=2$, $c=4$

$f =$ freedom
$c =$ constraint in SE(3)

Plane: $f=3$, $c=3$
Sphere: $f=3$, $c=3$
5 of 6 lower-order pairs are linear

- **Prismatic (P)**: Line-in-plane
- **Cylindrical (C)**: Line
- **Sphere (S)**: Point
- **Rotational (R)**: Point-in-line
- **Plane (E)**: Plane
- **Equality between flags**
Linear link types

- Let link type index = integer triplet
 (# feature points, # feature lines, # f. planes)
- For each link type index, (a,b,c), there is an associated link type universal space
 \[L_{abc} = \text{Aff}(0,3)^a \times \text{Aff}(1,3)^b \times \text{Aff}(2,3)^c \]
- A **link type** is an algebraic subset of a link type universal space, say
 \[Y \subset L_{abc} \]
 - Inclusions, parallelism, perpendicularly, etc.
Mechanism Definition Revisited

- Limit our attention to linear features
- Mechanism family is given by
 - List of N framed links
 - Each link i has a type $Y_i \subset L_{(abc)_i}$
 - $(a,b,c)_i$ is link type index
 - Each linear element is a feature
 - Framed link i has a transform $T_i \in SE(3)$,
 - List of joints, each consisting of
 - A pair of features of two distinct links
 - A contact operation (equality, inclusion, meet)
 - Family is $M \subset SE(3)^N \times Y$,
 - where Y is a given algebraic set $Y \subset Y_1 \times \cdots \times Y_N$
 - Equations for M derive from the contact operations applied to transformed feature pairs.
Some Mechanism Families

- Native linear families
 - Those for which $Y = L_{(abc)}_1 \times \cdots \times L_{(abc)}_N$

- Lower-order pair families
 - All joints are one of P,R,C,E,S

- Planar mechanisms
 - Frames are in SE(2)
 - Joints are either:
 - P with lines parallel to reference plane
 - R with axes orthogonal to reference plane

- Spherical mechanisms
 - Frames are in SO(3)
 - Joints are all R with axes through the origin
Spherical four-bar

Courtesy of J. M. McCarthy, UC Irvine
Graphic by Hai-Jun Su
Mechanism Type Graphs

- For lower-order pair mechanisms
 - Joint type (P,R,C,E,S) implies feature type
- If there are no other conditions imposed (parallelism, orthogonality, etc.) then a colored graph defines the family
 - Links are nodes
 - Joints are colored (labeled) edges
 - Simple example: house door
- Extra conditions can be annotated separately
Examples

- Connecting rod
- Engine block
- Crankshaft
- Fuel and air
- Spark plug
- Compressed fuel and air
- Piston
- Rod
- Crankshaft
- Engine block
- Top plate
- Upper leg
- Lower leg
- Base plate
Type Enumeration

- For planar & spherical generically 1 DOF lower-pair mechanisms, we can enumerate all possible mechanism types up to $N=12$
 - Graph isomorphism is at issue

- For spatial, there are too many to bother

Two-bar

Four-bar

Watt six-bar

Stephenson six-bar

16 distinct eight-bars
Grounded Mechanism

- A mechanism, as defined above, floats freely in 3-space.
- A grounded mechanism is a mechanism with one link held stationary.
 - Say, $T_N = I$
 - Configuration space becomes $SE(3)^{N-1}$
- Different grounded mechanisms derived from the same mechanism are called inversions of the mechanism.

Watt I

Watt II
Input Joints

- Typically, some joints are actuated
- These are the input joints
- We may directly command the input angle (R joint) or input translation (P joint)
- The relative motion is parameterizable

\[
T_j = T_i A \begin{bmatrix}
 c_\theta & -s_\theta & 0 & 0 \\
 s_\theta & c_\theta & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix} B
\]

\[
T_j = T_i A \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & \delta \\
 0 & 0 & 0 & 1
\end{bmatrix} B
\]

R joint P joint

- This defines a map

\[
J : \text{SE}(3)^N \rightarrow S^1 \times \cdots \times S^1 \times \mathbb{R}^1 \times \cdots \times \mathbb{R}^1 = J
\]
There is usually an output link or output joint(s) that directly interacts with the environment to achieve the purpose of the mechanism.

- Examples: robot hand, automobile wheel
- This gives an output function:

\[K: \text{SE}(3)^N \rightarrow \mathbb{K} \]

- Output link, \(K: \text{SE}(3)^N \rightarrow \text{SE}(3) \)
- Rotational output joint, \(K: \text{SE}(3)^N \rightarrow S^1 \)
Big Picture

mechanism \(M \subseteq \text{SE}(3)^N \times Y \)

configuration space

configuration space

\(\text{SE}(3)^N \)

natural projections

\(\pi_1 \)

\(\pi_2 \)

mechanism type

input

output

J

K

J

K
Overview (revisited)

- Why kinematics is (mostly) algebraic geometry
 - Rigid bodies with algebraic surfaces in contact
 - A good approximation to the most common devices
- Mechanism & robot types
 - Families and sub-families
 - Classification via type graphs
- Types of kinematic problems
 - Analysis: how does this mechanism move?
 - Motion paths, workspace limits, singularities
 - Synthesis: what mechanism will move this way?
 - Exceptional ("overconstrained") mechanisms
Analysis

- How does a given mechanism move?
- Family $M \subset \text{SE}(3)^N \times Y$

$$
\begin{array}{c}
\pi_1 \\
\pi_2 \\
\end{array}
\begin{array}{c}
\text{SE}(3)^N \\
Y \\
\end{array}
$$

- $y_0 \in \pi_2(M) \subset Y$ is a mechanism in the family
- $\pi_1(\pi_2^{-1}(y_0))$ is its motion
- $\dim \pi_1(\pi_2^{-1}(y_0))$ is called its “degrees of freedom”
Analysis

- The motion $\pi_1(\pi_2^{-1}(y_0))$ may have several components.
 - Find the DOF of each component
 - Real dimension = complex dimension
- The DOF’s may be different for different points $y_0 \in \pi_2(M)$
 - For each irred. component of $\pi_2(M) \subset Y$
 find the generic DOF’s
Example: 7-bar Structure

Problem:
Assemble these 7 pieces, as labeled.
Result for Generic Links

18 rigid structures

• 8 real, 10 complex for this set of links.
• All isolated – can be found with traditional homotopy
Special Links (Roberts Cognates)

Dimension 1:
6th degree four-bar motion

Dimension 0:
1 of 6 isolated (rigid) assemblies
Robot Workspace Analysis

- Find the workspace boundary (in the reals)
 - Real points of the singular set of a complex component of
 \[K(\pi_1(\pi_2^{-1}(y_0))) \]
 - The set being analyzed here is the position of the hand
 - i.e., the image of a projection map from \(SE(3)^4 \) to \(\mathbb{R}^3 \)

A. Malek, U. Iowa
Forward and inverse kinematics

- Suppose
 \[\dim J(C) = \dim K(C) = \dim C, \]
 \[C = \pi_1(\pi_2^{-1}(y_0)), \quad y_0 \in \pi_2(M) \]

- Forward kinematics
 - Find \(K(J^{-1}(x)) \)

- Inverse kinematics
 - Find \(J(K^{-1}(x)) \)

- Find singularities of these maps
Synthesis

- Find a mechanism to approximate a given motion
 - Finite position synthesis = interpolate a finite set of given outputs
 \[Z = \left\{ y \in \pi_2(M) \mid K(\pi_1(\pi_2^{-1}(y))) \supset \{ o_1, \ldots, o_m \} \right\} \]
 where \(o_1, \ldots, o_m \in \mathbf{K} \) are given
 - Input-output synthesis
 \[Z = \left\{ y \in \pi_2(M) \mid [J(\pi_1(\pi_2^{-1}(y))), K(\pi_1(\pi_2^{-1}(y)))] \supset \{ [n_1, o_1], \ldots, [n_m, o_m] \} \right\} \]
 where \([n_1, o_1], \ldots, [n_m, o_m] \in \mathbf{J} \times \mathbf{K} \) are given
Another view: Fiber Product

- Let \(P = \pi_2(M) \) be the parameter space.
- The fiber product \(\Pi_p^M = M \times_p \cdots \times_p M \) \(j \) times

is the space of multiple instances of the same mechanism in \(j \) different configurations.

- Let \(\pi_{1i} \) be the projection onto the \(i \)th configuration.
- Output synthesis sets

\[
K(\pi_{1i}(\Pi_p^M)) = o_i, \quad i = 1, \ldots, m
\]
Synthesis Example

- 9-Point Path Generation for Four-bars
 - Problem statement
 - Alt, 1923
 - Bootstrap partial solution
 - Roth, 1962
 - Complete solution
 - Wampler, Morgan & Sommese, 1992
 - m-hom. Continuation
 - 143,360 paths (2-way symmetry)
 - 4326 finite, isolated solutions
 - 1442 Robert cognate triples
Spherical four-bar

Courtesy of J. M. McCarthy, UC Irvine
Graphic by Hai-Jun Su
Exceptional Mechanisms

- A.K.A. “overconstrained mechanisms”
- For each component of M, there is a generic fiber dimension, M’s DOF

 $d^* = \dim_x \pi_2^{-1}(\pi_2(x)))$ for generic $x \in M$

- M may have algebraic subsets where the fiber dimension is larger than d^*
 - These are exceptional mechanisms
 - Finding such mechanisms is challenging
Exceptional 7-bar (Roberts Cognates)

Dimension 1:

6\text{th} degree four-bar motion
Bennett four-bar

Courtesy of J. Michael McCarthy, UC Irvine
Exceptional Stewart-Gough Platform
Summary

- Rigid-body mechanisms with algebraic joint features are algebraic
 - Linear features include all lower-order pairs
 - P,R,C,E,S
 - Linear mechanism spaces are a rich source of interesting algebraic sets
- Kinematic problems fall into three main classes
 - Analysis
 - Synthesis
 - Discovery of Exceptional Mechanisms
- Many challenges await!