Campuses:

Wrinkles as a relaxation of compressive stresses in annular thin films

Monday, May 16, 2011 - 3:00pm - 3:30pm
Lind 305
Peter Bella (New York University)
It is well known that elastic sheets loaded in tension will wrinkle, with the length scale of wrinkles tending to zero with vanishing thickness of the sheet [Cerda and Mahadevan, Phys. Rev. Lett. 90, 074302 (2003)]. We give the first
mathematically rigorous analysis of such a problem. Since our methods require an explicit understanding of the underlying (convex) relaxed problem, we focus on the wrinkling of an annular sheet loaded in the radial direction [Davidovitch et
al, arxiv 2010]. While our analysis is for that particular problem, our variational viewpoint should be useful more generally. Our main achievement is identification of the scaling law of the minimum energy as the thickness of the sheet tends to zero. This requires proving an upper bound and a lower bound that scale the same way. We prove both bounds first in a simplified Kirchhoff-Love setting and then in the nonlinear three-dimensional setting. To obtain the optimal upper bound, we need to adjust a naive construction (one family of wrinkles superimposed on the planar deformation) by introducing cascades of wrinkles. The lower bound is more subtle, since it must be ansatz-free.
MSC Code: 
74Bxx
Keywords: