Instability and non-uniqueness in the Navier-Stokes equations

Wednesday, July 27, 2022 - 9:30am - 10:30am
Vincent 570
Dallas Albritton (Princeton University)
It is not yet known whether Navier-Stokes solutions develop singularities in finite time. If they do, then the solutions can be continued beyond the singularities as Leray-Hopf solutions. It is therefore a fundamental question, Are Leray-Hopf solutions unique? The goal of this course is to present very recent developments in our understanding of this question.

We will begin by quickly reviewing the Navier-Stokes basics: dimensional analysis, the energy balance, pressure, weak solutions, perturbation theory, and weak-strong uniqueness. To save time, we will not present the complete proofs.

Next, we will explain aspects of the Jia, Sverak, and Guillod program (Jia-Sverak, Inventiones 2014, JFA 2015; Guillod-Sverak, arXiv 2017) and, in particular, how instability in self-similarity variables can generate non-uniqueness. We will briefly discuss bifurcations, stable and unstable manifolds, and, time permitting, a short proof of the existence of large self-similar solutions.

Finally, we will present the recent work (A.-Brue-Colombo, Ann. Math. 2022) which rigorously established non-uniqueness of Leray-Hopf solutions with forcing. We will present the main idea but focus on the spectral perturbation arguments.

No prior knowledge of the Navier-Stokes equations is required, though it might be beneficial to preview background on weak and mild solutions in, for example, Chapters 4 and 11 in Robinson-Rodrigo-Sadowski or Chapters 3 and 5 in Tsai.