Tuesday, March 13, 2018 - 9:00am - 9:50am
Aditya Khair (Carnegie Mellon University)
The deformation of a weakly conducting, leaky dielectric, prolate drop in a density matched, immiscible weakly conducting medium under a uniform DC electric field is analyzed. Using boundary integral computations, we delineate drop deformation and breakup regimes in the Ca_E-Re_E parameter space, where Ca_E is the electric capillary number (ratio of the electric to capillary stresses); and Re_E is the electric Reynolds number (ratio of charge relaxation to flow time scales), which characterizes the strength of surface charge convection along the interface.
Subscribe to RSS - Breakup