Shear alignment and mechanical properties of<br/><br/>nanostructured hydrogels<br/><br/>

Tuesday, October 13, 2009 - 3:30pm - 4:10pm
EE/CS 3-180
Lynn Walker (Carnegie-Mellon University)
Keywords: Block copolymer solutions, hydrogels, shear aligned, soft crystals

Abstract: Self-assembled block copolymer templates can be used to control the nanoscale structure of materials that would not otherwise order in solution. In this work, we have developed a technique to use close-packed cubic and cylindrical mesophases of a thermoreversible block copolymer (PEO-PPO-PEO) to impart spatial order on dispersed nanoparticles. The thermoreversible nature of the template allows for the dispersion of particles synthesized outside the template. This feature extends the applicability of this templating method to many particle-polymer systems and also permits a systematic evaluation of the impact of design parameters on the structure and mechanical properties of the nanocomposites. The criteria for forming co-crystals has been fully characterized using contrast-matching small-angle neutron scatting (SANS) and the mechanical properties of these soft crystals determined. SANS experiments also demonstrate that shear can be used to align the nanocomposites into single-crystal macro-domains; the first demonstration of the formation of single-crystal nanoparticle superlattices. We are currently utilizing SANS to understand the flow mechanisms of both the neat block copolymer solutions and several types of these co-crystals.
MSC Code: