Campuses:

A Bayesian Imputation Approach to Optimizing Dynamic Treatment Regimes

Wednesday, November 7, 2018 - 10:10am - 10:40am
Lind 305
Thomas Murray (University of Minnesota, Twin Cities)
This talk will describe a new approach for optimizing dynamic treatment regimes that bridges the gap between Bayesian inference and Q-learning. The proposed approach fits a series of Bayesian regression models, one for each stage, in reverse sequential order. Each model regresses the remaining payoff assuming optimal actions are taken at subsequent stages on the current history and actions. The key difficulty is that the optimal decision rules at subsequent stages are unknown, and even if these optimal decision rules were known the payoff under the subsequent optimal action(s) may be counterfactual. However, posterior distributions can be derived from the previously fitted regression models for the optimal decision rules and the counterfactual payoffs under a particular set of rules. The proposed approach uses imputation to average over these posterior distributions when fitting each regression model. An efficient sampling algorithm, called the backwards induction Gibbs (BIG) sampler, for estimation is presented, along with simulation study results that compare implementations of the proposed approach with Q-learning.