Many science and engineering problems lead to optimization problems governed by partial differential equations (PDEs), and in many of these problems some of the problem data are not known exactly. I focus on a class of such optimization problems where the uncertain data are modeled by random variables or random fields, and where decision variables (controls/designs) are deterministic and have to be computed before the uncertainty is observed. It is important that the uncertainty in problem data is adequately incorporated into the formulation of the optimization problem.