Image Preconditioning for a SAR Image Reconstruction Algorithm for Multipath Scattering

Wednesday, December 31, 1969 - 6:00pm
EE/CS 3-180
David Garren (Science Applications International Corporation)
Recent analysis has resulted in an innovative technique for forming synthetic aperture radar (SAR) images without the multipath ghost artifacts that arise in traditional methods. This technique separates direct-scatter echoes in an image from echoes that are the result of multipath, and then maps each set of reflections to a metrically correct image space. Current processing schemes place the multipath echoes at incorrect (i.e., ghost) locations due to fundamental assumptions implicit in conventional array processing. Two desired results are achieved by use of this Image Reconstruction Algorithm for Multipath Scattering (IRAMS). First, the intensities of the ghost returns are reduced in the primary image space, thereby improving the relationship between the image pattern and the physical distribution of the scatterers. Second, a higher dimensional image space that enhances the intensities of the multipath echoes is created which offers the potential of dramatically improving target detection and identification capabilities. This paper develops techniques in order to precondition the input images at each level and each offset in the IRAMS architecture in order to reduce multipath false alarms.