The Simplest General Circulation Model

Monday, March 11, 2013 - 4:30pm - 5:00pm
Keller 3-180
Tim DelSole (George Mason University)
A simple model of the general circulation based on idealized eddy heat and momentum fluxes is presented. The eddy heat flux is parameterized based on a stochastically excited baroclinic model. The eddy momentum flux is parameterized based on a stochastic model whereby surface eddy heat fluxes randomly excite Rossby waves which in turn propagate vertically and horizontally. The model also includes parameterized radiative transfer processes. These parameterizations are then coupled with the momentum and energy equations to solve for the complete general circulation. The resulting model is shown to produce a realistic Hadley cell, heat and momentum fluxes, and zonal jets. Despite the crudity of the parameterizations, the model is argued to be the simplest possible model of the dry general circulation based on physically plausible eddy dynamics.
MSC Code: