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Abstract

We review the fundamentals of coupling constant metamorphosis
(CCM) and the Stéckel transform, and apply them to map integrable
and superintegrable systems of all orders into other such systems on
different manifolds. In general, CCM does not preserve the order of
constants of the motion or even take polynomials in the momenta to
polynomials in the momenta. We study specializations of these actions
which do preserve polynomials and also the structure of the symmetry
algebras in both the classical and quantum cases. We give several
examples of non-constant curvature 3rd and 4th order superintegrable
systems in 2 space dimensions obtained via CCM, with some details
on the structure of the symmetry algebras preserved by the transform
action.

PACS: 02.00.00, 02.20.Qs,02.30.1k, 03.65.Fd



1 Introduction

There has been a recent rapid expansion in the number of known classical
and quantum superintegrable systems of order 2, [1, 2], and, particularly, of
order 3 and higher, [3, 4, 5, 6, 7, 8, 9]. For many of these systems it has been
demonstrated that the algebra generated by the fundamental higher order
symmetries closes under the Poisson bracket in the classical case, and under
the commutator in the quantum case, to form a finite dimensional quadratic
or cubic algebra. The representation theory of these algebras and their asso-
ciation with basic properties of the special functions of mathematical physics
is of great current interest, [10, 11, 12, 13, 14, 15, 16]. Indeed, the basic prop-
erties of Gaussian hypergeometric functions and their various limiting cases,
as well as Lamé, Mathieu and Heun functions, and ellipsoidal harmonics all
appear as associated with 2nd order superintegrable quantum systems via
separation of variables. These functions as well as orthogonal polynomials of
a discrete variable, including the general Wilson and Racah polynomials, are
bound up with function space models of the irreducible representations of the
quadratic algebras associated with 2nd order superintegrable quantum sys-
tems. The Painlevé transcendents (not associated with variable separability)
appear in the study of 3rd order superintegrable systems. Some examples
are known for conformally flat manifolds in n dimensions, [17, 18, 19], but
most results are known for 2 and 3 dimensional conformally flat spaces.

There is a disconnect, however, between what is known for 2nd order
superintegrable systems and what is known for 3rd and higher order sys-
tems. For 2nd order superintegrable systems, classical and quantum, all
such systems and all manifolds of dimension 2 on which they occur have
been classified and the mechanism of the closure of the quadratic algebra
is well understood, [20, 21, 22, 23, 24]. For conformally flat manifolds in 3
dimensions great advances have been made although the classification and
structure analysis is not yet complete, [25, 26, 22, 27, 28]. A major tool for
obtaining these 2nd order results has been the Stéckel transform [29, 30],
a variant of coupling constant metamorphosis [31], which enables a 1-1 in-
vertible transformation between a 2nd order superintegrable system on one
manifold and a superintegrable system on another manifold that preserves
the symmetry algebra structure. This has given us an elegant method for
classification of all 2D superintegrable systems through the important fact
that every such system can be shown to be the Stackel transform of a system
on a constant curvature space, [2, 21, 24]. Also it gives important insight
into the structure of Koenigs’ remarkable potential-free results [32]. Similar
results are known for 3D systems but the classification is not yet complete,
[26, 27, 28].



For 3rd and higher order superintegrable systems, however, there is no
structure and classification theory. Only examples are known, and these are
very difficult to obtain. The symmetry algebras can be computed for each
example but the mechanism for their closure and structure is not understood.
Virtually all known examples are in 2D or 3D Euclidean space. The present
paper is a first attempt at refining a tool (CCM/Stéckel transform), that
has proved so successful in the classification and structure theory for 2nd
order systems, so that it applies to higher order superintegrable systems.
There are two basic issues here. The first is that CCM in general doesn’t
preserve the structure of the symmetry algebras. We have to determine a
suitable restriction that does preserve the structure. Secondly, CCM is a
classical phenomenon; its extension to the quantum case is not automatic
and requires special care. In this paper most of our classical results will be
stated for n dimensional systems whereas, for simplicity, the quantum results
will be limited mostly to 2 dimensions.

In future papers we will extend the operator CCM to 3 and higher dimen-
sions and employ this tool to attack the structure and classification theory
for 3rd and higher order superintegrable systems in all dimensions. An im-
mediate result of the present paper is the explicit display of a large number of
higher order superintegrable systems on manifolds not of constant curvature,
the existence of which seems not to be widely recognized. We also provide
new examples of explicit structure computations for the quadratic algebras
of some 3rd and 4th order superintegrable systems on 2D Euclidean space
that map to isomorphic systems on nonconstant curvature spaces.

Before proceeding to our results we give some basic definitions that we
employ throughout the paper. A classical superintegrable system on an n-
dimensional real or complex Riemannian or pseudo-Riemannian manifold is
defined by its associated Hamiltonian function H = >~ ¢”pip; + V(x) on
the phase space of this manifold. Here ¢*/(x) is the contravariant metric
tensor in local coordinates x and V'(x) is a prescribed function that may de-
pend on some parameters. The system is superintegrable if it admits 2n—1
functionally independent generalized symmetries (or constants of the motion)
S, k=1,---,2n—1with §; = H where the S, are polynomials in the mo-
menta p;. That is, {H, Sy} = 0 where {f, g} = > 7 (0x,f0p, g — 0p, f0r;9) is
the Poisson bracket for functions f(x, p), g(x, p) on phase space. It is easy to
see that 2n — 1 is the maximum possible number of functionally independent
symmetries and, locally, such (in general nonpolynomial) symmetries always
exist. Most authors, but not us, also demand that the system is integrable,
i.e., there is a subset of n functionally independent polynomial symmetries,
say Si,- -+, Sy, such that {S;, S} =0, 1 < s,¢ < n. If the maximum order



of the polynomials corresponding to the generating symmetries is N, we say
that the system is Nth order superintegrable.

Superintegrable systems can lay claim to be the most symmetric Hamilto-
nian systems though many such systems admit no group symmetry; the sym-
metry is “hidden”. Generically, every geometrical trajectory in phase space
(but not the time dependence of the trajectory p(t),x(t)) of the Hamilton
equations of motion for the system, is obtained as the common intersec-
tion of the (constants of the motion) hypersurfaces Si(p,x) = ¢, k =
0,---,2n — 2. The orbits can be found without solving the equations of
motion. Since every known superintegrable system is also integrable, this is
better than integrability. A case can be made that the 2nd order superinte-
grability of the Kepler-Coulomb two-body problem, forcing the existence of
conic sections as trajectories, is the reason that Kepler was able to determine
the planetary elliptical orbits before the invention of calculus.

There is an analogous definition of superintegrability for quantum systems
with Schrodinger operator

1 .
H=A+V(x), A=-—Y 0,(/997)0,,,
Vo Z

the Laplace-Beltrami operator plus a potential function. Here it is required
that there are 2n — 1 functionally independent differential operators, S =
H,Sy, -+, Ss,_1 such that and [H,Sy] = HS, — SyH = 0. Often there is
a 1-1 relationship between classical and quantum superintegrable systems
associated with a potential and then functional independence refers to the
classical system. In those cases where there is no classical analog, however,
there is no agreed upon definition of quantum functional independence. A
basic motivation for studying these systems is that they can be solved ex-
plicitly, often in multiple ways. Typically their symmetry algebras close to
form quadratic, cubic, or similar algebras whose representation theory yields
spectral information about the quantum system.

In the following sections we review the basic definition and properties
of coupling constant metamorphosis (CCM) and the closely related Stéckel
transform for classical systems. These concepts apply to any Hamiltonian
system with potential, not just superintegrable systems. Then we define
specializations of these general concepts that preserve the order of symmetries
and also define symmetry algebra isomorphisms. It is these specializations
that are needed for the study of superintegrable systems. Then, and most
importantly, we find quantum analogs of these classical transforms. At each
stage we provide examples, several of them new.



2 Coupling constant metamorphosis

The basic tool that we will employ follows from “coupling constant meta-
morphosis” (CCM), a general fact about Hamiltonian systems, pointed out
in [31]. Let H(x,p) + aU(x) define a Hamiltonian system in 2n dimensional
phase space, with canonical coordinates z;,p;. Thus the Hamilton-Jacobi
equation would take the form H(x,p) + aU(x) = E. Assume that for every
value of the parameter « the system admits a constant of the motion («),
analytic in a.

Theorem 1 Coupling constant metamorphosis. The Hamiltonian H' = (H—
E)/U admits the constant of the motion K' = K(—H'), where now E is a
parameter.

PROOF": Note that if F, G are functions on phase space of the form G(x, p),
F =F(a) = F(a,x,p) where a = a(x,p) then

{F.G} ={F(a), G}a=arxp) + Ot (a)]amaxp{a, G}
By assumption, {K(a), H} = —a{K(«),U} for any value of the parameter

«. Thus
{U.K(a)}

{K(a), Wy = = + ).
Now
(K(—H), 1) = |auk (o) (e, 10y + L) ’(C](O‘)} (H + a) — 0.
a=—H'

Q.E.D

Corollary 1 Let KCi(a), Ka(a) be constants of the motion for the system
H(x,p) + aU(x). Then {1, Ko} () = {K1(a), Ka(a)} is also a constant of
the motion and

{Ki(=H), Ka(=H")} = {K1, Ko} (—H).

Clearly CCM takes integrable systems to integrable systems and super-
integrable systems to superintegrable systems. We are concerned with the
case where

H=" gpip;+ V(%) +alU(x) = Ho+ V + ol (1)

1,j=1



is a classical Hamiltonian system on an n-dimensional pseudo-Riemannian
manifold and are interested only in those constants of the motion I that
are polynomial in the momenta. As we shall see, in the case of 2nd order
constants of the motion there is special structure. The 2nd order constants
of the motion are typically at most linear in «, so they transform to 2nd
order symmetries again. In this case CCM agrees with the Stéckel transform
that we shall take up in the next section. However, in general the order of
constants of the motion is not preserved by coupling constant metamorphosis.

Example 1 The system
H = p% +p§ + b1/ + bas

admits the 2nd order constant of the motion K®? = p3 + bywy and the Srd
2

order constant of the motion K3 = p3 +3b,\/z1p; — &pg, 4] and references
1773 by

contained therein). If we choose aU = o,/x1 then the transform of e
will be 5th order. If we choose aU = axy then the transform of K will be
rational, but nonpolynomial. Thus to obtain useful structure results from this
general transform, and to obtain results that have the possibility of carrying
over to the quantum case, we need to restrict the generality of the transform
action.

3 The Jacobi transform

Here we study a specialization of coupling constant metamorphosis to the
case where V' = 0. The special version of the transform we study takes
Nth order constants of the motion for Hamiltonian systems to Nth order
constants of the motion. An Nth order constant of the motion K(x,p) for
the system

H=> g'pp;+U(x)=Ho+U (2)
i,j=1

is a function on the phase space such that {K,H} = 0 where
K=Ky+EKy_o2+Kn_g+--+Kg, neven,

K=Ky+EKyo+Kn_s+---+Ky, nodd

Here, Kn # 0 and K, is homogeneous in p of order j. This implies the
conditions

{Kn, Ho} =0, (3)
{Kn-ok, U} + {Kn_2k—2,Ho} =0, k=0,1,--- [N/2] -1, (4)
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and, for NV odd,

The case N =1 is very special. Then K = K; and the conditions are
{K,Ho} =0, {K,U}=0,

so K is a Killing vector and U is invariant under the local group action
generated by the Killing vector.
For N =2, K = K3 + Ky and the conditions are

{KoyHo} =0, {Ko,U}+{Ko,Ho} =0, (6)

so Ky is a 2nd order Killing tensor and U satisfies (linear) Bertrand-Darboux
integrability conditions.
For N =3, K = K3 + K; and the conditions are

{Ks,Ho} =0, {3, U}+{Ki,Ho} =0, {Ky,U}=0

so K3 is a 3rd order Killing tensor. The integrability conditions for the last
2 equations lead to nonlinear PDEs for U.

Theorem 2 Suppose the system (2) admits an Nth order constant of the
motion IC where N > 1. Then

[N/2]

X Ho — B’
- F () e

J=0

is an N'th order constant of the motion for the system (Ho — E)/U.

PROOF: It follows from the general conditions (3), (4), (5). That

[N/2]

K:(Oé) = Z OéjK:N_gj

J=0

is a constant of the motion for the system H(a) = Ho + aU. Then from
Theorem 1, we have that K(—%) is an Nth order constant of the motion
for the system (Ho — E)/U. Q.E.D.

Note that if we set E = 0 then K becomes an Nth order Killing tensor
for the free system Hy/U.

Corollary 2 Suppose the system Ho+U is Nth order superintegrable. Then
the free system Ho/U is also Nth order superintegrable.

7



We will call K a Jacobi transform of IC, in recognition of its close rela-
tionship to the Jacobi metric, [33] page 172, and to distinguish it from the
Stackel transform and more general coupling constant metamorphosis. Note
that the Jacobi transform for general parameter E is invertible.

Corollary 2 tells us that each of the 3rd order superintegrable systems
found by Gravel in 2D Euclidean space, [4], yields superintegrable systems
on conformally flat manifolds, usually not of constant curvature.

Corollary 3 The Jacobi transform satisfies the properties
{K.£} = {K. L}, KL = KL,

and, if IC, L are of the same order, aIC/—I—\bC = aK + bL. Thus it defines a
homomorphism from the graded symmetry algebra of the system Ho + U to
the graded symmetry algebra of the system (Ho — E)/U.

Example 2 Consider the system of Example 1: H = p}+ p3+b1\/21 + baxa,
and let U = by/Z1 4 bawa +bs for some fived by, by, b3 with biby # 0. The new

Hamiltonian is ) )
Y pi+p;—E

N bl\/x_l—i— bQiIZ’Q + bg.
and the Jacobi transforms of K@, KCB) are
pi+ps—E )
b1\/1'1—|—52232+b3 ’

,@(2) _ pg — Doy (

- 3 302 pP+pi—F
IC(3) . b ST — <Y1 ( 1 2 ) )
P1 (2 VP 4bgp2) b1\/$1 + bQZL’Q + bg

4 The Stackel transform

Using the same notation as in the previous section, and a particular nonzero
potential U = V(x,bg) we define the Stéckel transform for a system H =
Ho + V(x,b), [29]. The transform of K = K; is K = K; The transform of
K=K+ Kyis K=K — %H. (Here K; is a homogeneous polynomial
in p of order 27, and IC]-U is the restriction of KC; to the potential V' = U.)
The transform maps 1st and 2nd order constants of the motion for H to
constants of the motion for the system H/U. Thus the system H is 2nd
order superintegrable iff the system H /U is 2nd order superintegrable. For
completeness we review briefly the direct proofs of the basic theoretic facts.



Theorem 3 Let K be a 2nd order constant of the motion for the system H
and U be a particular instance of the potential V. Then K is a 2nd order
constant of the motion for the system H/U.

PROOF:
Ky

. H
e

H, —} = —— ({/CQ,U} + {K{, Ho}) =0
Q.E.D.

Corollary 4 Let KC, L be 2nd order constants of the motion for the system
H and let K, L be their respective Stackel transforms determined by the
potential U. If {K,L} =0 then {K,L} = 0.

PROOF: Suppose {K, L} = 0. We have
{K, L} = {Ky, Lo} + ({2, Lo} + {Ko, L2}) =0

where the first term on the right is of order 3 and the second term is of order
1. Thus
{’C27£2} = {’C27£0} + {}COWCQ} = 0.

Then, a straightforward computation yields
= 5 H
{K, L} ={K, £} = 7 ({K, L5} +{K7, £2}) = 0.
Q.E.D.

Corollary 5 Let {IC,L} = 0 be as in Corollary 4 and assume that one
instance of the potential V' is the constant 1, i.e., V(x,bg) = 1. Then if
{K, L} =0 we must have {IC, L} = 0.

PROOF: Suppose {l@, £~} = 0. Then the order 3 and order 1 terms on the
left hand side of this expression must vanish separately:

Kz, £} = 72 ({03, £} + (CF £2) =0, Y

{Ka, Lo} + {Ko, L1} — g ({/Cz,ﬁg}—i-{lcg,ﬁz}) =0, (8)

Identity (7) says that
{K2, Lo} = HoX (9)

9



where X = & ({Ko, £§} +{KY, L2}). Since K, £, are 2nd order Killing
tensors of Hy, it follows easily from the Jacobi relation for the Poisson bracket
that A" is a Killing vector. From identity (8) we obtain the result

{K,LY+HX ={K,L}=0. (10)

Taking the Poisson bracket of the left hand side of this last identity with H
we see that X is a first order constant of the motion for system H. From (8)
we have

1 1
for any nonzero choice of potential V. Choosing V' =1 we find
X = {Ky, Lo} + {Ko, L2} (11)

From relation (6) with V' = 1 we have {Cy, 1} + {K}, Ho} = 0 s0 {K}, Ho} =
0. Since the metric is nondegenerate, this implies that K} = ¢;, a constant.
Similarly, £} = ¢, is constant. Thus (11) implies X = 0, which together with
(10) implies {K, L} = 0. Q.E.D.

An alternate way of proving Corollary 5 is to demonstrate that there is an
“inverse” Stéackel transform that takes the system H/U to H via the special
potential 1/U. The outcome of applying the initial transform to a 2nd order
constant of the motion K of H and then transforming back is K — KL H,
where K} is a constant. If each 2nd order symmetry K is normalized by the
requirement K} = 0, (by adding a suitable constant) then this action is the
identity operator.

These results show that the Stéckel transform takes 2nd order superin-
tegrable systems to 2nd order superintegrable systems, preserves variable
separability, and is invertible. As stated in this generality for second order
symmetries, the Stackel transform is not a special case of coupling constant
metamorphosis, although the two transforms are closely related. However in
the situation where the potential functions V' (x, b) form a finite dimensional
vector space, which is usual in the study of 2nd order superintegrability, then
the transforms coincide. In this case, by redefining parameters if necessary,
we can assume V is linear in b.

Now we will investigate extensions of the Stéackel transform to higher
order constants of the motion, under the assumption that V(x,b) is linear
in b = (b, b1, byr), U is of the form U(x) = V(x,b") and the potentials
V(x,b) span a space of dimension M + 1. In particular,

V(x,b) = by + i U9 (x)b; (12)

=1

10



where the set of functions {1, UM (x),--- ,U™M)(x)} is linearly independent.
In the study of 2nd order superintegrability, typically the 2nd order constants
of the motion are linear in the b and the algebra generated by these sym-
metries via products and commutators has the property that a constant of
the motion of order N depends polynomially on the parameters with order
< [N/2]. Thus we consider only those higher order constants of the motion

of order N of the form
[V/2]

K=Y Ky_o(p.b) (13)
=0
where ICN_Qj(CLp, b) = aN_2jICN_2j(p, b) and ICN_Qj(p, (lb) = CLjICN_Qj(p, b)
for any parameter a. Let K(b) be such an Nth order constant of the motion.
Then
K(a) = K(p,b+ ab®) (14)
is an Nth order constant of the motion for the system with Hamiltonian

Ho + V(x,b) + aU(x). Applying Theorem 1 we have

Theorem 4 Let K be an Nth order constant of the motion for the system
Ho + V(x,b) where V' is of the form (12) and K is of the form (13). Let
K(«) be defined by (14). Then

[N/2]

~ Ho + V(x,b)
/C=IC( “—) ZICN 2 (P, b

is an Nth order constant of the motion for the system (Ho+ V(x,b))/U(x),
where

’CN 2](a'p7 b) N 2JICN 27 (pv b)v K:N—Qj(p7 ab) = ajK:N—Qj(p7b) (15)
for any parameter a.

Example 3 This example of a 4th order superintegrable system is taken
from [9] and corresponds to the choice k = 2 for the potential V = Ar? +
B/r? cos®(kt) + C/r?sin*(kt) for suitable A, B,C, as written in polar coordi-
nates. The structure relations and transform are new. Let

(151 + x2) 1 6(37% + x%)
(27 — 23)? riTs

There are two basic constants of the motion, one of 2nd order,

H=pi+p;+alzl+23)+0b

x2r2 (xf + x3)
’C — o 2 4b 142 1 2
2 = (T1p2 — Tap1)” + (JJ% — x%)g x%x%

11



and one of 4th order,

2 .9
K= (p3 —p3)* + [2a27 + 2b <I1 + a:22) — ZC(xl mQ)] 2

(21 — 23)? R
1% +x T3
+[—daz Ty + SbW]pIPQ + [2a23 + 2b (232 xz)) BPAC pe 2)]pg
1 2 1 2 122
b2 2 2)2 2,2 b
+aP (1} — 23)* + ——— + EICtndi 1 - fz) +8ab— 2 9
(21 — 23) L1T9 (2% — 23) L1To

These constants of the motion generate a closed Poisson algebra. Let R =
{Ks, K4}. The relations are

{Ka, R} = 32(H?—2K4) KCo—64(b+2¢) K4 +64(b—c)H?—128abIC; —128ab(b+-2c¢),

{4, R} = 324 (Ky — H?) + 128akCyH? — 384a”KC5 + 128abKy — 64(b+ 4c)aH?
+256a*(2¢ — b)KCy + 128a*(b? + 40¢* + 20bc)

There is a Casimir constraint

R? = 64K oI, (H?—Ky) —64bH* +128(b—c) Ky H? —64(b+2¢) K2 —128aK2H> +

256a° K5 — 256abKokCy +128a(b+4c)H* Ky + 256a* (b — ¢) K5 — 256ab(b+2¢) K4

+256a(Tbc+b*—2¢*)H? —256a° (b°+4c*+20bc) Ko —256a% (2c+b) (b +16bc—4c?).

Then the Stdckel transformed system

T x x $2
i p1+p2+a(x1+a:2)+b 1+$2))—|-C( 1%;%2)—1—61

(a3 +23) + BEES + 052 4 D
15 also superintegrable with 4th and 2nd order genemtmg constants of the
motion. Note that for B = C =0, D = 4, the transformed system is defined
on a Darboux space of type 3, whereas if B=D =0, C =1 the transformed
system is defined on a Darbouzx space of type 2, [2].

5 2D quantum symmetries

Here we begin the study of quantum symmetries. The quantization is much
simpler in the 2D case than for dimensions greater than 2, and for 1st and 2nd
order symmetries, so we begin with these special cases to gain insight. Here
the metric, expressed in Cartesian-like coordinates, is ds* = \(x)(dz? + dz3),
and the Hamiltonian system H = (p? + p3)/A\(x) + V(x) is replaced by the
Hamiltonian (Schrédinger) operator with potential

H= ﬁ(@n 1 ) + V(x). (16)

12



5.1 2nd order operator symmetries

A 2nd order symmetry of the Hamiltonian system K = Zk] LA™ (X)prp; +
W (x), with a® = a’*, corresponds to the operator

2
)\L Z 1(x)0;) + W(x), " =a"

These operators are formally self-adjoint with respect to the bilinear product

< f,g>\= /f(x)g(x))\(x)dxlde
on the manifold, i.e.,
<[ Hg>=<Hf g>\ <[ Kg>=<Kfg>,

for all local C* functions f, g with compact support on the manifold, where
the domain of integration is C? or R2. If the functions defining a differential
operator are singular on a 1-dimensional or O-dimensional set, we we restrict
the support of f, g to be bounded away from this set. We define the formal
adjoint 7™ of a linear operator 7" on the space C§° by

<T*f,g>\=< f,Tg >\ (17)

for all f,g € Cg°. The operators H, K are formally self-adjoint: H* =
H K*=K.

If the Schrodinger equation admits a multiplicative separable solution in
particular coordinates x1,xo then the Schrodinger operator can be written

as
1

XD (xy) + X@(24) (
where the 2nd order symmetry responsible for the separation is

1
= (2) v (D)
he XW(z1) + XO(xy) (X (22)00 = X P (21022 (19)

+ XO(z) VI (zy) — XD (21) V) (0)) .

Thus the metric is A(x) = XM () + X@(z,) and the potential is V(x) =
(VO (@) + VO (22))/(XD(z1) + X ().

A 1st order symmetry of the Hamiltonian system £ = S a_ a*(x)px
corresponds to the operator

1= 3 (itpn + 20D,

13

H =

811 + 822 -+ V(l)(l'l) + V(Q) (CCQ)) (18)




It is easy to show that L is formally skew-adjoint, i.e., L* = —L.
The following results that relate the operator commutator [A, B] = AB —
BA and the Poisson bracket are straightforward to verify.

Lemma 1
{H,K} =0 < [H,K]=0.

This result is not generally true for higher dimensional manifolds.

Lemma 2

(H.L}=0 < [H L] =0

The classical Stackel transform for these systems can easily be extended to
the operator case. Suppose V is a parametrized potential and let U be a
special instance of that potential. Let K = + Y 8;(Aa"0;) + W = K, + K,
where Ky = W, be a 2nd order formally self-adjoint symmetry operator of
H and K\ be the restriction of Ky to V = U. Then

K=K-KJU'H

is the corresponding formally self-adjoint symmetry operator of H = U~ H,
with respect to the metric ds? = U\ (dx?+dx3). Here the order of operators in
a product is important and a function represents the operation of multiplying
on the left by that function.

Theorem 5 1. o
H,K]=0 < [H,K|=0.

. 1 W WyV
K—Zm@((aj—éjU—K)UA)ajJr(W— 5 )

PROOQF:

1. This is a straightforward verification, using the identities
[Ho, K3) =0, [Ho+V,Ky+ Ko =0, [Hy+U Ky+KJ]=0, (20)

[A,BC] = B[A,C] +[A,BlC, [AU ' =-U"'AUU?

for linear operators A, B, C' and nonzero function U.

2. This follows from the fact that 9;KY = ;WY = X Zj a9,U.

14



Q.E.D.

Note that the second part of the theorem shows that K is indeed for-
mally self-adjoint on the manifold with metric UX(dz? + dz3). Another way
to see this is to use the formal definition of adjoint. With respect to the
inner product on the space with weight function U\ we have < f, g >y =<
fiUg>x=<Uf,g >\ Thus

< Kf,g>n=< (UK -UKYUTH)f,g >\=< f,(KU — HK{)g >\

=< f,(U'KU —U*HKY)g >u» .

This shows that K* = U"'KU — U 'HKY = K, where the final equality
follows directly from identities (20).

Corollary 6 If KW K® are 2nd order symmetry operators for H, then
(KW KP) =0 «— KW, K®] =0.

Since one can always add a constant to a potential, it follows that 1 JU
defines an inverse Stackel transform of H to H.

5.2 3rd order operator symmetries
A classical 3rd order symmetry takes the form K = K3 + K; where

2

2
Ks= Y d""(®pppi, Ki=)_ bv'pe.
=1

k,3,i=1

The conditions {3, Ho} = 0 are

207 = —3((InA)ia™ + (InA);a?") | i # j (21)
3al" +a" = —3((InA)a + (In\);a), i
2 (aim - a%m) = —(In))a'® — (InM)a''t — (InX)2a®*? — (In \)ga''?,

which are just the requirements that the a*/* be the components of a 3rd
order Killing tensor. The conditions {3, V'} + {K1, Ho} = 0 are

2
bh+ b =3 AV, (22)

s=1

2

2
3 ~ 1

i s s s
bj_§§:1m”vs_§§ (InX\)b%, j=1,2,

s=1
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and the condition {/C;,V} =0is

> BV, =0. (23)

Now let’s consider a 3rd order operator symmetry K that is skew-adjoint.
The detailed conditions [K, H] = 0 are complicated. However, we will re-
strict ourselves to systems with potentials that simultaneously admit a 3rd
order classical symmetry and the related 3rd order quantum symmetry. A
characteristic feature of such systems, and one that we will exploit, is that if
U is such a potential then so is aU for all scalars a.. If K is the classical sym-
metry then we can write the operator symmetry in the form K = K} + K]
where Kj, K| are skew-adjoint of respective orders 3 and 1,

2

) 3 1.
K; = Z (akﬂ@kﬂ + ﬁ(akﬂ)‘)iakj + ﬁ(akﬂ)\)ka‘ai> J
k,j,i=1

2
) 1 .
K=Y (BZ@- + ﬁ(B’)\)Z-) ,

i=1
and the terms a7 satisfy (21).

Now replace V by aU. Then the symmetry condition is [K («), Hy+aU] =
0 for all @ where K = Kj + K/{(«a). We assume that K(«) is analytic in «
about a = 0. Then, K, is independent of a and the dependence of K{ on « is
at most 1st order. Thus we can write B'(a) = ¢’ +ab’ or K|(a) = K] +akK].
The symmetry condition can be written as

0=[K;+ KY +aKy, Hy+ aU]|
= [Kg + K, Ho] + o([K3 + K, U] + [Ky, Ho]) + o[, U],
for all a. Setting K5 = K3 + K| we have the identities
(K3, Hol =0, [K3, U]+ [Ky, Ho] =0, [K;,U]=0. (24)

Note that the 2nd order terms in the 2nd identity are precisely the classical
conditions (22). The 3rd identity is precisely the classical condition (23).
The operator K/ determines the transition from the classical constant of the
motion to the operator symmetry. Now define

K = K3 — KU Y(Hy +b),

where the operator order is important and b is a constant.. A straightforward
computation using identities, (24) yields [K,U!(Hy +b)] = 0, so K is a 3rd
symmetry operator for the Hamiltonian U~!(Hy + b).

16



Theorem 6 Let H(o) = Hy + aU, let K(«) be a 3rd order skew-adjoint
symmetry of H, analytic in o about o = 0. Then there are 1st and 3rd order
skew-adjoint operators Ky, K3 such that K(a) = K3 + aK; and identities
(24) are satisfied. The operator K = Ky — KVU Y(Hy + b) is a 3rd order
symmetry for the system H = U™ (Hy+0).

Corollary 7 K* = —K so K is a 3rd order formally skew-adjoint symmetry
of H.

PROOF: This is a consequence of K* = —K, H* = H and relations (24).
Q.E.D.

Note: The preceding argument has to be modified in the special case that
the system admits a 1st order a-independent symmetry L: [L, H(a)] = 0.
Then K{(a) need not be at most 1st order as a polynomial in a. Indeed we
can add a term f(a)L to K| without changing the commutation relations.
However, the conclusion (24) remains correct.

Example 4 (The 9-1 anisotropic oscillator) Let H(a) = 011 + Ogg + (922 +
x3). This is a superintegrable system with generating 2nd and 3rd order
symmetries

L:&n+aﬁ,<K:{m@—xﬁb@ﬁ+€ghﬁa}—%¢w;@ﬂ,

where {Sy, S} = 815y + 5251, Let U = (923 + 23) + c. It follows that the

system
~ 1
H=——-—(0 0 b
GaT v ) o n ot

15 superintegrable with one 2nd and one 3rd order symmetry.

5.3 4th order operator symmetries

Next we consider the case of a 4th order constant of the motion

2

2
K= Z aékﬂ(x)pzpkpjer Z ™ (X)pmpg+W (x) = Ks+ Ko+ Ko, (25)

Zak»j»izl qu:]-

17



This must satisfy the conditions

2
aii = 9 Z i (In \), (26)
s=1
ceee 2
4a§m + a;‘;‘u‘ _ —6Za5iij(ln )\)S’ i1+ ]
s=1
3+ 207 = =) 0", =3) @A), iAj (20)
s=1 s=1
.. 2 2
267 + b = 6N aV, =D bY(In ), i (28)
s=1 s=1

2 2
B =200 a* iV, = bY(In ),
s=1 s=1
and

2
A 0V, =W (29)
s=1
Note that the a®*7? is a 4th order Killing tensor. o
If K is a 4th order symmetry operator, there exist functions a4, b W
such that K has the unique self-adjoint form

2 2
1 B 1 ~. . ~
K= Z Xaij (CLZkﬂ)\akz) + Z Xaz‘ <b”/\(9j> +W = K+ K5 + K, (30)

Lk,ji=1 1,j=1

where the functions b (1, z5), W (1, 22) contain the parameter dependence.
Equating coefficients of the 5th derivative terms in the operator condition
[K, H] = 0 we obtain exactly the Killing tensor conditions (26).

The remaining conditions on K intertwine \, a®*7?, b/t W and V, and are
complicated. Rather than solve them directly, we use the fact that the system
with potential o' must be solvable for all «, and require that the symmetry
K(a) is analytic in a about a@ = 0. The following argument for the form of
K is correct, up to addition of operators f(«)Ls or g(a) where Ly is a 2nd
order self-adjoint a-independent symmetry operator. Modulo this remark,
K{(«) must be at most a 1st order polynomial in o and K{ () must be at
most quadratic. We can make the unique decomposition

bi(x) = di(x) + abii(x)
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W =UO(x) + oUWV (x) + *W(x).

Substituting into [K(«), Hy+ aU] = 0 and equating the 3rd derivative terms
that are linear in o, we get exactly conditions (28) Equating the coefficients
of the Oth derivative terms that are quadratic in a we get exactly conditions
(29).

Now we write K}(a) = Ay + aBs,, K{(a) = Ay + aBy + o*Cy. Tt follows
that

(K4, Hol =0, [K4, U]+ [Ky, Hol =0, [Ks, U]+ Ko, Ho] =0, (31)
where
K=Ki+ Ky+ Ky, Ky=K,+Ay+ Ay, Ky=By+ By, Ky=C.
Now define
K = K, — KU (Hy +b) + Ko (U™ (Ho + 1)),

where the operator order is important. A straightforward computation using
identities, (31) yields [K,U~!(Hy+b)] = 0. Thus K is a 4th order symmetry
operator for the Hamiltonian U~!(Hy + b).

Theorem 7 Let H(a) = Hy + aU, let K(a) be a 4th order self-adjoint
symmetry of H(«), analytic at o« = 0. Then there are 0th, 2nd and 4th
order self-adjoint operators Ko, Ko, Ky such that K(a) = K4 + aKy + o* K
and identities (31) are satisfied. The operator K = K, — KoU ' (Hy + b) +
Ko(U Y (Hy+b))? is a 4th order symmetry for the system H = U~*(Hy+b).

Corollary 8 K* =K so K is a 4th order formally self-adjoint symmetry of
H.

Example 5 This is an extension of Example 8 to the quantum case, [9]. Let

(x3 +23) (24 23)

H:611+822—|—a(x2+x2)+b
R C vtas

There are two basic self-adjoint symmetry operators, one of 2nd order,

27l (z7 + x3)
Ky = (2105 — 2201)* + 4b L= L
2= (210 — 2200)" + (22 — x — 22)2 te 313
and one of 4th order,
(27 + 25) (xF — a3)
K4 = 811 — 822 2 -+ 2&.%'2 + 2b — 2c 811
e
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+ 2 .2
( -T11U2) (-T1 932) +2c($12 ;72)]322

+[—4dar 29 + 8b——F—
( Ty — x%)2 T1Ts
4c
3
1

]812 —|— [2&562 —|— 2b

4c 2/.2 212 b
T )81 + (2&%’2 - x—%)aQ +a (l‘l - ZE2) + m
2 — 22)? 32 be 1 1
L2ln n 42) + 8ab—5 2 4+ 2—— + 6c(— + —).
L1Ly (1 — 23) L1L3 Ty I
These operators generate a closed symmetry algebra. Let R = [Ky, K4]. The
relations are

+(2ax; —

[Ky, R] = 32H?*Ky — 32{ Ky, Ky} — 64(b+ 2c + 4) K4 + 64(b — ¢ + 2) H?

—128a(b+ 1)K, — 128a(b® 4 2bc + 4b + 6¢ + 4),
[K4, R] = 32K —32H? K4 +128a K, H*—384a” K3 +128a(b+1) Ky —64a(b+4c+6) H?
+256a°(2¢c — b + 14) Ky + 128a*(b* + 4¢® 4 20bc + 18b + 8c — 8)
There is also the Casimir operator

32 2816 2816
R? = 32H*{Cy, 02}_3{01; Cs, 02}—(64ﬁ+1287+7)022+(128(ﬁ—7)+—

2 VH?C,

128
—(192+643) H*—128aH*C?—128a/(3+1){C1, Cz}+?a(127+35+50)H201+256aCf
256 , 256
—?a(44ﬁ—|—44+18’y+3ﬁ +637)Cy—2560%(27—346)C? +?a(42+22'y+40ﬁ
256
+33% — 672 4+ 215y)H? — 7a2(152»y — 88 + 1823 + 33% + 124% + 6037)C

256
+—=- (28072 — 803% 4 24~° + 3207y + 483 — 43~y — 843~* — 54y 3% — 33% +28).

Then the Stdckel transformed system

1

H = + (+
(x1+x2)+B””1;”2 Cm ””2 +D

(811 + 622+

2 2
FETPACEE. BRGS0y

(2F — 23)? iz
is also superintegrable with 4th and 2nd order generating self-adjoint sym-
metries. (Actually, we have here proved only that the transformed system is

superintegrable for a = b = c =0, but the more general case will follow from
Theorem 8.)
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5.4 Nth order operator symmetries

A possible structure of the Nth order operator case is now clear, though it is
far from clear whether the structure includes all cases. Suppose the system
H(a) = Hy+V+aU = H+aU admits a truly Nth order symmetry operator
K(a) analytic in o about a = 0, where N > 2 and K is self-adjoint for even
N, skew-adjoint for odd N. Then we can write

[n/2]
K(a) = Ky + Z Kfv_zj(a)

J=1

where each K} _,; is self-adjoint or skew-adjoint, depending on the parity of
N. The symmetry condition is
(N/2]

K+ Y Ky gi(a), H+aU] =0, (32)

Jj=1

where the K}y ,:(a) are analytic in a. Suppose, modulo terms of the form
f@(a)Ly_gj where L,,_,; is an a-independent symmetry of H+aU for j > 0,
we have

J
K;\fij :ZAS\Z/)—QJ'O{Z? J=0,1,--- 7[N/2]
1=0

where the A%)_Zj are independent of a. Setting Kn_o; = zgi\fo_% /2] A%)_z i on

we have K = ZEZ{E] Kn_; and the symmetry condition (32) becomes

N
) o/ Ky_pj, H+al] =0, (33)
=0
or
[Kn—2j, Ul + [Kn—2j—2,H] =0, j=0,1,---,[N/2], (34)
where we define Ky_o; =0 for j > [N/2] and j < 0.
Now define
v )
K= (-1)"Ky_o (U (H+D))",
h=0

where b is a constant. From relations (34) we have

[N/2]
KU N H+0)] =Y (~)" [ Kyon, U H +0)] (UH +1))" = (35)

h=0
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[N/2]
U™ ([Ky—on, UN(=1)" (U (H + )" + [Ky_on, HI(—1)" (U (H +b))")

[N/2]
=U! Z(‘l)h ([En-ont2, Ul + [KN_op, H]) (UTH(H +b))" = 0.
Thus [K, H] = 0.

Theorem 8 Let H(a) = Hy+V +aU = H+aU and N > 2. Let K(«)
be a nonzero Nth order operator symmetry of H(«) analytic at o = 0, self-
adjoint for even N and skew-adjoint for odd N. Suppose further there are
operators Kn_o; such that K (o) = ZEZ{)Q] Kn_2j0 and identities (33), (34)
are satisfied. Then the operator K = Zﬂ/OQ}(—l)hKN,gh(U_l(H+b))h is an
Nth order symmetry for the system H = U Y (H +0).

Corollary 9 Let K(«a) L(«) be Nth and Mth order operator symmetries,
respectively, of H(a), each satisfying the conditions of Theorem 8. Then

[L,K] =L, K], LK =LK.

Example 6 (The 9-1 anisotropic oscillator) This is a generalization of Fx-
ample 4 to a full Stickel transform. Let H(0) = 011 + Osg + a(92% + 23) and
L be as in Example 4 with o replaced by a + o, and U = (922 + 23) +c. It
follows that the system

1

H=— -
(9x%+x§)+c(

O11 + O + a(9x2 + 92) + b))

1s superintegrable with one 2nd and one 3rd order symmetry.

Note that Theorem 8 does not require that the quantum system go to a
classical system, only that a scalable potential term can be split off. Thus it
applies to “hybrid” quantum systems that have a classical part.

Example 7 (The hybrid 9-1 anisotropic oscillator) Let H(0) = 011 + Oag +
a(923 +x3) —2/x3. This is a superintegrable system with generating 2nd and
3rd order symmetries,

a 1 1
L= 822+aa:§, K= {27182—33281, 822}+{§£E§+x—, 81}—{3$1(CL1‘%+?), 82}
2 2

Note that this system does not have a classical limit. [Using a different nor-
malization that makes clear the classical limit, Gravel writes this Hamiltonian
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as H(0) = —(h?/2)(011 + O) + a(92% + 23) + k% /23.] Let U = (923 +23) +c.
It follows that the system

. 1 2
H = (91’% +x%) P <811 +322+CL<9$% +$g) — l’_% +b>

15 superintegrable with one 2nd and one 3rd order symmetry.

Example 8 (A translated hybrid 9-1 anisotropic oscillator) This is a slight
modification of Ezample 7. Let H(0) = 011 + Oa + a(923 + 23) + cxy —
2/x3. This is a superintegrable system with generating 2nd and 3rd order
symmetries, and no classical limit. Let U = x1. It follows that the system

. 1 2
H=— (011+822+a(9a:§+x§)+cx1 - —2+b)
T )
15 superintegrable with one 2nd and one 3rd order symmetry. This space is a
Darbouz space of type 1, [2].

Example 9 Let H(0) = 011 + 0w + a/x3 — 2/x3. This is a superintegrable
system with two linearly independent 2nd and three linearly independent 3rd
order symmetries, [4]. This system does not have a classical limit. [Using a
different normalization that makes clear the classical limit, Gravel writes this
Hamiltonian as H(0) = —(h?/2) (011 +0s2)+a/xi +h*/23.] Let U = 1/x3 +c.
It follows that the system

~ :L'2 a 2
T=—" 0y +0m+2 -2 10
1—|—C$%<11+ 22+x% $§+)

15 superintegrable with with two linearly independent 2nd and three linearly
independent 3rd order symmetries. In the case ¢ = 0 this is a superintegrable
system on a space of nonzero constant curvature. Indeed, for xq,xo real, it
is the upper half space metric of non-Fuclidean geometry.

In the operator case where V' = 0 in Theorem 8 there is always a corre-
sponding classical system. Indeed, equations (33) and (34) clarify the close
relationship between symmetries of quantum systems with potentials invari-
ant under scaling and classical constants of the motion. If we set a = 1/h?,
V' =0 in (33) we can rewrite this expression as

[N/2) A
[Z hN_2]KN_2j, h2H0 + U] - 0

J=0
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Further if we write the differential terms in the operators Ky_s; as

Kn_9j = g atNT2 ;- Oy, + lower order terms,
is=1,2

we can associate these operators with the phase space functions

_ i1 2
Kn—2;(x,p) = E a IDiy  Din oy
ii=1,2

Then by equating coefficients of the highest order derivative terms in equa-
tions (34) we obtain the Poisson bracket relations

{Kn—2;, U} +{Kn—2j-2,Ho} =0, j=0,1,---,[N/2], (36)

so that I = ZEZ/OQ} Kn—2; is an Nth order constant of the motion for the
system with Hamiltonian H = Hy + U.

6 Conclusions and outlook

We have found specializations of classical CCM that preserve the order of
symmetries and determine symmetry algebra homomorphisms, and for 2D
manifolds we have extended them to the quantum case. Generally speaking,
these transforms apply to systems with a nonconstant potential that admits
scaling in at least one parameter. They do not apply to quantum systems
with no classical counterpart in which the potential is fixed. This tool makes
it clear that superintegrable systems occur for a wide variety of manifolds,
not just on constant curvature spaces. For 2nd order superintegrable systems
the Stackel transform has been used effectively in 2D to show that all such
systems are transforms of systems on constant curvature spaces, and this
has lead to an elegant classification of all such systems. It is our aim to
develop CCM to investigate the possibility of a similar classification for 3rd
and higher order superintegrable systems.

For simplicity, we have restricted our quantum constructions to 2D man-
ifolds though some partial results hold in n dimensions. There appears to
be no insurmountable barrier to extending these results to 3D and higher
conformally flat manifolds, but the details have not yet been worked out.
Clearly gauge transformations are required and the gauge will be a function
of the scalar curvature of the manifold.
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