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Wireless Networks

Increasing number of wireless technologies:
I Cellular, wireless LANs, wireless MANs, sensor networks, etc.

Need to share limited wireless spectrum.
I Many new applications use unlicensed bands (e.g. 802.11).
I Interest at FCC in developing more flexible spectrum usage models

(e.g. open access, secondary markets, etc.)
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Spectrum Sharing

Key issue: How to efficiently share spectrum.

Traditional (cellular) approach - use re-use/channel assignment/power
control.

Works well when spectrum licensed to single provider.

In unlicensed/open spectrum can be more difficult.
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Spectrum Sharing
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Focus on sharing a single band of spectrum in a given geographic area
among competing users.

Each user is a single transmitter/receiver pair.

Want to utilize spectrum efficiently and fairly with limited information
exchange (scalability).
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Two Approaches:
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Managed Sharing:

Manager determines
spectrum usage.

Unmanaged Sharing:

Distributed algorithm
determines usage.
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Basic Channel Model
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Static channels.

Each user spreads signal over entire bandwidth of BHz.

User i ’s QoS depends on received SINR,

γi =
hiipi

n0 + 1
B

∑
j 6=i hjipj

Spectrum sharing = power allocation.
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User Preferences

PSfrag replacements

ui(γi)

γi

All users are rate-adaptive with elastic demands.

User’s QoS preferences given by utility ui (γi ).
I Increasing, twice differentiable, strictly concave function of γi .
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Managed Spectrum Sharing
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Manager allocates spectrum to users.
I e.g., secondary market.

Constraint on total received power at measurement point
(“interference temperature”).

M∑
i=1

hi0pi ≤ P
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Spectrum allocation

Spectrum allocation = allocation of received power at MP.

Can view this as divisible good.

Consider auction-based approach:
I Users bid for power, manager allocates power based on bids.

Need to specify auction mechanism.
I Due to interference, negative externalities between users.
I Complicates some auction mechanisms (e.g. VCG)
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Divisible (Share) Auction

Manager announces reserve bid β and unit price πx .

Users submit one dimensional bids, bi (i = 1, ..,M)

Power allocated in proportion to bids:

hi0pi =
bi

β +
∑M

i=1 bi

=
bi

β + bi + b−i

User pays unit price × allocation (not bid value).
I Improves efficiency of auction’s outcome.
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Pricing Schemes

Two pricing schemes:
I SINR-based: user i pays Ci = πsγi

I Power-based: user i pays Ci = πphi0pi

Each user’s goal is to maximize surplus,

Si (bi , b−i ) = ui (γi )− Ci

View user’s a playing non-cooperative game.

I Players = users (pairs);
I Player i ’s action = bi ;
I Player i ’s pay-off = Si (bi , b−i )
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Definitions

Given b−i , user i ’s best response is

Bi (b−i ) = arg max Si (bi ; b−i )

A set of bids {b∗i } is a Nash equilibrium (N.E.) if for all i ,
b∗i ∈ Bi (b

∗
−i ).

I No user has incentive to deviate unilaterally.

Want to know does N.E. exist? Is it unique? What properties does it
have?

I First consider one-shot complete information game.
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SINR Auction

Prop. In an SINR auction with β > 0 there exists a threshold price
πs

th > 0 such that a unique NE exists if πs > πs
th and no NE if πs ≤ πs

th.

Proof idea:

Each user has a unique best response that satisfies:

Bi (b−i ) =
∑
j 6=i

kij(π
s)bj + ki0(π

s)β.

If auction has a unique N.E. b∗ it must satisfy:

(I−K(πs))b∗ = k0β

Requires spectral radius of K(πs), ρK < 1.

Show ρK is decreasing in πs and must be less than 1 for large enough πs .
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Pareato Optimality

An outcome of the auction is Pareato optimal if no user’s utility can
be improved without decreasing another’s.

Due to reserve bid β, outcome of SINR auction is not Pareato
optimal.

But can be made arbitrarily close, as πs → πs
th.

Requires manager to know global information - if not can adaptively
set πs .
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Iterative bidding

Suppose each user iteratively updates their bids according to Myopic
best response updates:

b(t) = Kb(t−1) + k0β

For each user i this only depends on hii , hi0 and γt−1
i .

Prop. If there exists a unique NE in the SINR auction, these updates
globally converge to it.
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NE with log utilities

Logarithmic utilities: Ui (γi ) = θi log(γi ).

Prop. If a unique NE exists in an SINR auction with logarithmic
utilities, the equilibrium SINR allocation satisfies:

γi

θi
=

γj

θj

(weighted max-min fair).
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Power auction

Assumption A: Assume that for all i ,

min
γi∈[0,P/n0]

|U ′′i (γi )|
U ′i (γi )

> 0

Assumption B: Assume that for each i ,
hi,j

hi,0
= Ki for all j 6= i .

Prop. In a power-based auction under assumptions A and B with large
enough (finite) bandwidth given any ε > 0, there exists a price such that
the system has a NE with a total utility that is within ε of the socially
optimum.

e.g., all receiver’s co-located.
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Power Auction

proof idea:

Can formulate social optimum as solution to problem that is separable
across users.

With large enough bandwidth objective becomes concave.

Identify needed price with Lagrange multiplier and first order
conditions with best responses.
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Power Auction
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Large System Analysis

Let P,B and M →∞ with fixed ratios.

Assume Ui (γi ) = θiU(γi ) with θi i.i.d. and channel gains i.i.d., and
U(γ) asymptotically sub-linear, i.e.

lim
γ→∞

1

γ
U(γ) = 0.

Prop. In limiting system both the SINR-based and power-based
auctions have a NE that corresponds to the socially optimal
allocation.
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Large System Convergence
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Unmanaged Spectrum Sharing
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No manager to allocate power.

Users must coordinate power allocation with each other.

Each user has power constraints: pi ∈ [Pmin
i ,Pmax

i ].
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Asynchronous Distributed Pricing (ADP) Algorithm

Each user i announces “price” (per unit interference),

πi = −∂ui (γi )

∂Ii
=

∂ui (γi )

∂γi

γ2
i

pihi i
.

User i updates power pi to maximize surplus:

si = ui (γi )−
∑
j 6=i

πjhijpi .

Repeat these steps asynchronously.

Only need to know “adjacent” channel gains (hij) and announce
single price.
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ADP Algorithm

Want to know:

When does this converge?

If it convergence what is the resulting allocation?

When is the allocation (socially) optimal, i.e. it maximizes the total
utility,

∑
i ui (γi )?
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Convergence

Define the coefficient of risk aversion (CRA) of a utility U(γ) to be

CRA(γ) = −γU ′′(γ)

U ′(γ)
.

larger CRA ⇒ “more concave” U.

Prop: If for all i :

a) Pmin
i > 0, and

b) CRA(γi ) ∈ [1, 2] for all feasible γi ;

then there is a unique optimal allocation and the ADP algorithm globally
converges to this point.

e.g. above condition is always satisfied with log utilities.

proof based on relating this algorithm to a “fictitious game.”
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Fictitious Game

Can view ADP algorithm in terms of a “fictitious game” .

Split each user into two fictitious players
I one sets prices and one determines power allocations.

Formulate game so that each players best response corresponds to
steps in the ADP algorithm.

I ⇒ NE of this games corresponds to fixed points of the ADP algorithm.

Any fixed-point also corresponds to a solution to Kuhn-Tucker
conditions of global utility maximization problem.

Additionally with the restrictions on the utility, this game is
supermodular.
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Supermodular Games

A class of games with “strategic complementarities.”
I Strategy sets are compact subsets of R; and each users pay-off si has

“increasing differences”:
∂2si

∂xi∂xj
> 0.

Key properties:

(1) a N.E. exists
(2) if the N.E. is unique then the asynchronous best response updates will

globally converge to this point.

Under given assumptions, can show that with a logarithmic change of
variable, the total utility maximization problem has concave objective
over convex set.

I Similar to [Chiang 05].
I Implies there must be a unique N.E.
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Convergence
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Multi-channel Model

Assume each user can transmit over K independent channels (e.g.
multi-carrier system).

Received SINR in channel k for user i

γk
i =

hk
iip

k
i

ni
0 +

∑
j 6=i h

k
jip

k
j

Can allocate power across channels subject to total power constraint:∑
k

pk
i ≤ Pmax

i .

User’s total utility is “carrier separable”

Ui =
∑
k

Uk
i (γk

i ).
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Modified ADP algorithm

Each user still announce an interference price πk
i on each channel k.

Each user also keeps a local “power price,” µi , to model total power
constraint.

User chooses power pk
i to maximize:

Uk
i (γk

i )−
∑
j 6=i

hijπ
k
j pk

i − µi .

Power price updated by:

µi (t) =

[
µi (t

−) + κ

(∑
k∈K

pk
i − Pmax

i

)]+

.
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Convergence

Under similar conditions to single channel case, can show this globally
converges to unique optimal power allocation.

Difficulty here is that power price update can not be incorporated into
supermodular game framework.

Instead consider “separation of time-scales” and view power price
update as distributed gradient projection algorithm for optimizing
dual of utility maximization problem.

Under given conditions, this converges globally with fixed step-size
I Need to show Lipschitz condition for gradient of dual function.

R. Berry (NWU) Spectrum Sharing Games June 29, 2005 31 / 34



Multi-channel Example
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Conclusions

Presented some simple models for spectrum sharing with and without
a manager.

In each case, analyzed performance, convergence using game
theoretic ideas.

Many issues not addressed e.g. multiple spectrum bands, dynamics,
multiple providers, etc.
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