Multiterminal Network Tomography

Laura Felicia Matusevich (Texas A&M) and F. Alberto Grünbaum (UC Berkeley)
Networks

• Let G be a directed graph without loops
Networks

- Let G be a directed graph without loops
Networks

• Let G be a directed graph without loops and without multiple directed edges.
Networks

• Let G be a directed graph without loops and without multiple directed edges.
Networks

- Let G be a directed graph without loops and without multiple directed edges.
Networks

- Let G be a directed graph without loops and without multiple directed edges.
- Sources will be called incoming terminals
Networks

• Let G be a directed graph without loops and without multiple directed edges.

• Sources will be called incoming terminals, sinks will be called outgoing terminals.
Networks

- Let G be a directed graph without loops and without multiple directed edges.
- Sources will be called incoming terminals, sinks will be called outgoing terminals, all other vertices will be called intermediate terminals.
Networks

• Let G be a directed graph without loops and without multiple directed edges.
• Sources will be called incoming terminals, sinks will be called outgoing terminals, all other vertices will be called intermediate terminals.
• G is called a multiterminal network.
An Example
Another Example
The Inverse Problem

• Assign a number to each arrow of G, the probability that a message goes through that arrow.
The Inverse Problem

- Assign a number to each arrow of G, the *probability* that a message goes through that arrow.
The Inverse Problem

• Assign a number to each arrow of G, the probability that a message goes through that arrow.

• Goal: to recover these numbers from measurements at the incoming and outgoing terminals.
Why is this tomography?
Why is this tomography?

Detector

X-ray source
Why is this tomography?
An Example
An Example

• Consider the numbers δ_i which represent the probability that a message goes from source to sink in i steps.
An Example

• Consider the numbers

\[\delta_i = \begin{cases}
(a c + b d) f^k e^k & i = 2k + 2
\end{cases} \]
An Example

• Consider the numbers

$$\delta_i = \begin{cases}
(ac + bd) f^k e^k & i = 2k + 2 \\
(af d + bec) f^k e^k & i = 2k + 3
\end{cases}$$
An Example

- Consider the numbers $\delta_i \implies$ probability that a message goes from source to sink in i steps.
An Example

• Consider the numbers
 \(\delta_i \Rightarrow \) probability that a message goes from source to sink in \(i \) steps

• These numbers determine
 \[ac + bd, \quad afd + bec, \quad fe \]
Observations

• The numbers $\delta_2, \delta_3, \delta_4$ contain all the information.
Observations

• The numbers $\delta_2, \delta_3, \delta_4$ contain all the information.

• We can determine three quantities, when we’d like six.
Observations

• The numbers $\delta_2, \delta_3, \delta_4$ contain all the information.

• We can determine three quantities, when we’d like six.

• More reasonable to measure:

$$Q^{(i)} = \sum_k k^i \delta_k$$
Observations

• The numbers $\delta_2, \delta_3, \delta_4$ contain all the information.

• We can determine three quantities, when we’d like six.

• More reasonable to measure:

$$Q^{(i)} = \sum_{k} k^i \delta_k$$

the moments of travel time.
Another Example
Another Example

Get everything from $Q^{(0)}$, $Q^{(1)}$
Another Example

Get everything from $Q^{(0)}, Q^{(1)}$ quickly!
Plan for the rest of the talk
Plan for the rest of the talk

- Explain how to solve the “4pixelman” problem. (Grünbaum and Patch; Grünbaum and M.)
Plan for the rest of the talk

- Explain how to solve the “4pixelman” problem. (Grünbaum and Patch; Grünbaum and M.)

Plan for the rest of the talk

• Explain how to solve the “4pixelman” problem. (Grünbaum and Patch; Grünbaum and M.)

• Construct a large class of networks for which this method works.
Plan for the rest of the talk

• Explain how to solve the “4pixelman” problem. (Grünbaum and Patch; Grünbaum and M.)

• Construct a large class of networks for which this method works.

Setting up the equations
Setting up the equations

- Construct four matrices: $P_{IO}, P_{IH}, P_{HH}, P_{HO}$
Setting up the equations

• Construct four matrices:

$$P_{IO}, P_{IH}, P_{HH}, P_{HO}$$
Setting up the equations

• Construct four matrices:
 \[P_{IO}, P_{IH}, P_{HH}, P_{HO} \]

\[P_{IO} = 0 \]
Setting up the equations

- Construct four matrices:

\[P_{IO}, P_{IH}, P_{HH}, P_{HO} \]

\[P_{IO} = 0 \]

\[P_{IH} = (a \ b) \]
Setting up the equations

• Construct four matrices:

\[P_{IO}, P_{IH}, P_{HH}, P_{HO} \]

\[P_{IO} = 0 \]

\[P_{IH} = \begin{pmatrix} a & b \end{pmatrix} \]

\[P_{HH} = \begin{pmatrix} 0 & f \\ e & 0 \end{pmatrix} \]
Setting up the equations

• Construct four matrices:

\[P_{IO}, P_{IH}, P_{HH}, P_{HO} \]

\[P_{IO} = 0 \]

\[P_{IH} = \begin{pmatrix} a & b \end{pmatrix} \]

\[P_{HH} = \begin{pmatrix} 0 & f \\ e & 0 \end{pmatrix} \]

\[P_{HO} = \begin{pmatrix} c \\ d \end{pmatrix} \]
Setting up the equations

• Construct four matrices:

\[P_{IO}, P_{IH}, P_{HH}, P_{HO} \]

• Want to recover these matrices from:

\[
Q^{(0)} = P_{IO} + \sum_{k=0}^{\infty} P_{IH} P_{HH}^k P_{HO} = P_{IO} + P_{IH} (I - P_{HH})^{-1} P_{HO}
\]

\[
Q^{(1)} = Q^{(0)} + P_{IH} (I - P_{HH})^{-2} P_{HO}
\]
Setting up the equations

- Construct four matrices:

\[P_{IO}, P_{IH}, P_{HH}, P_{HO} \]

- Want to recover these matrices from:

\[
Q^{(0)} = P_{IO} + \sum_{k=0}^{\infty} P_{IH} P_{HH}^k P_{HO} = P_{IO} + P_{IH} (I - P_{HH})^{-1} P_{HO}
\]

\[
Q^{(1)} = Q^{(0)} + P_{IH} (I - P_{HH})^{-2} P_{HO}
\]

- These are nonlinear equations!
Setting up the equations

- Construct four matrices:
 \[P_{IO}, P_{IH}, P_{HH}, P_{HO} \]

- Want to recover these matrices from:
 \[
 Q^{(0)} = P_{IO} + \sum_{k=0}^{\infty} P_{IH} P_{HH}^k P_{HO} = P_{IO} + P_{IH} (I - P_{HH})^{-1} P_{HO}
 \]

 \[
 Q^{(1)} = Q^{(0)} + P_{IH} (I - P_{HH})^{-2} P_{HO}
 \]

- These are nonlinear equations!(polynomial)
Change Variables!
Change Variables!

- Consider the transformation

\[A := P_{HO}^{-1}, \quad X := P_{IO}A, \]
\[W := AP_{HH}, \quad Y := XA^{-1}W - P_{IH} \]
Change Variables!

- Consider the transformation

\[
A := P_{HO}^{-1}, \quad X := P_{IO}A,
\]
\[
W := AP_{HH}, \quad Y := XA^{-1}W - P_{IH}
\]

- Need the same number of terminals of all types!
Change Variables!

- Consider the transformation

\[A := P_{HO}^{-1}, \quad X := P_{IO} A, \]
\[W := AP_{HH}, \quad Y := XA^{-1}W - P_{IH} \]

- Need the same number of terminals of all types! (OK in the case of 4pixelman)
Change Variables!

• Consider the transformation

\[A := P_{HO}^{-1}, \quad X := P_{IOA}, \]
\[W := AP_{HH}, \quad Y := XA^{-1}W - P_{IH} \]

• Fiddle with the equations to get

\[Q^{(0)}(A - W) = X - Y \]
\[(R - Q^{(0)})A = RW - X \]

where

\[R = Q^{(1)} - Q^{(0)} \]
Change Variables!

- Consider the transformation
 \[A := P_{HO}^{-1}, \quad X := P_{IO} A, \]
 \[W := AP_{HH}, \quad Y := XA^{-1}W - P_{IH} \]

- Fiddle with the equations to get
 \[Q^{(0)}A - X = -Q^{(0)}W - X \]
 \[(R - Q^{(0)})A = RW - X \]

- These are linear.
Change Variables!

• Solve the linear equations

\[Q^{(0)}(A - W) = X - Y \]
\[(R - Q^{(0)})A = RW - X \]
Change Variables!

- Solve the linear equations

\[Q^{(0)} (A - W) = X - Y \]
\[(R - Q^{(0)}) A = RW - X \]

- The block structure in the case of 4pixelman allows explicit solving.
Change Variables!

• Solve the linear equations

\[Q^{(0)} (A - W) = X - Y \]

\[(R - Q^{(0)}) A = RW - X \]

• The block structure in the case of 4pixelman allows explicit solving.

• It also guarantees recovery of all data.
Change Variables!

- Solve the linear equations
 \[Q^{(0)}(A - W) = X - Y \]
 \[(R - Q^{(0)})A = RW - X \]
- The block structure in the case of 4pixelman allows explicit solving.
- It also guarantees recovery of all data up to a natural gauge.
Some formulas

\[(P_{IO})_{88} = \left(\frac{Q[4,5,8;2,3,8]}{Q[4,5;2,3]} \lambda + \frac{Q[4,5,8;1,2,3]}{Q[4,5;2,3]} \right) - \left(\frac{Q[4,5,8;1,6,7]}{Q[4,5;6,7]} + \frac{Q[4,5,8;6,7,8]}{Q[4,5;6,7]} \mu \right) \frac{\lambda - \mu}{\lambda - \mu} \]
Some formulas

\[(P_{IO})_{88} = \left(\frac{Q[4,5,8;2,3,8]}{Q[4,5;2,3]} \lambda + \frac{Q[4,5,8;1,2,3]}{Q[4,5;2,3]} \right) - \left(\frac{Q[4,5,8;1,6,7]}{Q[4,5;6,7]} + \frac{Q[4,5,8;6,7,8]}{Q[4,5;6,7]} \mu \right) \frac{\lambda - \mu}{\lambda - \mu} \]

\[\lambda = \frac{R_{11} Q[4,5;3,2] + (R_{12} + Q_{12}) Q[4,5;1,3] + (R_{13} + Q_{13}) Q[4,5;2,1]}{R_{18} Q[4,5;2,3] + (R_{12} + Q_{12}) Q[4,5;3,8] + (R_{13} + Q_{13}) Q[4,5;8,2]} \]
Some formulas

\[(P_{IO})_{88} = \frac{\left(\frac{Q[4,5,8;2,3,8]}{Q[4,5;2,3]} \lambda + \frac{Q[4,5,8;1,2,3]}{Q[4,5;2,3]}\right) - \left(\frac{Q[4,5,8;1,6,7]}{Q[4,5;6,7]} + \frac{Q[4,5,8;6,7,8]}{Q[4,5;6,7]} \mu\right)}{\lambda - \mu}\]

\[\lambda = \frac{R_{11}Q[4, 5; 3, 2] + (R_{12} + Q_{12})Q[4, 5; 1, 3] + (R_{13} + Q_{13})Q[4, 5; 2, 1]}{R_{18}Q[4, 5; 2, 3] + (R_{12} + Q_{12})Q[4, 5; 3, 8] + (R_{13} + Q_{13})Q[4, 5; 8, 2]}\]

\[\mu = \frac{R_{11}Q[4, 5; 7, 6] + (R_{16} + Q_{16})Q[4, 5; 1, 7] + (R_{17} + Q_{17})Q[4, 5; 6, 1]}{R_{18}Q[4, 5; 6, 7] + (R_{16} + Q_{16})Q[4, 5; 7, 8] + (R_{17} + Q_{17})Q[4, 5; 8, 6]}\]
A different way to draw
Now add arrows as before…
And replace the square!
And replace the square!
And replace the square!
Recall - this graph:
Gives this network:
So many limitations…
So many limitations…

• We can deal with a limited class of networks.
So many limitations…

• We can deal with a limited class of networks.
• Realistically, many more intermediate terminals than outgoing or incoming.
So many limitations…

- We can deal with a limited class of networks.
- Realistically, many more intermediate terminals than outgoing or incoming.
- Messages should carry addresses.
So many limitations…

• We can deal with a limited class of networks.
• Realistically, many more intermediate terminals than outgoing or incoming.
• Messages should carry addresses.
• Messages can interfere with each other.
So many limitations…

- We can deal with a limited class of networks.
- Realistically, many more intermediate terminals than outgoing or incoming.
- Messages should carry addresses.
- Messages can interfere with each other.
- (………)
This is just the beginning...
This is just the beginning...

Thanks!