Wavelets Compression
Ronald DeVore
What is an Image?

A function f defined on $\Omega := [0, 1]^2$
What is an Image?

- A function f defined on $\Omega := [0, 1]^2$
- Digitized Image?
What is an Image?

- A function f defined on $\Omega := [0, 1]^2$
- Digitized Image?
- \mathcal{D}_k the set of all dyadic squares of sidelength 2^{-k} contained in Ω.

IMA 2007 – p. 2/3
What is an Image?

- A function f defined on $\Omega := [0, 1]^2$
- Digitized Image?
- \mathcal{D}_k the set of all dyadic squares of sidelength 2^{-k} contained in Ω.
- $f_I := \frac{1}{|I|} \int_I f$
What is an Image?

- A function f defined on $\Omega := [0, 1]^2$
- Digitized Image?
- \mathcal{D}_k the set of all dyadic squares of sidelength 2^{-k} contained in Ω.
- $f_I := \frac{1}{|I|} \int_I f$
- Pixel values p_I: some quantization of the f_I
What is an Image?

- A function f defined on $\Omega := [0, 1]^2$
- Digitized Image?
- D_k the set of all dyadic squares of sidelength 2^{-k} contained in Ω.
- $f_I := \frac{1}{|I|} \int_I f$
- Pixel values p_I: some quantization of the f_I
- For example the first m binary digits of f_I
Real world images

- The above mathematical definition is too general
Real world images

- The above mathematical definition is too general
- It includes many examples that would not be considered images
Real world images

- The above mathematical definition is too general
- It includes many examples that would not be considered images
- Real world images are far more special
Real world images

- The above mathematical definition is too general
- It includes many examples that would not be considered images
- Real world images are far more special
- If we could give a precise mathematical definition of real world images we would probably be able to find (near) optimal image processing algorithms
Real world images

- The above mathematical definition is too general
- It includes many examples that would not be considered images
- Real world images are far more special
- If we could give a precise mathematical definition of real world images we would probably be able to find (near) optimal image processing algorithms
- Images have an inherent complexity and should be classified according to this complexity
The above mathematical definition is too general. It includes many examples that would not be considered images.

Real world images are far more special.

If we could give a precise mathematical definition of real world images, we would probably be able to find (near) optimal image processing algorithms.

Images have an inherent complexity and should be classified according to this complexity.

This classification will determine how well we can do in such tasks as compression and denoising.
Compression: Encoders/Decoders

- An encoder E is a mapping $f \rightarrow B$ where $B := B(f)$ is a bitstream.
Compression: Encoders/Decoders

- An encoder E is a mapping $f \rightarrow B$ where $B := B(f)$ is a bitstream.
- We view B as an infinite bitstream: progressive encoding.
Compression: Encoders/Decoders

- An encoder E is a mapping $f \rightarrow B$ where $B := B(f)$ is a bitstream.
- We view B as an infinite bitstream: progressive encoding.
- For digitized images B will be finite.
Compression: Encoders/Decoders

- An encoder E is a mapping $f \rightarrow B$ where $B := B(f)$ is a bitstream.
- We view B as an infinite bitstream: progressive encoding.
- For digitized images B will be finite.
- Define $E_n(f)$ as the first n bits of $B(f)$.
Compression: Encoders/Decoders

- An encoder E is a mapping $f \rightarrow B$ where $B := B(f)$ is a bitstream.
- We view B as an infinite bitstream: progressive encoding.
- For digitized images B will be finite.
- Define $E_n(f)$ as the first n bits of $B(f)$.
- Decoders: D_n maps a bitstream B_n of size n into a function (image) $D_n(B_n)$.
Compression: Encoders/Decoders

- An encoder E is a mapping $f \rightarrow B$ where $B := B(f)$ is a bitstream.
- We view B as an infinite bitstream: progressive encoding.
- For digitized images B will be finite.
- Define $E_n(f)$ as the first n bits of $B(f)$.
- Decoders: D_n maps a bitstream B_n of size n into a function (image) $D_n(B_n)$.
- $D_n(E_n(f))$ is our compressed image.
The Issues

1. The metric: We shall employ typical compression convention and use least squares metric, i.e. $L_2([0, 1]^2)$. This discrete form of this metric is equivalent to PSNR.

2. The classes

3. Determine Entropy of Classes

4. Build near optimal Encoders/Decoders
The classes

- K must be compact in $L_2[0, 1]^2$
The classes

1. K must be compact in $L_2[0, 1]^2$)
2. Smoothness spaces: Sobolev $W^s(L_p)$ and Besov classes $B^s_q(L_p)$
The classes

- K must be compact in $L_2[0, 1]^2$
- Smoothness spaces: Sobolev $W^s(L_p)$ and Besov classes $B^s_q(L_p)$
- BV - functions of Bounded Variation: $s = 1$, $p = 1$
Sobolev embedding $d = 2$
Wavelets on \mathbb{R}

In $d = 1$, an orthogonal wavelet is a function ψ whose shifted dilates are a complete orthonormal system for $L_2(\mathbb{R})$.
Wavelets on \mathbb{R}

- In $d = 1$, an orthogonal wavelet is a function ψ whose shifted dilates are a complete orthonormal system for $L_2(\mathbb{R})$

- $\psi_I(x) := 2^{j/2} \psi(2^j x - k)$ with $I = 2^{-j}[k, k + 1]$
Wavelets on \mathbb{R}

- In $d = 1$, an orthogonal wavelet is a function ψ whose shifted dilates are a complete orthonormal system for $L_2(\mathbb{R})$

$$\psi_I(x) := 2^{j/2}\psi(2^j x - k) \text{ with } I = 2^{-j}[k, k + 1]$$

- Simplest example is the Haar function

$$\psi := \chi_{[0,1/2]} - \chi_{[1/2,1]}$$
Wavelets on \mathbb{R}

- In $d = 1$, an orthogonal wavelet is a function ψ whose shifted dilates are a complete orthonormal system for $L_2(\mathbb{R})$

$$\psi_I(x) := 2^{j/2}\psi(2^j x - k) \text{ with } I = 2^{-j}[k, k + 1]$$

- Simplest example is the Haar function
 $$\psi := \chi_{[0,1/2]} - \chi_{[1/2,1]}$$

- Zillion other examples: most famous Daubechies compactly supported wavelets
In $d = 1$, an orthogonal wavelet is a function ψ whose shifted dilates are a complete orthonormal system for $L_2(\mathbb{R})$

$\psi_I(x) := 2^{j/2}\psi(2^j x - k)$ with $I = 2^{-j}[k, k + 1]$

Simplest example is the Haar function $\psi := \chi[0, 1/2] - \chi[1/2, 1]$

Zillion other examples: most famous Daubechies compactly supported wavelets

Scaling function φ and associated mother wavelet ψ
Wavelets on \mathbb{R}

- In $d = 1$, an orthogonal wavelet is a function ψ whose shifted dilates are a complete orthonormal system for $L_2(\mathbb{R})$
 $$\psi_I(x) := 2^{j/2} \psi(2^j x - k) \text{ with } I = 2^{-j}[k, k + 1]$$

- Simplest example is the Haar function
 $$\psi := \chi[0,1/2] - \chi[1/2,1]$$

- Zillion other examples: most famous Daubechies compactly supported wavelets

- Scaling function φ and associated mother wavelet ψ

- For Haar $\varphi = \chi[0,1]$
Wavelets on \mathbb{R}

- In $d = 1$, an orthogonal wavelet is a function ψ whose shifted dilates are a complete orthonormal system for $L_2(\mathbb{R})$

 - $\psi_I(x) := 2^{j/2}\psi(2^j x - k)$ with $I = 2^{-j}[k, k + 1]$

- Simplest example is the Haar function
 - $\psi := \chi[0,1/2] - \chi[1/2,1]$

- Zillion other examples: most famous Daubechies compactly supported wavelets

- Scaling function φ and associated mother wavelet ψ

- For Haar $\varphi = \chi[0,1]$

- On finite domain different basis: scaling functions on level 0 wavelets on level j for each j
In $d = 1$, an orthogonal wavelet is a functions ψ whose shifted dilates are a complete orthonormal system for $L_2(\mathbb{R})$

$$\psi_I(x) := 2^{j/2}\psi(2^j x - k) \text{ with } I = 2^{-j}[k, k + 1]$$

Simplest example is the Haar function

$$\psi := \chi[0,1/2] - \chi[1/2,1]$$

Zillion other examples: most famous Daubechies compactly supported wavelets

Scaling function φ and associated mother wavelet ψ

For Haar $\varphi = \chi[0,1]$
Wavelets for $d = 2$

- Wavelet basis from univariate basis
Wavelets for $d = 2$

- Wavelet basis from univariate basis
- Describe how we get a bivariate basis: Haar example
Wavelets for $d = 2$

- Wavelet basis from univariate basis
- Describe how we get a bivariate basis: Haar example
- Let $\psi_I^0 = \varphi_I$ and $\psi_I^1 := \psi_I$
Wavelets for $d = 2$

- Wavelet basis from univariate basis
- Describe how we get a bivariate basis: Haar example
- Let $\psi_0^I = \varphi_I$ and $\psi_I^1 := \psi_I$
- If $I = I_0 \times I_1$ is a square and $e = (e_0, e_1)$ $e_0, e_1 \in \{0, 1\}$: $I = 2^{-j}[k_0, k_0 + 1] \times [k_1, k_1 + 1]$ a dyadic cube centered at $2^{-j}(k_0, k_1)$
Wavelets for $d = 2$

- Wavelet basis from univariate basis
- Describe how we get a bivariate basis: Haar example
- Let $\psi^0_I = \varphi_I$ and $\psi^1_I := \psi_I$
- If $I = I_0 \times I_1$ is a square and $e = (e_0, e_1)$, $e_0, e_1 \in \{0, 1\}$: $I = 2^{-j}[k_0, k_0 + 1] \times [k_1, k_1 + 1]$ a dyadic cube centered at $2^{-j}(k_0, k_1)$
- $\psi^e_I = \Psi^{e_0}_{I_0} \psi^{e_1}_{I_1}$
Wavelets for $d = 2$

- Wavelet basis from univariate basis
- Describe how we get a bivariate basis: Haar example
- Let $\psi^0_I = \varphi_I$ and $\psi^1_I := \psi_I$
- If $I = I_0 \times I_1$ is a square and $e = (e_0, e_1)$, $e_0, e_1 \in \{0, 1\}$: $I = 2^{-j}[k_0, k_0 + 1] \times [k_1, k_1 + 1]$ a dyadic cube centered at $2^{-j}(k_0, k_1)$
- $\psi^e_I = \Psi^{e_0}_{I_0} \psi^{e_1}_{I_1}$
- There are three wavelets associated to each dyadic square: $e = (1, 0), (0, 1), (1, 1)$
Wavelets for $d = 2$

- Wavelet basis from univariate basis
- Describe how we get a bivariate basis: Haar example
- Let $\psi^0_I = \varphi_I$ and $\psi^1_I := \psi_I$
- If $I = I_0 \times I_1$ is a square and $e = (e_0, e_1)$ $e_0, e_1 \in \{0, 1\}$: $I = 2^{-j}[k_0, k_0 + 1] \times [k_1, k_1 + 1]$ a dyadic cube centered at $2^{-j}(k_0, k_1)$
- $\psi^e_I = \Psi^{e_0}_{I_0} \psi^{e_1}_{I_1}$
- There are three wavelets associated to each dyadic square: $e = (1, 0), (0, 1), (1, 1)$
- On a finite domain there are four wavelets at the starting level and three on each other level
Example: Haar Functions
Description of Sobolev-Besov Classes

Consider classes on Sobolev Embedding Line
Description of Sobolev-Besov Classes

- Consider classes on Sobolev Embedding Line
- W^s_p with $1/p = s/2 + 1/2$
Description of Sobolev-Besov Classes

- Consider classes on Sobolev Embedding Line
- W_p^s with $1/p = s/2 + 1/2$
- Each $f \in W_p^s$ has a wavelet decomposition
Description of Sobolev-Besov Classes

Consider classes on Sobolev Embedding Line

\[W^s_p \text{ with } 1/p = s/2 + 1/2 \]

Each \(f \in W^s_p \) has a wavelet decomposition

\[f = \sum_{\mu \in \Lambda} c_\mu(f) \psi_\mu \]
Description of Sobolev-Besov Classes

- Consider classes on Sobolev Embedding Line

 $W^s_p \text{ with } 1/p = s/2 + 1/2$

- Each $f \in W^s_p$ has a wavelet decomposition

 \[f = \sum_{\mu \in \Lambda} c_{\mu}(f) \psi_{\mu} \]

- $\|f\|_{W^s_p} \approx \left(\sum_{\mu \in \Lambda} |c_{\mu}(f)|^p\right)^{1/p}$
Description of Sobolev-Besov Classes

- Consider classes on Sobolev Embedding Line
- \(W^s_p \) with \(1/p = s/2 + 1/2 \)
- Each \(f \in W^s_p \) has a wavelet decomposition
 \[f = \sum_{\mu \in \Lambda} c_\mu(f) \psi_\mu \]
- \(\|f\|_{W^s_p} \approx \left(\sum_{\mu \in \Lambda} |c_\mu(f)|^p \right)^{1/p} \)
- Notice that \(p < 2 \) so that \((c_\mu) \in \ell_p \) is a sparsity condition.
Description of Sobolev-Besov Classes

- Consider classes on Sobolev Embedding Line
 - W^s_p with $1/p = s/2 + 1/2$
- Each $f \in W^s_p$ has a wavelet decomposition
 - $f = \sum_{\mu \in \Lambda} c_\mu(f) \psi_\mu$
- $\|f\|_{W^s_p} \approx \left(\sum_{\mu \in \Lambda} |c_\mu(f)|^p\right)^{1/p}$
- Notice that $p < 2$ so that $(c_\mu) \in \ell_p$ is a sparsity condition.
- A sequence n^{-s} is in ℓ_2 if and only if $s > 1/2$
Description of Sobolev-Besov Classes

- Consider classes on Sobolev Embedding Line
 \[W^s_p \text{ with } 1/p = s/2 + 1/2 \]

- Each \(f \in W^s_p \) has a wavelet decomposition
 \[f = \sum_{\mu \in \Lambda} c_\mu(f) \psi_\mu \]

- \[\|f\|_{W^s_p} \approx \left(\sum_{\mu \in \Lambda} |c_\mu(f)|^p \right)^{1/p} \]

- Notice that \(p < 2 \) so that \((c_\mu) \in \ell_p \) is a sparsity condition.

- A sequence \(n^{-s} \) is in \(\ell_2 \) if and only if \(s > 1/2 \)

- The same sequence is in \(\ell_1 \) if and only if \(s > 1 \)
Wavelets compression: main ideas

- Fix n the number of terms we want to keep.
Wavelets compression: main ideas

- Fix n the number of terms we want to keep.
- Keep the n terms with largest coefficients.

$$S = \sum_{I \in \Lambda} c_I(f) \psi_I, \quad \#(\Lambda) = n$$
Wavelets compression: main ideas

- Fix n the number of terms we want to keep.
- Keep the n terms with largest coefficients.

$$ S = \sum_{I \in \Lambda} c_I(f) \psi_I, \quad \#(\Lambda) = n $$

- This is best approximation using n terms
Wavelets compression: main ideas

- Fix n the number of terms we want to keep.
- Keep the n terms with largest coefficients.

$$S = \sum_{I \in \Lambda} c_I(f) \psi_I, \quad \#(\Lambda) = n$$

- This is best approximation using n terms
- Threshold at η: retains terms with coefficients larger than η

$$S_\eta(f) = \sum_{I \in \Lambda_\eta(f)} c_I(f) \psi_I$$

$$\Lambda_\eta(f) := \{ I : |c_I(f)| > \eta \}$$
An Example

Suppose that $f \in U(B^1_1(L_1))$ then wavelet coefficients are in $U(\ell_1)$
An Example

Suppose that \(f \in U(B_1^1(L_1)) \) then wavelet coefficients are in \(U(\ell_1) \)

Let \(c_n^*(f) \) the the rearrangement of the wavelet coefficients in absolute value
An Example

- Suppose that $f \in U(B_1^1(L_1))$ then wavelet coefficients are in $U(\ell_1)$
- Let $c_n^*(f)$ the the rearrangement of the wavelet coefficients in absolute value
- $c_{2n}^*(f) \leq \frac{1}{n} \sum_{k=n+1}^{2n} c_k^*(f) \leq \frac{1}{n}$
Suppose that $f \in U(B_1^1(L_1))$ then wavelet coefficients are in $U(\ell_1)$

Let $c_n^*(f)$ the the rearrangement of the wavelet coefficients in absolute value

$$c_{2n}^*(f) \leq \frac{1}{n} \sum_{k=n+1}^{2n} c_k^*(f) \leq \frac{1}{n}$$

$$\Lambda_n := \{(I, e) : |c_{I,e}(f)| \text{ are } n \text{ largest}\}$$
An Example

Suppose that \(f \in U(B_1^1(L_1)) \) then wavelet coefficients are in \(U(\ell_1) \)

Let \(c_n^*(f) \) the the rearrangement of the wavelet coefficients in absolute value

\[
c_{2n}^*(f) \leq \frac{1}{n} \sum_{k=n+1}^{2n} c_k^*(f) \leq \frac{1}{n}
\]

\(\Lambda_n := \{(I, e) : |c_{I,e}(f)| \text{ are } n \text{ largest}\} \)

The approximation \(S_{\Lambda_n} \) satisfies

\[
\| f - S_{\Lambda_n} \|_{L_2}^2 = \sum_{n+1}^{\infty} c_k^*(f)^2 \leq \sum_{n+1}^{\infty} \frac{1}{k^2} \leq \frac{C}{n}
\]
An Example

- Suppose that $f \in U(B_1^1(L_1))$ then wavelet coefficients are in $U(\ell_1)$

- Let $c_n^*(f)$ the the rearrangement of the wavelet coefficients in absolute value

- $c_{2n}^*(f) \leq \frac{1}{n} \sum_{k=n+1}^{2n} c_k^*(f) \leq \frac{1}{n}$

- $\Lambda_n := \{(I, e) : |c_{I,e}(f)| \text{ are } n \text{ largest}\}$

- The approximation S_{Λ_n} satisfies

\[
\| f - S_{\Lambda_n} \|^2_{L_2} = \sum_{n+1}^{\infty} c_k^*(f)^2 \leq \sum_{n+1}^{\infty} \frac{1}{k^2} \leq \frac{C}{n}
\]

- The same result holds if f is of bounded variation
Wavelets Encoding: the problem

- We want to control number of bits not number of terms
Wavelets Encoding: the problem

- We want to control number of bits not number of terms
- positions could potentially occur at arbitrary scales
Wavelets Encoding: the problem

- We want to control number of bits not number of terms
- positions could potentially occur at arbitrary scales
- encoding a position could require arbitrarily large number of bits
Wavelets Encoding: the problem

- We want to control number of bits not number of terms
- positions could potentially occur at arbitrary scales
- encoding a position could require arbitrarily large number of bits
- Practically: for images scales are limited by pixel resolution
Wavelets Encoding: the problem

- We want to control number of bits not number of terms
- positions could potentially occur at arbitrary scales
- encoding a position could require arbitrarily large number of bits
- Practically: for images scales are limited by pixel resolution
- any coefficient could require infinitely many bits
Wavelets Encoding: the problem

- We want to control number of bits not number of terms
- positions could potentially occur at arbitrary scales
- encoding a position could require arbitrarily large number of bits
- Practically: for images scales are limited by pixel resolution
- any coefficient could require infinitely many bits
- Using certain special wavelets and the fact that pixels are quantized the number of bits for complete resolution is finite
Wavelet Encoding: The solution

- Cohen-Dahmen-Daubechies-DeVore
 (Cohen-Daubechies-Gulleryuz-Orchard)
Wavelet Encoding: The solution

- Cohen-Dahmen-Daubechies-DeVore
 (Cohen-Daubechies-Gulleryuz-Orchard)

- Assume all coefficient smaller than one
Wavelet Encoding: The solution

- Cohen-Dahmen-Daubechies-DeVore (Cohen-Daubechies-Gulleryuz-Orchard)
- Assume all coefficient smaller than one
- Let $\Lambda_k(f) := \{I : |c_I(f)| > 2^{-k-1}\}$
Wavelet Encoding: The solution

- Cohen-Dahmen-Daubechies-DeVore (Cohen-Daubechies-Gulleryuz-Orchard)
- Assume all coefficient smaller than one
- Let $\Lambda_k(f) := \{ I : |c_I(f)| > 2^{-k-1} \}$
- Complete $\Lambda_k(f)$ to a tree $T_k(f)$
Progressive Trees
Wavelet Encoding: The solution

- Cohen-Dahmen-Daubechies-DeVore
 (Cohen-Daubechies-Gulleryuz-Orchard)
- Assume all coefficient smaller than one
- Let $\Lambda_k(f) := \{I : |c_I(f)| > 2^{-k}\}$
- Complete $\Lambda_k(f)$ to a tree $T_k(f)$
- For each real number c let $s_0(c)$ be the sign bit of c
Wavelet Encoding: The solution

- Cohen-Dahmen-Daubechies-DeVore (Cohen-Daubechies-Gulleryuz-Orchard)
- Assume all coefficient smaller than one
- Let $\Lambda_k(f) := \{ I : |c_I(f)| > 2^{-k} \}$
- Complete $\Lambda_k(f)$ to a tree $T_k(f)$
- For each real number c let $s_0(c)$ be the sign bit of c
- Let $b_k(c)$ be the k-th binary bit of $|c|$
Wavelet Encoding: The solution

- Cohen-Dahmen-Daubechies-DeVore (Cohen-Daubechies-Gulleryuz-Orchard)
- Assume all coefficient smaller than one
- Let $\Lambda_k(f) := \{ I : |c_I(f)| > 2^{-k} \}$
- Complete $\Lambda_k(f)$ to a tree $T_k(f)$
- For each real number c let $s_0(c)$ be the sign bit of c
- Let $b_k(c)$ be the k-th binary bit of $|c|$
- $c = \pm (b_1(c)2^{-1} + b_2(c)2^{-2} + \ldots)$
Wavelet Encoding: The solution

- Cohen-Dahmen-Daubechies-DeVore (Cohen-Daubechies-Gulleryuz-Orchard)
- Assume all coefficient smaller than one
- Let $\Lambda_k(f) := \{I : |c_I(f)| > 2^{-k}\}$
- Complete $\Lambda_k(f)$ to a tree $T_k(f)$
- For each real number c let $s_0(c)$ be the sign bit of c
- Let $b_k(c)$ be the k-th binary bit of $|c|$
- $c = \pm (b_1(c)2^{-1} + b_2(c)2^{-2} + \ldots)$
- Note, if $I \in T_{k+1}(f) \setminus T_k(f)$ then $b_1(f) = b_2(f) = \cdots = b_k(f) = 0$
The encoder

Given f the bitstream $B(f)$ is

$B(T_0(f)), B(S_0(f)), B(C_0(f)), \ldots,$

$B(T_k(f)), B(S_k(f)), B(C_k(f)), \ldots$
The encoder

- Given \(f \) the bitstream \(B(f) \) is
 \[B(T_0(f)), B(S_0(f)), B(C_0(f)), \ldots, \]
 \[B(T_k(f)), B(S_k(f)), B(C_k(f)), \ldots \]

- \(B(T_k(f)) \) bits to identify \(T_k(f) \)
The encoder

- Given f the bitstream $B(f)$ is $B(T_0(f)), B(S_0(f)), B(C_0(f)), \ldots, B(T_k(f)), B(S_k(f)), B(C_k(f)), \ldots$
- $B(T_k(f))$ bits to identify $T_k(f)$
- $B(S_k(f))$ the sign bits for the new coefficients corresponding to $I \in T_k \setminus T_{k-1}$
The encoder

- Given \(f \) the bitstream \(B(f) \) is
 \[B(T_0(f)), B(S_0(f)), B(C_0(f)), \ldots, \]
 \[B(T_k(f)), B(S_k(f)), B(C_k(f)), \ldots \]

- \(B(T_k(f)) \) bits to identify \(T_k(f) \)

- \(B(S_k(f)) \) the sign bits for the new coefficients corresponding to \(I \in T_k \setminus T_{k-1} \)

- \(B(C_k(f)) \) consists of the lead bit, i.e. \(b_k(c_I(f)) \) for each \(I \in T_k \setminus T_{k-1} \) and one additional bit for each \(I \in T_{k-1}(f) \)
The encoder

- Given f the bitstream $B(f)$ is $B(T_0(f)), B(S_0(f)), B(C_0(f)), \ldots,$ $B(T_k(f)), B(S_k(f)), B(C_k(f)), \ldots$

- $B(T_k(f))$ bits to identify $T_k(f)$

- $B(S_k(f))$ the sign bits for the new coefficients corresponding to $I \in T_k \setminus T_{k-1}$

- $B(C_k(f))$ consists of the lead bit, i.e. $b_k(c_I(f))$ for each $I \in T_k \setminus T_{k-1}$ and one additional bit for each $I \in T_{k-1}(f)$

- Note that after bits at level k have been received each wavelet coefficient of f is known to accuracy 2^{-k}
Properties of the Tree Encoder

The encoder is progressive and simultaneously near optimal for all Sobolev and Besov classes (CDDD) and all n.
Properties of the Tree Encoder

- The encoder is progressive and simultaneously near optimal for all Sobolev and Besov classes (CDDD) and all n.
- Key property: Can encode a binary tree with n nodes using at most $2n$ bits.
Properties of the Tree Encoder

- The encoder is progressive and simultaneously near optimal for all Sobolev and Besov classes (CDDD) and all n

- Key property: Can encode a binary tree with n nodes using at most $2n$ bits

- Encoder is similar to other tree based encoders: EZW, Said-Pearlman
Properties of the Tree Encoder

- The encoder is progressive and simultaneously near optimal for all Sobolev and Besov classes (CDDD) and all n
- Key property: Can encode a binary tree with n nodes using at most $2n$ bits
- Encoder is similar to other tree based encoders: EZW, Said-Pearlman
- We know precisely the set of images on which these encoders have decay rate $O(n^{-\alpha})$ for any $\alpha > 0$
Properties of the Tree Encoder

- The encoder is progressive and simultaneously near optimal for all Sobolev and Besov classes (CDDD) and all n

- Key property: Can encode a binary tree with n nodes using at most $2n$ bits

- Encoder is similar to other tree based encoders: EZW, Said-Pearlman

- We know precisely the set of images on which these encoders have decay rate $O(n^{-\alpha})$ for any $\alpha > 0$

- Besov smoothness order s is an exact predictor of tree encoder performance $O(n^{-s/2})$
Drawbacks to the Tree Encoder

Model Images by Besov smoothness classes
Drawbacks to the Tree Encoder

- Model Images by Besov smoothness classes
- Want better classes more indicative of real images: anisotropic classes
Drawbacks to the Tree Encoder

- Model Images by Besov smoothness classes
- Want better classes more indicative of real images: anisotropic classes
- Wavelet bases are isotropic
Drawbacks to the Tree Encoder

- Model Images by Besov smoothness classes
- Want better classes more indicative of real images: anisotropic classes
- Wavelet bases are isotropic
- Wavelets handle point singularities well
Drawbacks to the Tree Encoder

- Model Images by Besov smoothness classes
- Want better classes more indicative of real images: anisotropic classes
- Wavelet bases are isotropic
- Wavelets handle point singularities well
- Wavelets do not handle singularities along curves
Drawbacks to the Tree Encoder

- Model Images by Besov smoothness classes
- Want better classes more indicative of real images: anisotropic classes
- Wavelet bases are isotropic
- Wavelets handle point singularities well
- Wavelets do not handle singularities along curves
- Toy Problem: Horizon function
Horizon approximation
Possible remedies

- New systems: ridgelets, wedgelets, curvelets, ...
Possible remedies

- New systems: ridgelets, wedgelets, curvelets, ...
- Candes and Donoho
Possible remedies

- New systems: ridgelets, wedgelets, curvelets, ...
- Candes and Donoho
- Frames and redundant systems
Example: Wedgelets

To each dyadic square I with $|I| = 2^{-j}$ associate a family of wedgelets.
Example: Wedgelets

- To each dyadic square I with $|I| = 2^{-j}$ associate a family of wedgelets.
- A wedgelet is a piecewise constant function taking the values $0, 1$.
Example: Wedgelets

- To each dyadic square I with $|I| = 2^{-j}$ associate a family of wedgelets.
- A wedgelet is a piecewise constant function taking the values $0, 1$.
- Demarcation is given by a line connecting grid points on boundary of I with spacing 2^{-2^j}.
Picture of a wedgelet
Approximating Horizon functions

Any horizon function with C^2 boundary can be approximated in L_2 to error n^{-1} using n wedgelets
Approximating Horizon functions

- Any horizon function with C^2 boundary can be approximated in L_2 to error n^{-1} using n wedgelets.
- By comparison wavelets give error $n^{-1/2}$.
Approximating Horizon functions

- Any horizon function with C^2 boundary can be approximated in L_2 to error n^{-1} using n wedgelets.
- By comparison, wavelets give error $n^{-1/2}$.
- Fourier gives error $n^{-1/4}$.
Merging systems

We would like to merge systems like Wavelets, Fourier, Wedgelets, etc.
Merging systems

- We would like to merge systems like Wavelets, Fourier, Wedgelets, etc.
- retain best properties of all systems
Merging systems

- We would like to merge systems like Wavelets, Fourier, Wedgelets, etc.
- retain best properties of all systems
- how to do this in a practical encoder
Example: Merge wavelets and wedgelets

Baraniuk-Romberg-Wakin
Example: Merge wavelets and wedgelets

- Baraniuk-Romberg-Wakin
- Idea is to decompose domain into regions done by either wavelets or wedgelets
Example: Merge wavelets and wedgelets

- Baraniuk-Romberg-Wakin
- Idea is to decompose domain into regions done by either wavelets or wedgelets
- Ornate wavelet tree with label on how wavelet coefficients are to be computed
Example: Merge wavelets and wedgelets

- Baraniuk-Romberg-Wakin
- Idea is to decompose domain into regions done by either wavelets or wedgelets
- Ornate wavelet tree with label on how wavelet coefficients are to be computed
- Interior nodes compute wavelet coefficients in standard way
If leave (final node) of tree is ornamented with a wavelet then wavelet coefficients for all nodes below leave are given value zero.
BRW Continued

- If leave (final node) of tree is adorned with a wavelet then wavelet coefficients for all nodes below leave are given value zero.

- If leave is adorned with wedgelet, all coefficients below this node are computed as wavelet coefficients of that wedgelet (wedgeprint).
Wedgelet-wavelet tree

red = Wedgelets blue = Wavelets
Final Thoughts on Compression

- We need better model classes for images
Final Thoughts on Compression

- We need better model classes for images
- These classes should model the anisotropies found in real world images
Final Thoughts on Compression

- We need better model classes for images
- These classes should model the anisotropies found in real world images
- Horizon models are too simplistic
Final Thoughts on Compression

- We need better model classes for images
- These classes should model the anisotropies found in real world images
- Horizon models are too simplistic
- Once these new classes are clearly defined then encoders can be designed to perform at near optimal compression rates for these classes