# Mathematics of Big Data & Machine Learning

Friday, August 10, 2018 - 3:30pm - 4:30pm

Lind 305

Jeremy Kepner (Massachusetts Institute of Technology)

Big Data describes a new era in the digital age where the volume, velocity, and variety of data created across a wide range of fields (e.g., internet search, healthcare, finance, social media, defense, ...) is increasing at a rate well beyond our ability to analyze the data. Machine Learning has emerged as a powerful tool for transforming this data into usable information. Many technologies (e.g., spreadsheets, databases, graphs, linear algebra, deep neural networks, ...) have been developed to address these challenges. The common theme amongst these technologies is the need to store and operate on data as whole collections instead of as individual data elements. This lecture describes the common mathematical foundation of these data collections (associative arrays) that apply across a wide range of applications and technologies. Associative arrays unify and simplify Big Data and Machine Learning. Understanding these mathematical foundations allows the student to see past the differences that lie on the surface of Big Data and Machine Learning applications and technologies and leverage their core mathematical similarities to solve the hardest Big Data and Machine Learning challenges.

Biography

Dr. Jeremy Kepner is a MIT Lincoln Laboratory Fellow. He founded the Lincoln Laboratory Supercomputing Center and pioneered the establishment of the Massachusetts Green High Performance Computing Center. He has developed novel big data and parallel computing software used by thousands of scientists and engineers worldwide. He has led several embedded computing efforts, which earned him a 2011 R&D 100 Award. Dr. Kepner has chaired SIAM Data Mining, IEEE Big Data, and the IEEE HPEC conference. Dr. Kepner is the author of two bestselling books on Parallel MATLAB and Graph Algorithms. His peer-reviewed publications include works on abstract algebra, astronomy, astrophysics, cloud computing, cybersecurity, data mining, databases, graph algorithms, health sciences, plasma physics, signal processing, and 3D visualization. In 2014, he received Lincoln Laboratory's Technical Excellence Award. Dr. Kepner holds a B.A. in astrophysics from Pomona College and a Ph.D. in astrophysics from Princeton University.

Biography

Dr. Jeremy Kepner is a MIT Lincoln Laboratory Fellow. He founded the Lincoln Laboratory Supercomputing Center and pioneered the establishment of the Massachusetts Green High Performance Computing Center. He has developed novel big data and parallel computing software used by thousands of scientists and engineers worldwide. He has led several embedded computing efforts, which earned him a 2011 R&D 100 Award. Dr. Kepner has chaired SIAM Data Mining, IEEE Big Data, and the IEEE HPEC conference. Dr. Kepner is the author of two bestselling books on Parallel MATLAB and Graph Algorithms. His peer-reviewed publications include works on abstract algebra, astronomy, astrophysics, cloud computing, cybersecurity, data mining, databases, graph algorithms, health sciences, plasma physics, signal processing, and 3D visualization. In 2014, he received Lincoln Laboratory's Technical Excellence Award. Dr. Kepner holds a B.A. in astrophysics from Pomona College and a Ph.D. in astrophysics from Princeton University.