Discrete symmetries and Lie algebra automorphisms

Peter Hydon, Katy Pelling, David Fisher

University of Surrey

July 25, 2006
A simple problem:
Find all point symmetries $\Gamma : (x, y) \rightarrow (\hat{x}(x, y), \hat{y}(x, y))$ of a given ODE

$$y'' = \omega(x, y, y').$$ (1)
A simple problem:
Find all point symmetries $\Gamma : (x, y) \rightarrow (\hat{x}(x, y), \hat{y}(x, y))$ of a given ODE

$$y'' = \omega(x, y, y'). \quad (1)$$

Solution: Solve the symmetry condition

$$\hat{y}'' = \omega(\hat{x}, \hat{y}, \hat{y}') \quad \text{when (1) holds.} \quad (2)$$
A simple problem:
Find all point symmetries \(\Gamma : (x, y) \rightarrow (\hat{x}(x, y), \hat{y}(x, y)) \) of a given ODE

\[
y'' = \omega(x, y, y'). \tag{1}
\]

Solution: Solve the symmetry condition

\[
\hat{y}'' = \omega(\hat{x}, \hat{y}, \hat{y}') \quad \text{when (1) holds.} \tag{2}
\]

The point symmetries are prolonged as follows:

\[
\begin{align*}
\hat{y}' &= \frac{D_x \hat{y}}{D_x \hat{x}}, \\
\hat{y}'' &= \frac{D_x \hat{y}'}{D_x \hat{x}},
\end{align*}
\]

where \(D_x \) is the total derivative w.r.t. \(x \):

\[
D_x = \partial_x + y' \partial_y + y'' \partial_{y'} + \cdots.
\]

A little more detail:
The symmetry condition (2) amounts to

\[
\frac{\{(x + y') (y_{xx} + 2y' y_{xy} + y'^2 y_{yy})\} - \{x \leftrightarrow y\} + (x y_y - y_x y_y) \omega(x, y, y')}{(x + y' y_y)^3}
\]

\[= \omega\left(\hat{x}, \hat{y}, \frac{\hat{y}_x + y' \hat{y}_y}{\hat{x} + y' \hat{y}_y}\right). \tag{3}\]
A little more detail:

The symmetry condition (2) amounts to

\[
\frac{\{ (\hat{x}_x + y'\hat{x}_y)(\hat{y}_{xx} + 2y'\hat{y}_{xy} + y'^2\hat{y}_{yy}) \} - \{ \hat{x} \leftrightarrow \hat{y} \} + (\hat{x}_x\hat{y}_y - \hat{x}_y\hat{y}_x) \omega(x, y, y')}{(\hat{x}_x + y'\hat{x}_y)^3} = \omega \left(\hat{x}, \hat{y}, \frac{\hat{y}_x + y'\hat{y}_y}{\hat{x}_x + y'\hat{x}_y} \right). \tag{3}
\]

Split this condition with respect to \(y' \) to obtain an overdetermined system of PDEs for \(\hat{x}(x, y) \) and \(\hat{y}(x, y) \).
A little more detail:
The symmetry condition (2) amounts to

\[
\frac{\{(\hat{x}_x + y'\hat{x}_y)(\hat{y}_{xx} + 2y'\hat{y}_{xy} + y'^2\hat{y}_{yy})\} - \{\hat{x} \leftrightarrow \hat{y}\} + (\hat{x}_x\hat{y}_y - \hat{x}_y\hat{y}_x)\omega(x, y, y')}{(\hat{x}_x + y'\hat{x}_y)^3}
\]

\[
= \omega\left(\hat{x}, \hat{y}, \frac{\hat{y}_x + y'\hat{y}_y}{\hat{x}_x + y'\hat{x}_y}\right).
\] (3)

Split this condition with respect to y' to obtain an overdetermined system of PDEs for $\hat{x}(x, y)$ and $\hat{y}(x, y)$.

Problem: The overdetermined system may not be easy to solve (Reid et al. 1993).
A little more detail:
The symmetry condition (2) amounts to

\[\frac{\{(\hat{x} + y'\hat{y})(\hat{y}_{xx} + 2y'\hat{y}_{xy} + y'^2\hat{y}_{yy})\} - \{\hat{x} \leftrightarrow \hat{y}\} + (\hat{x}\hat{y}_{y} - \hat{x}_y\hat{y}_x) \omega(x, y, y')}{(\hat{x}_x + y'\hat{x}_y)^3} \]

\[= \omega\left(\hat{x}, \hat{y}, \frac{\hat{y}_x + y'\hat{y}_y}{\hat{x}_x + y'\hat{x}_y}\right). \] (3)

Split this condition with respect to \(y' \) to obtain an overdetermined system of PDEs for \(\hat{x}(x, y) \) and \(\hat{y}(x, y) \).

Problem: The overdetermined system may not be easy to solve (Reid et al. 1993). Things are worse for problems that are not so ‘simple’ (systems, PDEs, higher order, higher symmetries, . . .).
What can be done (easily)?
Lie point symmetries can be found by linearizing the symmetry condition as follows:

\[\hat{x} = x + \epsilon \xi(x, y) + O(\epsilon^2), \quad \hat{y} = y + \epsilon \eta(x, y) + O(\epsilon^2). \]
What can be done (easily)?
Lie point symmetries can be found by linearizing the symmetry condition as follows:

\[\hat{x} = x + \epsilon \xi(x, y) + O(\epsilon^2), \quad \hat{y} = y + \epsilon \eta(x, y) + O(\epsilon^2). \]

Splitting the \(O(\epsilon) \) terms w.r.t. \(y' \) gives an overdetermined linear system for the functions \(\xi \) and \(\eta \). Typically, this is easy to simplify and solve.
What can be done (easily)?

Lie point symmetries can be found by linearizing the symmetry condition as follows:

\[
\hat{x} = x + \epsilon \xi(x, y) + O(\epsilon^2), \quad \hat{y} = y + \epsilon \eta(x, y) + O(\epsilon^2).
\]

Splitting the \(O(\epsilon)\) terms w.r.t. \(y'\) gives an overdetermined linear system for the functions \(\xi\) and \(\eta\). Typically, this is easy to simplify and solve.

For \(|\epsilon|\) sufficiently small, Lie point symmetries are obtained by exponentiation:

\[
\hat{x} = e^{\epsilon X} x, \quad \hat{y} = e^{\epsilon X} y
\]

where \(X = \xi(x, y) \partial_x + \eta(x, y) \partial_y\). The set of all generators \(X\) is a finite-dimensional Lie algebra \(\mathcal{L}\).
What can be done (easily)?

Lie point symmetries can be found by linearizing the symmetry condition as follows:

\[\hat{x} = x + \epsilon \xi(x, y) + O(\epsilon^2), \quad \hat{y} = y + \epsilon \eta(x, y) + O(\epsilon^2). \]

Splitting the \(O(\epsilon) \) terms w.r.t. \(y' \) gives an overdetermined linear system for the functions \(\xi \) and \(\eta \). Typically, this is easy to simplify and solve.

For \(|\epsilon| \) sufficiently small, Lie point symmetries are obtained by exponentiation:

\[\hat{x} = e^{\epsilon X} x, \quad \hat{y} = e^{\epsilon X} y \]

where \(X = \xi(x, y)\partial_x + \eta(x, y)\partial_y \). The set of all generators \(X \) is a finite-dimensional Lie algebra \(L \).

However, after factoring out Lie symmetries, inequivalent discrete symmetries remain to be found.
First message: Given a differential equation whose Lie point symmetries are known (and nontrivial), one can find the remaining discrete point symmetries with little extra effort.
First message: Given a differential equation whose Lie point symmetries are known (and nontrivial), one can find the remaining discrete point symmetries with little extra effort.

The method works for scalar ODEs and PDEs, for systems, difference equations, contact symmetries,
First message: Given a differential equation whose Lie point symmetries are known (and nontrivial), one can find the remaining discrete point symmetries with little extra effort.

The method works for scalar ODEs and PDEs, for systems, difference equations, contact symmetries,

For simplicity, restrict attention to real finite-dimensional Lie algebras

\[\mathcal{L} = \text{Span}(X_1, \ldots, X_R). \]
A useful observation:
Let $\Gamma : (x, y) \to (\hat{x}, \hat{y})$ be a point symmetry. If

$$X = \xi(x, y)\partial_x + \eta(x, y)\partial_y$$

generates the Lie point symmetries $\Gamma_\epsilon = e^{\epsilon X}$ then

$$\hat{X} = \xi(\hat{x}, \hat{y})\partial_{\hat{x}} + \eta(\hat{x}, \hat{y})\partial_{\hat{y}}$$

generates Lie point symmetries $\Gamma \Gamma_\epsilon \Gamma^{-1}$. The adjoint action of Γ on the symmetry generators replaces (x, y) by (\hat{x}, \hat{y}).
A useful observation:

Let $\Gamma : (x, y) \rightarrow (\hat{x}, \hat{y})$ be a point symmetry. If

$$X = \xi(x, y) \partial_x + \eta(x, y) \partial_y$$

generates the Lie point symmetries $\Gamma_\epsilon = e^{\epsilon X}$ then

$$\hat{X} = \xi(\hat{x}, \hat{y}) \partial_{\hat{x}} + \eta(\hat{x}, \hat{y}) \partial_{\hat{y}}$$

generates Lie point symmetries $\Gamma \Gamma_\epsilon \Gamma^{-1}$. The adjoint action of Γ on the symmetry generators replaces (x, y) by (\hat{x}, \hat{y}).

Thus $\{\hat{X}_1, \ldots, \hat{X}_R\}$ is a basis for \mathcal{L}, so

$$X_i = b_i^l \hat{X}_l; \quad (4)$$

the matrix $B = (b_i^l)$ is constant and nonsingular.
Necessary conditions for discrete symmetries

Some information about (\hat{x}, \hat{y}) arises directly from (4):

\[X_i(\hat{x}) = b_i^l \xi_l(\hat{x}, \hat{y}), \quad X_i(\hat{y}) = b_i^l \eta_l(\hat{x}, \hat{y}). \]

(5)
Necessary conditions for discrete symmetries

Some information about (\hat{x}, \hat{y}) arises directly from (4):

\[X_i(\hat{x}) = b^l_i \xi_l(\hat{x}, \hat{y}), \quad X_i(\hat{y}) = b^l_i \eta_l(\hat{x}, \hat{y}). \tag{5} \]

Solve the system of PDEs (5) and substitute the result into the symmetry condition (3).
Necessary conditions for discrete symmetries

Some information about \((\hat{x}, \hat{y})\) arises directly from (4):

\[
X_i(\hat{x}) = b_i^l \xi_l(\hat{x}, \hat{y}), \quad X_i(\hat{y}) = b_i^l \eta_l(\hat{x}, \hat{y}).
\]

(5)

Solve the system of PDEs (5) and substitute the result into the symmetry condition (3).

Not every solution of (5) need be a symmetry.
Necessary conditions for discrete symmetries

Some information about \((\hat{x}, \hat{y})\) arises directly from (4):

\[
X_i(\hat{x}) = b_i^l \xi_l(\hat{x}, \hat{y}), \quad X_i(\hat{y}) = b_i^l \eta_l(\hat{x}, \hat{y}).
\] (5)

Solve the system of PDEs (5) and substitute the result into the symmetry condition (3).

Not every solution of (5) need be a symmetry.

Problem: What are the constants \(b_i^l\)? (Ignorance is not bliss.)
Solution: If \mathcal{L} is nonabelian, examine its structure.
Solution: If \mathcal{L} is nonabelian, examine its structure. Otherwise – tough!
Solution: If \mathcal{L} is nonabelian, examine its structure. Otherwise – tough!

Each \hat{X}_i has the same coefficients as X_i, so

$$[X_i, X_j] = c_{ij}^k X_k \quad \Rightarrow \quad [\hat{X}_i, \hat{X}_j] = c_{ij}^k \hat{X}_k. \quad (6)$$

In other words, Γ induces a Lie algebra automorphism.
Solution: If \mathcal{L} is nonabelian, examine its structure. Otherwise – tough!

Each \hat{X}_i has the same coefficients as X_i, so

$$[X_i, X_j] = c_{ij}^k X_k \quad \Rightarrow \quad [\hat{X}_i, \hat{X}_j] = c_{ij}^k \hat{X}_k. \quad (6)$$

In other words, Γ induces a Lie algebra automorphism.

Consequently the constants b^l_i satisfy

$$c_{im}^n b^l_i b^m_j = c_{ij}^k b^n_k. \quad (7)$$

Solve (7) to simplify the matrix B.
Some useful facts: Every Lie algebra automorphism of \mathcal{L} preserves

1. the derived series,
Some useful facts: Every Lie algebra automorphism of \mathcal{L} preserves

1. the derived series,
2. the upper and lower central series,
Some useful facts: Every Lie algebra automorphism of \mathcal{L} preserves

1. the derived series,
2. the upper and lower central series,
3. the radical $r(\mathcal{L})$, nilradical $n(\mathcal{L})$, and nilpotent radical $s(\mathcal{L})$.
Some useful facts: Every Lie algebra automorphism of \mathcal{L} preserves

1. the derived series,
2. the upper and lower central series,
3. the radical $r(\mathcal{L})$, nilradical $n(\mathcal{L})$, and nilpotent radical $s(\mathcal{L})$,
4. the Cartan-Killing metric $g_{ij} = c_{ik}^l c_{jl}^k$; consequently

$$g_{lm} b_i^l b_j^m = g_{ij}.$$ (8)
Some useful facts: Every Lie algebra automorphism of \mathcal{L} preserves

1. the derived series,
2. the upper and lower central series,
3. the radical $r(\mathcal{L})$, nilradical $n(\mathcal{L})$, and nilpotent radical $s(\mathcal{L})$,
4. the Cartan-Killing metric $g_{ij} = c_{ik}^l c_{jl}^k$; consequently

$$g_{lm} b_i^l b_j^m = g_{ij}. \quad (8)$$

Furthermore, (7) implies the linear constraints

$$\gamma_j b_i^j = \gamma_i, \quad \text{where} \quad \gamma_i = c_{ki}^k. \quad (9)$$
Inner automorphisms:
Some coefficients of B can be simplified by factoring out inner automorphisms at an early stage.
Inner automorphisms:
Some coefficients of B can be simplified by factoring out inner automorphisms at an early stage.

If X_j is not a central element then define the matrix $C(j)$ by $(C(j))_j^k = c_{ij}^k$ and let $A(j) = \exp\{\epsilon_j C(j)\}$. Multiply B by $A(j)$ and choose ϵ_j to simplify the result.

Central Lie symmetries should be factored out after the symmetry condition has been solved.
Inner automorphisms:
Some coefficients of B can be simplified by factoring out inner automorphisms at an early stage.

If X_j is not a central element then define the matrix $C(j)$ by
$$(C(j))_{ij}^k = c^k_{ij}$$
and let $A(j) = \exp\{\epsilon_j C(j)\}$.

Multiply B by $A(j)$ and choose ϵ_j to simplify the result.
Inner automorphisms:
Some coefficients of B can be simplified by factoring out inner automorphisms at an early stage.

If X_j is not a central element then define the matrix $C(j)$ by
$$(C(j))_{ij}^k = c_{ij}^k$$
and let $A(j) = \exp\{\epsilon_j C(j)\}$.

Multiply B by $A(j)$ and choose ϵ_j to simplify the result.

Central Lie symmetries should be factored out after the symmetry condition has been solved.
Summary of the method

1. Calculate \mathcal{L} and choose a ‘suitable’ basis.
Summary of the method

1. Calculate \mathcal{L} and choose a ‘suitable’ basis.
2. Find all automorphisms of \mathcal{L}, modulo inner automorphisms.
Summary of the method

1. Calculate \mathcal{L} and choose a ‘suitable’ basis.
2. Find all automorphisms of \mathcal{L}, modulo inner automorphisms.
3. Solve the necessary conditions (5).
Summary of the method

1. Calculate \mathcal{L} and choose a ‘suitable’ basis.
2. Find all automorphisms of \mathcal{L}, modulo inner automorphisms.
3. Solve the necessary conditions (5).
4. Determine which solutions of (5) satisfy the symmetry condition.
Summary of the method

1. Calculate \mathcal{L} and choose a ‘suitable’ basis.
2. Find all automorphisms of \mathcal{L}, modulo inner automorphisms.
3. Solve the necessary conditions (5).
4. Determine which solutions of (5) satisfy the symmetry condition.
5. Factor out the remaining central Lie symmetries.
Summary of the method

1. Calculate \mathcal{L} and choose a ‘suitable’ basis.
2. Find all automorphisms of \mathcal{L}, modulo inner automorphisms.
3. Solve the necessary conditions (5).
4. Determine which solutions of (5) satisfy the symmetry condition.
5. Factor out the remaining central Lie symmetries.

The second step is the most difficult, but it depends only on the abstract structure of \mathcal{L}. A table of automorphisms would be handy – this would also be useful in other applications.
Decomposability
A Lie algebra \mathcal{L} is \textit{decomposable} if there exist nontrivial subalgebras \mathcal{M}_i such that

$$\mathcal{L} = \mathcal{M}_1 \oplus \cdots \oplus \mathcal{M}_S, \quad [\mathcal{M}_i, \mathcal{M}_j] = 0, \quad i \neq j.$$

Decompositions can be computed (Rand-Winternitz-Zassenhaus).
Decomposability

A Lie algebra \mathcal{L} is *decomposable* if there exist nontrivial subalgebras \mathcal{M}_i such that

$$\mathcal{L} = \mathcal{M}_1 \oplus \cdots \oplus \mathcal{M}_S, \quad [\mathcal{M}_i, \mathcal{M}_j] = 0, \quad i \neq j.$$

Decompositions can be computed (Rand-Winternitz-Zassenhaus).

Theorem: If \mathcal{L} is decomposable then every Lie algebra automorphism of \mathcal{L} is the product of

- automorphisms of each \mathcal{M}_i (acting trivially on the other components),
Decomposability
A Lie algebra \mathcal{L} is \textit{decomposable} if there exist nontrivial subalgebras \mathcal{M}_i such that

$$\mathcal{L} = \mathcal{M}_1 \oplus \cdots \oplus \mathcal{M}_S, \quad [\mathcal{M}_i, \mathcal{M}_j] = 0, \quad i \neq j.$$

Decompositions can be computed (Rand-Winternitz-Zassenhaus).

\textbf{Theorem}: If \mathcal{L} is decomposable then every Lie algebra automorphism of \mathcal{L} is the product of

- automorphisms of each \mathcal{M}_i (acting trivially on the other components),
- permutations of isomorphic components,
Decomposability

A Lie algebra \mathcal{L} is *decomposable* if there exist nontrivial subalgebras \mathcal{M}_i such that

$$\mathcal{L} = \mathcal{M}_1 + \cdots + \mathcal{M}_S, \quad [\mathcal{M}_i, \mathcal{M}_j] = 0, \quad i \neq j.$$

Decompositions can be computed (Rand-Winternitz-Zassenhaus).

Theorem: If \mathcal{L} is decomposable then every Lie algebra automorphism of \mathcal{L} is the product of

- automorphisms of each \mathcal{M}_i (acting trivially on the other components),
- permutations of isomorphic components,
- automorphisms that add a central element to each $X \notin [\mathcal{L}, \mathcal{L}]$.

Second message: All automorphisms of a decomposable Lie algebra can be constructed from the automorphisms of its components.
Second message: All automorphisms of a decomposable Lie algebra can be constructed from the automorphisms of its components.

Consequently, the list can be restricted to indecomposable \mathcal{L}.
Two- and three-dimensional Lie algebras (cf. Patera et al.)

<table>
<thead>
<tr>
<th>Name</th>
<th>Nonzero c^k_{ij} $(i < j)$</th>
<th>Outer Der.</th>
<th>Discrete Gen.</th>
<th>Block Diagonal</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{2,1}$</td>
<td>$c^1_{12}=1$</td>
<td>–</td>
<td>p_1</td>
<td>$(1, 1, 1)$</td>
</tr>
<tr>
<td>$A_{3,1}$</td>
<td>$c^1_{23}=1$ (nilpotent)</td>
<td>–</td>
<td>–</td>
<td>$(\det(G_{23}), G_{23})$</td>
</tr>
<tr>
<td>$A_{3,2}$</td>
<td>$c^1_{13}=c^1_{23}=c^2_{23}=1$</td>
<td>–</td>
<td>–</td>
<td>$(a, a, 1)$</td>
</tr>
<tr>
<td>$A_{3,3}$</td>
<td>$c^1_{13}=c^2_{23}=1$</td>
<td>–</td>
<td>p_1</td>
<td>$(S_{12}, 1)$</td>
</tr>
<tr>
<td>$A_{3,4}$</td>
<td>$c^1_{13}=1, c^2_{23}=-1$</td>
<td>–</td>
<td>$p_1, (X_2, X_1, -X_3)$</td>
<td>$(1, a, 1)$</td>
</tr>
<tr>
<td>$A_{3,5}^u$</td>
<td>$c^1_{13}=1, c^2_{23}=u$ $(0 <</td>
<td>u</td>
<td>< 1)$</td>
<td>–</td>
</tr>
<tr>
<td>$A_{3,6}$</td>
<td>$c^2_{13}=-1, c^1_{23}=1$</td>
<td>–</td>
<td>p_{23}</td>
<td>$(</td>
</tr>
<tr>
<td>$A_{3,7}^u$</td>
<td>$c^1_{13}=c^2_{23}=u, c^1_{13}=-1, c^2_{23}=1$ $(u > 0)$</td>
<td>–</td>
<td>–</td>
<td>$(T(u), T(u), 1)$</td>
</tr>
<tr>
<td>$A_{3,8}$</td>
<td>$c^1_{12}=c^3_{23}=1, c^2_{13}=-2$ $(\mathfrak{s}l(2, \mathbb{R}))$</td>
<td>–</td>
<td>$p_{13}, (X_3, -X_2, X_1)$</td>
<td>$(1, 1, 1)$</td>
</tr>
<tr>
<td>$A_{3,9}$</td>
<td>$c^3_{12}=c^1_{23}=1, c^2_{13}=-1$ $(\mathfrak{s}o(3))$</td>
<td>–</td>
<td>–</td>
<td>$(1, 1, 1)$</td>
</tr>
</tbody>
</table>

Code: $a, b \in \mathbb{R}\{0\}$; G/S – general/special linear block; p – parity switch; $T(u) = e^t$, $t \in [0, 2\pi u)$.

Discrete symmetries and Lie algebra automorphisms

Classification of Lie algebra automorphisms
Example: The Chazy equation,

\[y''' = 2yy'' - 3y'^2 + \lambda(6y' - y^2)^2, \]

has the Lie algebra \(\mathfrak{sl}(2) \):

\[X_1 = \partial_x, \quad X_2 = x\partial_x - y\partial_y, \quad X_3 = -x^2\partial_x + (2xy + 6)\partial_y. \]
Example: The Chazy equation,

\[y''' = 2yy'' - 3y'^2 + \lambda(6y' - y^2)^2, \]

has the Lie algebra \(\mathfrak{sl}(2) \):

\[X_1 = \partial_x, \quad X_2 = x\partial_x - y\partial_y, \quad X_3 = -x^2\partial_x + (2xy + 6)\partial_y. \]

From the table, there are four inequivalent automorphisms, generated by

\[\Gamma_1 : (\hat{X}_1, \hat{X}_2, \hat{X}_3) = (-X_1, X_2, -X_3), \]
\[\Gamma_2 : (\hat{X}_1, \hat{X}_2, \hat{X}_3) = (X_3, -X_2, X_1). \]
Solving the necessary condition (5) with Γ_1 gives

$$(\hat{x}, \hat{y}) \in \{(-x, -y), (-x - 6/y, y)\}.$$
Solving the necessary condition (5) with \(\Gamma_1 \) gives

\[(\hat{x}, \hat{y}) \in \{(-x, -y), (-x - 6/y, y)\} .\]

However, only the first of these satisfies the symmetry condition.
Solving the necessary condition (5) with Γ_1 gives

$$(\hat{x}, \hat{y}) \in \{(-x, -y), (-x - 6/y, y)\}.$$

However, only the first of these satisfies the symmetry condition.

Similarly Γ_2 yields two solutions, of which only

$$(\hat{x}, \hat{y}) = \left(\frac{1}{x}, -x^2y - 6x\right)$$

is a symmetry.
Four-dimensional Lie algebras

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{4,1}$</td>
<td>$c^1_{24} = c^2_{34} = 1$ (nilpotent)</td>
<td>E_3^1, E_4^3</td>
<td>$-$</td>
<td>(ab^2, ab, a, b)</td>
</tr>
<tr>
<td>$A_{4,2}$</td>
<td>$c^1_{14} = u$, $c^2_{24} = c^3_{34} = 1$ ($u \notin {0, 1}$)</td>
<td>$-$</td>
<td>$-$</td>
<td>$(a, b, b, 1)$</td>
</tr>
<tr>
<td>$A_{4,2}$</td>
<td>$c^1_{14} = c^2_{24} = c^3_{34} = 1$</td>
<td>E_2^1, E_4^3</td>
<td>$-$</td>
<td>$(a, b, b, 1)$</td>
</tr>
<tr>
<td>$A_{4,3}$</td>
<td>$c^1_{14} = c^2_{34} = 1$</td>
<td>E_3^1</td>
<td>$-$</td>
<td>$(a, b, b, 1)$</td>
</tr>
<tr>
<td>$A_{4,4}$</td>
<td>$c^1_{14} = c^2_{24} = c^3_{34} = 1$</td>
<td>$-$</td>
<td>p_1</td>
<td>$(1, a, a, 1)$</td>
</tr>
<tr>
<td>$A_{4,5}$</td>
<td>$c^1_{14} = 1$, $c^2_{24} = u$, $c^3_{34} = v$ ($uv \neq 0$, $-1 \leq u < v < 1$)</td>
<td>$-$</td>
<td>p_1</td>
<td>$(1, G_{23}, 1)$</td>
</tr>
<tr>
<td>$A_{4,5}$</td>
<td>$c^1_{14} = 1$, $c^2_{24} = c^3_{34} = u$ ($u \neq 0$, $-1 \leq u < 1$)</td>
<td>p_1</td>
<td>p_1</td>
<td>$(1, G_{23}, 1)$</td>
</tr>
<tr>
<td>$A_{4,5}$</td>
<td>$c^1_{14} = u$, $c^2_{24} = c^3_{34} = 1$ ($u \neq 0$, $-1 \leq u < 1$)</td>
<td>$-$</td>
<td>p_1</td>
<td>$(S_{123}, 1)$</td>
</tr>
<tr>
<td>$A_{4,5}$</td>
<td>$c^1_{14} = c^2_{24} = c^3_{34} = 1$</td>
<td>$-$</td>
<td>p_{12}</td>
<td>$(1, T(v), T(v), 1)$</td>
</tr>
<tr>
<td>$A_{4,6}$</td>
<td>$c^1_{14} = u$, $c^2_{24} = c^3_{34} = v$, $c^2_{34} = -1$, $c^2_{34} = 1$ ($u \neq 0$, $v \geq 0$)</td>
<td>$-$</td>
<td>$-$</td>
<td>$(a^2, a, a, 1)$</td>
</tr>
<tr>
<td>$A_{4,7}$</td>
<td>$c^1_{14} = 2$, $c^1_{23} = c^2_{24} = c^3_{34} = 1$</td>
<td>E_4^1</td>
<td>p_{12}</td>
<td>$(a, 1, a, 1)$</td>
</tr>
<tr>
<td>$A_{4,8}$</td>
<td>$c^1_{23} = c^2_{24} = 1$, $c^3_{34} = -1$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_{4,9}$</td>
<td>$c^1_{14} = u + 1$, $c^1_{23} = c^2_{24} = 1$, $c^3_{34} = u$ ($0 <</td>
<td>u</td>
<td>< 1$)</td>
<td>$-$</td>
</tr>
<tr>
<td>$A_{4,9}$</td>
<td>$c^1_{14} = c^2_{23} = c^2_{24} = 1$</td>
<td>E_2^1</td>
<td>p_{12}</td>
<td>$(a, 1, a, 1)$</td>
</tr>
<tr>
<td>$A_{4,9}$</td>
<td>$c^1_{14} = 2$, $c^1_{23} = c^2_{24} = c^3_{34} = 1$</td>
<td>$-$</td>
<td>p_{12}</td>
<td>$(1, S_{23}, 1)$</td>
</tr>
<tr>
<td>$A_{4,10}$</td>
<td>$c^1_{23} = c^2_{24} = c^3_{34} = 1$, $c^2_{24} = c^3_{34} = -1$</td>
<td>E_4^1</td>
<td>p_{124}</td>
<td>$(a^2,</td>
</tr>
<tr>
<td>$A_{4,11}$</td>
<td>$c^1_{14} = 2u$, $c^1_{23} = c^2_{24} = c^3_{34} = 1$, $c^2_{34} = u$, $c^3_{34} = -1$ ($u > 0$)</td>
<td>$-$</td>
<td>$-$</td>
<td>$((T(u))^2, T(u), T(u), 1)$</td>
</tr>
<tr>
<td>$A_{4,12}$</td>
<td>$c^1_{13} = c^2_{23} = c^2_{24} = 1$, $c^2_{14} = -1$</td>
<td>$-$</td>
<td>p_{24}</td>
<td>$(1, 1, 1, 1)$</td>
</tr>
</tbody>
</table>
Third message: If you want a list of the automorphisms of five-dimensional indecomposable Lie algebras, see me afterwards!
The End