Campuses:

Displacement Assimilation when Features are Essential

Tuesday, November 19, 2013 - 2:20pm - 3:00pm
Lind 305
Juan Restrepo (University of Arizona)
Traditional data assimilation is cast as amplitude data assimilation and contrasted to displacement data assimilation, the latter able to correct phase information in a physically-meaningful way. We use area-preserving maps to correct phase errors in problems wherein feature preservation is essential. An example of problem where phase information is crucial is tracking of hurricanes/cyclones/tornadoes.

I will first motivate the use of this method by describing how variance minimizing techniques are less successful in problems where feature preservation/detection is critical. I will describe one of our own amplitude data assimilation methods which is capable of handling nonlinear/non-Gaussian problem, albeit of small dimension, as a benchmark of what is possible with a traditional amplitude data assimilation method.

I will then contrast its results to the displacement assimilation technique and describe then how both of these approaches could be combined to obtained improved estimates of the first few moments of the posterior density of states, given observations.

Joint work with Steven Rosenthal and Shankar Venkataramani.