Campuses:

Mixed Effects Models for Network Data

Thursday, November 20, 2003 - 11:00am - 11:50am
Keller 3-180
Peter Hoff (University of Washington)
One impediment to the statistical analysis of network data has been the difficulty in modeling the dependence among the observations. In the very simple case of binary (0-1) network data, some researchers have parameterized network dependence in terms of exponential family representations. Accurate parameter estimation for such models is difficult, and the most commonly used models often display a significant lack of fit. Additionally, such models are generally limited to binary data. In contrast, mixed effects models have been a widely successful tool in capturing statistical dependence for a variety of data types, and allow for prediction, imputation, and hypothesis testing within a general regression context. We propose novel random effects structures to capture network dependence, which can also provide graphical representations of network structure and variability.