Numerical Simulations of the Kaye Effect?

Monday, July 15, 2013 - 5:00pm - 6:00pm
Keller 3-180
Andrea Bonito (Texas A & M University)
The Kaye effect is a fascinating phenomenon of a leaping shampoo stream
which was first described by Alan Kaye in 1963 as a property of non-Newtonian fluid.
It manifest itself when a thin stream of non-Newtonian fluid is poured into a dish of fluid.
As pouring proceeds, a small stream of liquid occasionally leaps upward from the heap.

Shear-thinning viscosity is advanced as the critical ingredient to understand this effect.
We consider a Carreau-Yasuda model and numerically identify the parameters eventually yielding to the Kaye effect.
The numerical algorithm consists of a projection method coupled with a level-set formulation for the interface representation.
In this talk, we focus on two aspects: (i) the numerical approximation of the capillarity force and (ii) the entropy residual technique used to stabilize the finite element approximation of the level-set evolution.

This is based on a joint work with J.L. Guermond and S. Lee.
MSC Code: