
Chapter 1

The Fourier Transform

1.1 Fourier transforms as integrals

There are several ways to define the Fourier transform of a function f : R→
C. In this section, we define it using an integral representation and state
some basic uniqueness and inversion properties, without proof. Thereafter,
we will consider the transform as being defined as a suitable limit of Fourier
series, and will prove the results stated here.

Definition 1 Let f : R→ R. The Fourier transform of f ∈ L1(R), denoted
by F [f ](.), is given by the integral:

F [f ](x) :=
1√
2π

∫ ∞
−∞

f(t) exp(−ixt)dt

for x ∈ R for which the integral exists. ∗

We have the Dirichlet condition for inversion of Fourier integrals.

Theorem 1 Let f : R → R. Suppose that (1)
∫∞
−∞ |f | dt converges and (2)

in any finite interval, f ,f ′ are piecewise continuous with at most finitely many
maxima/minima/discontinuities. Let F = F [f ]. Then if f is continuous at
t ∈ R, we have

f(t) =
1√
2π

∫ ∞
−∞

F (x) exp(itx)dx.

∗This definition also makes sense for complex valued f but we stick here to real valued
f
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Moreover, if f is discontinuous at t ∈ R and f(t+ 0) and f(t−0) denote the
right and left limits of f at t, then

1

2
[f(t+ 0) + f(t− 0)] =

1√
2π

∫ ∞
∞

F (x) exp(itx)dx.

From the above, we deduce a uniqueness result:

Theorem 2 Let f, g : R→ R be continuous, f ′, g′ piecewise continuous. If

F [f ](x) = F [g](x), ∀x

then
f(t) = g(t), ∀t.

Proof: We have from inversion, easily that

f(t) =
1√
2π

∫ ∞
−∞
F [f ](x) exp(itx)dx

=
1√
2π

∫ ∞
−∞
F [g](x) exp(itx)dx

= g(t).

2

Example 1 Find the Fourier transform of f(t) = exp(−|t|) and hence using

inversion, deduce that
∫∞

0
dx

1+x2 = π
2

and
∫∞

0
x sin(xt)

1+x2 dx = π exp(−t)
2

, t > 0.

Solution We write

F (x) =
1√
2π

∫ ∞
−∞

f(t) exp(−ixt)dt

=
1√
2π

[∫ 0

−∞
exp(t(1− ix))dt+

∫ ∞
0

exp(−t(1 + ix))

]
=

√
2

π

1

1 + x2
.

Now by the inversion formula,

exp(−|t|) =
1√
2π

∫ ∞
−∞

F (x) exp(ixt)dx

=
1

π

[∫ ∞
0

exp(ixt) + exp(−ixt)
1 + x2

dt

]
=

2

π

∫ ∞
0

cos(xt)

1 + x2
dx.
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Now this formula holds at t = 0, so substituting t = 0 into the above gives
the first required identity. Differentiating with respect to t as we may for
t > 0, gives the second required identity. 2.

Proceeding in a similar way as the above example, we can easily show
that

F [exp(−1

2
t2)](x) = exp(−1

2
x2), x ∈ R.

We will discuss this example in more detail later in this chapter.
We will also show that we can reinterpret Definition 1 to obtain the

Fourier transform of any complex valued f ∈ L2(R), and that the Fourier
transform is unitary on this space:

Theorem 3 If f, g ∈ L2(R) then F [f ],F [g] ∈ L2(R) and∫ ∞
−∞

f(t)g(t) dt =

∫ ∞
−∞
F [f ](x)F [g](x) dx.

This is a result of fundamental importance for applications in signal process-
ing.

1.2 The transform as a limit of Fourier series

We start by constructing the Fourier series (complex form) for functions on
an interval [−πL, πL]. The ON basis functions are

en(t) =
1√
2πL

e
int
L , n = 0,±1, · · · ,

and a sufficiently smooth function f of period 2πL can be expanded as

f(t) =
∞∑

n=−∞

(
1

2πL

∫ πL

−πL
f(x)e−

inx
L dx

)
e
int
L .

For purposes of motivation let us abandon periodicity and think of the func-
tions f as differentiable everywhere, vanishing at t = ±πL and identically
zero outside [−πL, πL]. We rewrite this as

f(t) =
∞∑

n=−∞

e
int
L

1

2πL
f̂(
n

L
)

which looks like a Riemann sum approximation to the integral

f(t) =
1

2π

∫ ∞
−∞

f̂(λ)eiλtdλ (1.2.1)
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to which it would converge as L → ∞. (Indeed, we are partitioning the λ
interval [−L,L] into 2L subintervals, each with partition width 1/L.) Here,

f̂(λ) =

∫ ∞
−∞

f(t)e−iλtdt. (1.2.2)

Similarly the Parseval formula for f on [−πL, πL],∫ πL

−πL
|f(t)|2dt =

∞∑
n=−∞

1

2πL
|f̂(

n

L
)|2

goes in the limit as L→∞ to the Plancherel identity

2π

∫ ∞
−∞
|f(t)|2dt =

∫ ∞
−∞
|f̂(λ)|2dλ. (1.2.3)

Expression (1.2.2) is called the Fourier integral or Fourier transform of f .
Expression (1.2.1) is called the inverse Fourier integral for f . The Plancherel
identity suggests that the Fourier transform is a one-to-one norm preserving
map of the Hilbert space L2[−∞,∞] onto itself (or to another copy of it-
self). We shall show that this is the case. Furthermore we shall show that
the pointwise convergence properties of the inverse Fourier transform are
somewhat similar to those of the Fourier series. Although we could make
a rigorous justification of the the steps in the Riemann sum approximation
above, we will follow a different course and treat the convergence in the mean
and pointwise convergence issues separately.

A second notation that we shall use is

F [f ](λ) =
1√
2π

∫ ∞
−∞

f(t)e−iλtdt =
1√
2π
f̂(λ) (1.2.4)

F∗[g](t) =
1√
2π

∫ ∞
−∞

g(λ)eiλtdλ (1.2.5)

Note that, formally, F∗[f̂ ](t) =
√

2πf(t). The first notation is used more
often in the engineering literature. The second notation makes clear that F
and F∗ are linear operators mapping L2[−∞,∞] onto itself in one view, and
F mapping the signal space onto the frequency space with F∗ mapping the
frequency space onto the signal space in the other view. In this notation the
Plancherel theorem takes the more symmetric form∫ ∞

−∞
|f(t)|2dt =

∫ ∞
−∞
|F [f ](λ)|2dλ.

Examples:

4



1. The box function (or rectangular wave)

Π(t) =


1 if − π < t < π
1
2

if t = ±π
0 otherwise.

(1.2.6)

Then, since Π(t) is an even function and e−iλt = cos(λt) + i sin(λt), we
have

Π̂(λ) =
√

2πF [Π](λ) =

∫ ∞
−∞

Π(t)e−iλtdt =

∫ ∞
−∞

Π(t) cos(λt)dt

=

∫ π

−π
cos(λt)dt =

2 sin(πλ)

λ
= 2π sinc λ.

Thus sinc λ is the Fourier transform of the box function. The inverse
Fourier transform is ∫ ∞

−∞
sinc(λ)eiλtdλ = Π(t), (1.2.7)

as follows from (??). Furthermore, we have∫ ∞
−∞
|Π(t)|2dt = 2π

and ∫ ∞
−∞
| sinc (λ)|2dλ = 1

from (??), so the Plancherel equality is verified in this case. Note
that the inverse Fourier transform converged to the midpoint of the
discontinuity, just as for Fourier series.

2. A truncated cosine wave.

f(t) =


cos 3t if − π < t < π
−1

2
if t = ±π

0 otherwise.

Then, since the cosine is an even function, we have

f̂(λ) =
√

2πF [f ](λ) =

∫ ∞
−∞

f(t)e−iλtdt =

∫ π

−π
cos(3t) cos(λt)dt

=
2λ sin(λπ)

9− λ2
.
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3. A truncated sine wave.

f(t) =

{
sin 3t if − π ≤ t ≤ π

0 otherwise.

Since the sine is an odd function, we have

f̂(λ) =
√

2πF [f ](λ) =

∫ ∞
−∞

f(t)e−iλtdt = −i
∫ π

−π
sin(3t) sin(λt)dt

=
−6i sin(λπ)

9− λ2
.

4. A triangular wave.

f(t) =


1 + t if − 1 ≤ t ≤ 0
−1 if 0 ≤ t ≤ 1
0 otherwise.

(1.2.8)

Then, since f is an even function, we have

f̂(λ) =
√

2πF [f ](λ) =

∫ ∞
−∞

f(t)e−iλtdt = 2

∫ 1

0

(1− t) cos(λt)dt

=
2− 2 cosλ

λ2
.

NOTE: The Fourier transforms of the discontinuous functions above decay
as 1

λ
for |λ| → ∞ whereas the Fourier transforms of the continuous functions

decay as 1
λ2 . The coefficients in the Fourier series of the analogous functions

decay as 1
n
, 1
n2 , respectively, as |n| → ∞.

1.2.1 Properties of the Fourier transform

Recall that

F [f ](λ) =
1√
2π

∫ ∞
−∞

f(t)e−iλtdt =
1√
2π
f̂(λ)

F∗[g](t) =
1√
2π

∫ ∞
−∞

g(λ)eiλtdλ

We list some properties of the Fourier transform that will enable us to build a
repertoire of transforms from a few basic examples. Suppose that f, g belong
to L1[−∞,∞], i.e.,

∫∞
−∞ |f(t)|dt <∞ with a similar statement for g. We can

state the following (whose straightforward proofs are left to the reader):
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1. F and F∗ are linear operators. For a, b ∈ C we have

F [af + bg] = aF [f ] + bF [g], F∗[af + bg] = aF∗[f ] + bF∗[g].

2. Suppose tnf(t) ∈ L1[−∞,∞] for some positive integer n. Then

F [tnf(t)](λ) = in
dn

dλn
{F [f ](λ)}.

3. Suppose λnf(λ) ∈ L1[−∞,∞] for some positive integer n. Then

F∗[λnf(λ)](t) = in
dn

dtn
{F∗[f ](t)}.

4. Suppose the nth derivative f (n)(t) ∈ L1[−∞,∞] and piecewise contin-
uous for some positive integer n, and f and the lower derivatives are
all continuous in (−∞,∞). Then

F [f (n)](λ) = (iλ)nF [f ](λ)}.

5. Suppose nth derivative f (n)(λ) ∈ L1[−∞,∞] for some positive integer
n and piecewise continuous for some positive integer n, and f and the
lower derivatives are all continuous in (−∞,∞). Then

F∗[f (n)](t) = (−it)nF∗[f ](t).

6. The Fourier transform of a translation by real number a is given by

F [f(t− a)](λ) = e−iλaF [f ](λ).

7. The Fourier transform of a scaling by positive number b is given by

F [f(bt)](λ) =
1

b
F [f ](

λ

b
).

8. The Fourier transform of a translated and scaled function is given by

F [f(bt− a)](λ) =
1

b
e−iλa/bF [f ](

λ

b
).

Examples

7



• We want to compute the Fourier transform of the rectangular box func-
tion with support on [c, d]:

R(t) =


1 if c < t < d
1
2

if t = c, d
0 otherwise.

Recall that the box function

Π(t) =


1 if − π < t < π
1
2

if t = ±π
0 otherwise.

has the Fourier transform Π̂(λ) = 2π sinc λ. but we can obtain R from

Π by first translating t→ s = t− (c+d)
2

and then rescaling s→ 2π
d−cs:

R(t) = Π(
2π

d− c
t− πc+ d

d− c
).

R̂(λ) =
4π2

d− c
eiπλ(c+d)/(d−c)sinc(

2πλ

d− c
). (1.2.9)

Furthermore, from (??) we can check that the inverse Fourier transform
of R̂ is R, i.e., F∗(F)R(t) = R(t).

• Consider the truncated sine wave

f(t) =

{
sin 3t if − π ≤ t ≤ π

0 otherwise

with

f̂(λ) =
−6i sin(λπ)

9− λ2
.

Note that the derivative f ′ of f(t) is just 3g(t) (except at 2 points)
where g(t) is the truncated cosine wave

g(t) =


cos 3t if − π < t < π
−1

2
if t = ±π

0 otherwise.

We have computed

ĝ(λ) =
2λ sin(λπ)

9− λ2
.

so 3ĝ(λ) = (iλ)f̂(λ), as predicted.

• Reversing the example above we can differentiate the truncated cosine
wave to get the truncated sine wave. The prediction for the Fourier
transform doesn’t work! Why not?
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1.2.2 Fourier transform of a convolution

The following property of the Fourier transform is of particular importance
in signal processing. Suppose f, g belong to L1[−∞,∞].

Definition 2 The convolution of f and g is the function f ∗ g defined by

(f ∗ g)(t) =

∫ ∞
−∞

f(t− x)g(x)dx.

Note also that (f ∗ g)(t) =
∫∞
−∞ f(x)g(t− x)dx, as can be shown by a change

of variable.

Lemma 1 f ∗ g ∈ L1[−∞,∞] and∫ ∞
−∞
|f ∗ g(t)|dt =

∫ ∞
−∞
|f(x)|dx

∫ ∞
−∞
|g(t)|dt.

Sketch of proof:∫ ∞
−∞
|f ∗ g(t)|dt =

∫ ∞
−∞

(∫ ∞
−∞
|f(x)g(t− x)|dx

)
dt

=

∫ ∞
−∞

(∫ ∞
−∞
|g(t− x)|dt

)
|f(x)|dx =

∫ ∞
−∞
|g(t)|dt

∫ ∞
−∞
|f(x)|dx.

2

Theorem 4 Let h = f ∗ g. Then

ĥ(λ) = f̂(λ)ĝ(λ).

Sketch of proof:

ĥ(λ) =

∫ ∞
−∞

f ∗ g(t)e−iλtdt =

∫ ∞
−∞

(∫ ∞
−∞

f(x)g(t− x)dx

)
e−iλtdt

=

∫ ∞
−∞

f(x)e−iλx
(∫ ∞
−∞

g(t− x)e−iλ(t−x)dt

)
dx =

∫ ∞
−∞

f(x)e−iλxdx ĝ(λ)

= f̂(λ)ĝ(λ).

2
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1.3 L2 convergence of the Fourier transform

In this book our primary interest is in Fourier transforms of functions in
the Hilbert space L2[−∞,∞]. However, the formal definition of the Fourier
integral transform,

F [f ](λ) =
1√
2π

∫ ∞
−∞

f(t)e−iλtdt (1.3.10)

doesn’t make sense for a general f ∈ L2[−∞,∞]. If f ∈ L1[−∞,∞] then f is
absolutely integrable and the integral (1.3.10) converges. However, there are
square integrable functions that are not integrable. (Example: f(t) = 1

1+|t| .)
How do we define the transform for such functions?

We will proceed by defining F on a dense subspace of f ∈ L2[−∞,∞]
where the integral makes sense and then take Cauchy sequences of functions
in the subspace to define F on the closure. Since F preserves inner product,
as we shall show, this simple procedure will be effective.

First some comments on integrals of L2 functions. If f, g ∈ L2[−∞,∞]
then the integral (f, g) =

∫∞
−∞ f(t)g(t)dt necessarily exists, whereas the inte-

gral (1.3.10) may not, because the exponential e−iλt is not an element of L2.
However, the integral of f ∈ L2 over any finite interval, say [−N,N ] does
exist. Indeed for N a positive integer, let χ[−N,N ] be the indicator function
for that interval:

χ[−N,N ](t) =

{
1 if −N ≤ t ≤ N
0 otherwise.

(1.3.11)

Then χ[−N,N ] ∈ L2[−∞,∞] so
∫ N
−N f(t)dt exists because∫ N

−N
|f(t)|dt = |(|f |, χ[−N,N ])| ≤ ||f ||L2 ||χ[−N,N ]||L2 = ||f ||L2

√
2N <∞

Now the space of step functions is dense in L2[−∞,∞], so we can find a
convergent sequence of step functions {sn} such that limn→∞ ||f−sn||L2 = 0.
Note that the sequence of functions {fN = fχ[−N,N ]} converges to f pointwise
as N →∞ and each fN ∈ L2 ∩ L1.

Lemma 2 {fN} is a Cauchy sequence in the norm of L2[−∞,∞] and limn→∞ ||f−
fn||L2 = 0.

Proof: Given ε > 0 there is step function sM such that ||f − sM || < ε
2
.

Choose N so large that the support of sM is contained in [−N,N ], i.e.,
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sM(t)χ[−N,N ](t) = sM(t) for all t. Then ||sM−fN ||2 =
∫ N
−N |sM(t)−f(t)|2dt ≤∫∞

−∞ |sM(t)− f(t)|2dt = ||sM − f ||2, so

||f−fN ||−||(f−sM)+(sM−fN)|| ≤ ||f−sM ||+||sM−fN || ≤ 2||f−sM || < ε.

2

Here we will study the linear mapping F : L2[−∞,∞]→ L̂2[−∞,∞] from
the signal space to the frequency space. We will show that the mapping is
unitary, i.e., it preserves the inner product and is 1-1 and onto. Moreover,
the map F∗ : L̂2[−∞,∞]→ L2[−∞,∞] is also a unitary mapping and is the
inverse of F :

F∗F = IL2 , FF∗ = IL̂2

where IL2 , IL̂2 are the identity operators on L2 and L̂2, respectively. We
know that the space of step functions is dense in L2. Hence to show that
F preserves inner product, it is enough to verify this fact for step functions
and then go to the limit. Once we have done this, we can define Ff for any
f ∈ L2[−∞,∞]. Indeed, if {sn} is a Cauchy sequence of step functions such
that limn→∞ ||f − sn||L2 = 0, then {Fsn} is also a Cauchy sequence (indeed,
||sn− sm|| = ||Fsn−Fsm||) so we can define Ff by Ff = limn→∞Fsn. The
standard methods of Section 1.3 show that Ff is uniquely defined by this
construction. Now the truncated functions fN have Fourier transforms given
by the convergent integrals

F [fN ](λ) =
1√
2π

∫ N

−N
f(t)e−iλtdt

and limN→∞ ||f − fN ||L2 = 0. Since F preserves inner product we have
||Ff−FfN ||L2 = ||F(f−fN)||L2 = ||f−fN ||L2 , so limN→∞ ||Ff−FfN ||L2 =
0. We write

F [f ](λ) = l.i.m.N→∞F [fN ](λ) =
1√
2π

∫ N

−N
f(t)e−iλtdt

where ‘l.i.m.’ indicates that the convergence is in the mean (Hilbert space)
sense, rather than pointwise.

We have already shown that the Fourier transform of the rectangular box
function with support on [c, d]:

Rc,d(t) =


1 if c < t < d
1
2

if t = c, d
0 otherwise.

is

F [Rc,d](λ) =
4π2

√
2π(d− c)

eiπλ(c+d)/(d−c)sinc(
2πλ

d− c
).
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and that F∗(F)Rc,d(t) = Rc,d(t). (Since here we are concerned only with
convergence in the mean the value of a step function at a particular point
is immaterial. Hence for this discussion we can ignore such niceties as the
values of step functions at the points of their jump discontinuities.)

Lemma 3
(Ra,b, Rc,d)L2 = (FRa,b,FRc,d)L̂2

for all real numbers a ≤ b and c ≤ d.

Proof:

(FRa,b,FRc,d)L̂2 =

∫ ∞
−∞
F [Ra,b](λ)F [Rc,d](λ)dλ

= lim
N→∞

∫ N

−N

(
F [Ra,b](λ)

∫ d

c

eiλt√
2π
dt

)
dλ

= lim
N→∞

∫ d

c

(∫ N

−N
F [Ra,b](λ)

eiλt√
2π
dλ

)
dt.

Now the inside integral is converging to Ra,b as N →∞ in both the pointwise
and L2 sense, as we have shown. Thus

(FRa,b,FRc,d)L̂2 =

∫ d

c

Ra,bdt = (Ra,b, Rc,d)L2 .

2

Since any step functions u, v are finite linear combination of indicator
functions Raj ,bj with complex coefficients, u =

∑
j αjRaj ,bj , v =

∑
k βkRck,dk

we have
(Fu,Fv)L̂2 =

∑
j,k

αjβk(FRaj ,bj ,FRck,dk)L̂2

=
∑
j,k

αjβk(Raj ,bj , Rck,dk)L2 = (u, v)L2 .

Thus F preserves inner product on step functions, and by taking Cauchy
sequences of step functions, we have the

Theorem 5 (Plancherel Formula) Let f, g ∈ L2[−∞,∞]. Then

(f, g)L2 = (Ff,Fg)L̂2 , ||f ||2L2 = ||Ff ||2
L̂2

In the engineering notation this reads

2π

∫ ∞
−∞

f(t)g(t)dt =

∫ ∞
−∞

f̂(λ)ĝ(λ)dλ.
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Theorem 6 The map F∗ : L̂2[−∞,∞] → L2[−∞,∞] has the following
properties:

1. It preserves inner product, i.e.,

(F∗f̂ ,F∗ĝ)L2 = (f̂ , ĝ)L̂2

for all f̂ , ĝ ∈ L̂2[−∞,∞].

2. F∗ is the adjoint operator to F : L2[−∞,∞]→ L̂2[−∞,∞], i.e.,

(Ff, ĝ)L̂2 = (f,F∗ĝ)L2 ,

for all f ∈ L2[−∞,∞], ĝ ∈ L̂2[−∞,∞].

Proof:

1. This follows immediately from the facts that F preserves inner product
and F [f ](λ) = F∗[f ](λ).

2.
(FRa,b, Rc,d)L̂2 = (Ra,b,F∗Rc,d)L2

as can be seen by an interchange in the order of integration. Then
using the linearity of F and F∗ we see that

(Fu, v)L̂2 = (u,F∗v)L2 ,

for all step functions u, v. Since the space of step functions is dense in
L̂2[−∞,∞] and in L2[−∞,∞]

2

Theorem 7 1. The Fourier transform F : L2[−∞,∞] → L̂2[−∞,∞] is
a unitary transformation, i.e., it preserves the inner product and is 1-1
and onto.

2. The adjoint map F∗ : L̂2[−∞,∞] → L2[−∞,∞] is also a unitary
mapping.

3. F∗ is the inverse operator to F :

F∗F = IL2 , FF∗ = IL̂2

where IL2 , IL̂2 are the identity operators on L2 and L̂2, respectively.
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Proof:

1. The only thing left to prove is that for every ĝ ∈ L̂2[−∞,∞] there is a
f ∈ L2[−∞,∞] such that Ff = ĝ, i.e., R ≡ {Ff : f ∈ L2[−∞,∞]} =
L̂2[−∞,∞]. Suppose this isn’t true. Then there exists a nonzero ĥ ∈
L̂2[−∞,∞] such that ĥ ⊥ R, i.e., (Ff, ĥ)L̂2 = 0 for all f ∈ L2[−∞,∞].

But this means that (f,F∗ĥ)L2 = 0 for all f ∈ L2[−∞,∞], so F∗ĥ = Θ.
But then ||F∗ĥ||L2 = ||ĥ||L̂2 = 0 so ĥ = Θ, a contradiction.

2. Same proof as for 1.

3. We have shown that FF∗Ra,b = F∗FRa,b = Ra,b for all indicator func-
tions Ra,b. By linearity we have FF∗s = F∗Fs = s for all step func-
tions s. This implies that

(F∗Ff, g)L2 = (f, g)L2

for all f, g ∈ L2[−∞,∞]. Thus

([F∗F − IL2 ]f, g)L2 = 0

for all f, g ∈ L2[−∞,∞], so F∗F = IL2 . An analogous argument gives
FF∗ = IL̂2 .

2

1.4 The Riemann-Lebesgue Lemma and point-

wise convergence

Lemma 4 (Riemann-Lebesgue) Suppose f is absolutely Riemann integrable
in (−∞,∞) (so that f ∈ L1[−∞,∞]), and is bounded in any finite subin-
terval [a, b], and let α, β be real. Then

lim
α→+∞

∫ ∞
−∞

f(t) sin(αt+ β)dt = 0.

Proof: Without loss of generality, we can assume that f is real, because we
can break up the complex integral into its real and imaginary parts.

1. The statement is true if f = Ra,b is an indicator function, for∫ ∞
−∞

Ra,b(t) sin(αt+ β)dt =

∫ b

a

sin(αt+ β)dt =
−1

α
cos(αt+ β)|ba → 0

as α→ +∞.
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2. The statement is true if f is a step function, since a step function is a
finite linear combination of indicator functions.

3. The statement is true if f is bounded and Riemann integrable on the
finite interval [a, b] and vanishes outside the interval. Indeed given
any ε > 0 there exist two step functions s (Darboux upper sum) and s
(Darboux lower sum) with support in [a, b] such that s(t) ≥ f(t) ≥ s(t)

for all t ∈ [a, b] and
∫ b
a
|s− s| < ε

2
. Then∫ b

a

f(t) sin(αt+ β)dt =

∫ b

a

[f(t)− s(t)] sin(αt+ β)dt+

∫ b

a

s(t) sin(αt+ β)dt.

Now

|
∫ b

a

[f(t)− s(t)] sin(αt+ β)dt| ≤
∫ b

a

|f(t)− s(t)|dt ≤
∫ b

a

|s− s| < ε

2

and (since s is a step function, by choosing α sufficiently large we can
ensure

|
∫ b

a

s(t) sin(αt+ β)dt| < ε

2
.

Hence

|
∫ b

a

f(t) sin(αt+ β)dt| < ε

for α sufficiently large.

4. The statement of the lemma is true in general. Indeed

|
∫ ∞
−∞

f(t) sin(αt+ β)dt| ≤ |
∫ a

−∞
f(t) sin(αt+ β)dt|

+|
∫ b

a

f(t) sin(αt+ β)dt|+ |
∫ ∞
b

f(t) sin(αt+ β)dt|.

Given ε > 0 we can choose a and b such the first and third integrals
are each < ε

3
, and we can choose α so large the the second integral is

< ε
3
. Hence the limit exists and is 0.

2

The sinc function has a delta-function property:

Lemma 5 Let c > 0, and F (x) a function on [0, c]. Suppose

15



• F (x) is piecewise continuous on [0, c]

• F ′(x) is piecewise continuous on [0, c]

• F ′(+0) exists.

Then

lim
L→∞

∫ δ

0

sinLx

x
F (x)dx =

π

2
F (+0).

Proof: We write∫ c

0

sin kx

x
F (x)dx = F (+0)

∫ c

0

sinLx

x
dx+

∫ c

0

F (x)− F (+0)

x
sinLx dx.

Set G(x) = F (x)−F (+0)
x

for x ∈ [0, δ] and G(x) = 0 elsewhere. Since F ′(+0)
exists it follows that G ∈ L2. hence, by the Riemann-Lebesgue Lemma, the
second integral goes to 0 in the limit as L→∞. Hence

lim
L→∞

∫ c

0

sinLx

x
F (x)dx = F (+0) lim

L→∞

∫ c

0

sinLx

x
dx

= F (+0) lim
L→∞

∫ Lc

0

sinu

u
du =

π

2
F (+0).

For the last equality we have used our evaluation (??) of the integral of the
sinc function. 2

Theorem 8 Let f be a complex valued function such that

1. f(t) is absolutely Riemann integrable on (−∞,∞).

2. f(t) is piecewise continuous on (−∞,∞), with only a finite number of
discontinuities in any bounded interval.

3. f ′(t) is piecewise continuous on (−∞,∞), with only a finite number of
discontinuities in any bounded interval.

4. f(t) = f(t+0)+f(t−0)
2

at each point t.

Let

f̂(λ) =

∫ ∞
−∞

f(t)e−iλtdt

be the Fourier transform of f . Then

f(t) =
1

2π

∫ ∞
−∞

f̂(λ)eiλtdλ (1.4.12)

for every t ∈ (−∞,∞).
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Proof: For real L > 0 set

fL(t) =

∫ L

−L
f̂(λ)eiλtdλ =

1

2π

∫ L

−L

[∫ ∞
−∞

f(x)e−iλxdx

]
eiλtdλ

=
1

2π

∫ ∞
−∞

f(x)

[∫ L

−L
eiλ(t−x)dλ

]
dx =

∫ ∞
−∞

f(x)∆L(t− x)dx,

where

∆L(x) =
1

2π

∫ L

−L
eiλxdλ =

{
L
π

if x = 0
sinLx
πx

otherwise.

Here we have interchanged the order of integration, which we can since the
integral is absolutely convergent. Indeed∫ L

−L

∣∣∣∣∫ ∞
−∞

f(x)e−iλxeiλt
∣∣∣∣ dx dλ ≤ ∫ L

−L

∫ ∞
−∞
|f(x)|dx dλ <∞.

We have for any c > 1,

fL(t)− f(t) =

∫ ∞
0

∆L(x)[f(t+ x) + f(t− x)]dx− f(t)

=

∫ c

0

{f(t+ x) + f(t− x)

πx
} sinLx dx− f(t)

+

∫ ∞
c

[f(t+ x) + f(t− x)]
sinLx

πx
dx

Now choose ε > 0. Since∣∣∣∣∫ ∞
c

[f(t+ x) + f(t− x)]
sinLx

πx
dx

∣∣∣∣ ≤ 1

π

∫ ∞
c

|f(t+ x) + f(t− x)| dx

and f is absolutely integrable, by choosing c sufficiently large we can make∣∣∣∣∫ ∞
c

[f(t+ x) + f(t− x)]
sinLx

πx
dx

∣∣∣∣ < ε

2
.

On the other hand, by applying Lemma 5 to the expression in curly brackets
we see that for this c and sufficiently large L we can achieve

|
∫ c

0

{f(t+ x)

πx
} sinLx dx−f(t+ 0)

2
+

∫ c

0

{f(t− x)

πx
} sinLx dx−f(t− 0)

2
| < ε

2
.

Thus for any ε > 0 we can assure |fL(t)−f(t)| < ε by choosing L sufficiently
large. Hence limL→∞ fL(t) = f(t). 2

Note: Condition 4 is just for convenience; redefining f at the discrete
points where there is a jump discontinuity doesn’t change the value of any
of the integrals. The inverse Fourier transform converges to the midpoint of
a jump discontinuity, just as does the Fourier series.
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Exercise 1 Assuming that the improper integral
∫∞

0
(sinx/x)dx = I exists,

establish its value (??) by first using the Riemann - Lebesgue lemma for
Fourier series to show that

I = lim
k→∞

∫ (k+1/2)π

0

sinx

x
dx = lim

k→∞

∫ π

0

Dk(u)du

where Dk(u) is the Dirchlet kernel function. Then use Lemma ??.

Exercise 2 Define the right-hand derivative f ′R(t) and the left-hand deriva-
tive f ′L(t) of f by

f ′R(t) = lim
u→t+

f(u)− f(t+ 0)

u− t
, f ′L(t) = lim

u→t−

f(u)− f(t− 0)

u− t
,

respectively, as in Exercise ?? Show that in the proof of Theorem 8 we can
drop the requirements 3 and 4, and the righthand side of (1.4.12) will converge

to f(t+0)+f(t−0)
2

at any point t such that both f ′R(t) and f ′L(t) exist.

Exercise 3 Let a > 0. Use the Fourier transforms of sinc(x) and sinc2(x),
together with the basic tools of Fourier transform theory, such as Parse-
val’s equation, substitution, · · · to show the following. (Use only rules from
Fourier transform theory. You shouldn’t do any detailed computation such
as integration by parts.)

•
∫∞
−∞

(
sin ax
x

)3
dx = 3a2π

4

•
∫∞
−∞

(
sin ax
x

)4
dx = 2a3π

3

Exercise 4 Show that the n-translates of sinc are orthonormal:∫ ∞
−∞

sinc(x− n) · sinc(x−m) dx =

{
1 for n = m
0 otherwise,

n,m = 0,±, 1, · · ·

Exercise 5 Let

f(x) =


1 −2 ≤ t ≤ −1
1 1 ≤ t ≤ 2
0 otherwise,

• Compute the Fourier transform f̂(λ) and sketch the graphs of f and f̂ .

• Compute and sketch the graph of the function with Fourier transform
f̂(−λ)

• Compute and sketch the graph of the function with Fourier transform
f̂ ′(λ)
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• Compute and sketch the graph of the function with Fourier transform
f̂ ∗ f̂(λ)

• Compute and sketch the graph of the function with Fourier transform
f̂(λ

2
)

Exercise 6 Deduce what you can about the Fourier transform f̂(λ) if you
know that f(t) satisfies the dilation equation

f(t) = f(2t) + f(2t− 1).

Exercise 7 Just as Fourier series have a complex version and a real version,
so does the Fourier transform. Under the same assumpitions as Theorem 8
set

Ĉ(α) =
1

2
[f̂(α) + f̂(−α)], Ŝ(α) =

1

2i
[−f̂(α) + f̂(−α)], α ≥ 0,

and derive the expansion

f(t) =
1

π

∫ ∞
0

(
Ĉ(α) cosαt+ Ŝ(α) sinαt

)
dα, (1.4.13)

Ĉ(α) =

∫ ∞
−∞

f(s) cosαs ds, Ŝ(α) =

∫ ∞
−∞

f(s) sinαs ds.

Show that the transform can be written in a more compact form as

f(t) =
1

π

∫ ∞
0

dα

∫ ∞
−∞

f(s) cosα(s− t) ds.

Exercise 8 There are also Fourier integral analogs of the Fourier cosine
series and the Fourier sine series. Let f(t) be defined for all t ≥ 0 and
extend it to an even function on the real line, defined by

F (t) =

{
f(t) if t ≥ 0,
f(−t) if t < 0.

By applying the results of Exercise 7 show that, formally,

f(t) =
2

π

∫ ∞
0

cosαt dα

∫ ∞
0

f(s) cosαs ds, t ≥ 0. (1.4.14)

Find conditions on f(t) such that this pointwise expansion is rigorously cor-
rect.
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Exercise 9 Let f(t) be defined for all t > 0 and extend it to an odd function
on the real line, defined by

G(t) =

{
f(t) if t > 0,
−f(−t) if t < 0.

By applying the results of Exercise 7 show that, formally,

f(t) =
2

π

∫ ∞
0

sinαt dα

∫ ∞
0

f(s) sinαs ds, t > 0. (1.4.15)

Find conditions on f(t) such that this pointwise expansion is rigorously cor-
rect.

1.5 Relations between Fourier series and Fourier

integrals: sampling

For the purposes of Fourier analysis we have been considering signals f(t) as
arbitrary L2[−∞,∞] functions. In the practice of signal processing, however,
one can treat only a finite amount of data. Typically the signal is digitally
sampled at regular or irregular discrete time intervals. Then the processed
sample alone is used to reconstruct the signal. If the sample isn’t altered,
then the signal should be recovered exactly. How is this possible? How can
one reconstruct a function f(t) exactly from discrete samples? The answer,
Of course, this is not possible for arbitrary functions f(t). The task isn’t
hopeless, however, because the signals employed in signal processing, such
as voice or images, are not arbitrary. The human voice for example is easily
distinguished from static or random noise. One distinguishing characteristic
is that the frequencies of sound in the human voice are mostly in a narrow
frequency band. In fact, any signal that we can acquire and process with real
hardware must be restricted to some finite frequency band. In this section we
will explore Shannon-Whittaker sampling, one way that the special class of
signals restricted in frequency can be sampled and then reproduced exactly.
This method is of immense practical importance as it is employed routinely in
telephone, radio and TV transmissions, radar, etc. In later chapters we will
study other special structural properties of signal classes, such as sparsity,
that can be used to facilitate their processing and efficient reconstruction.

Definition 3 A function f is said to be frequency band-limited if there exists
a constant Ω > 0 such that f̂(λ) = 0 for |λ| > Ω. The frequency ν = Ω

2π
is

called the Nyquist frequency and 2ν is the Nyquist rate.
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Theorem 9 (Shannon-Whittaker Sampling Theorem) Suppose f is a func-
tion such that

1. f satisfies the hypotheses of the Fourier convergence theorem 8.

2. f̂ is continuous and has a piecewise continuous first derivative on its
domain.

3. There is a fixed Ω > 0 such that f̂(λ) = 0 for |λ| > Ω.

Then f is completely determined by its values at the points tj = jπ
Ω

, j =
0,±1,±2, · · · :

f(t) =
∞∑
−∞

f(
jπ

Ω
)
sin(Ωt− jπ)

Ωt− jπ
,

and the series converges uniformly on (−∞,∞).

(NOTE: The theorem states that for a frequency band-limited function, to
determine the value of the function at all points, it is sufficient to sample
the function at the Nyquist rate, i.e., at intervals of π

Ω
. The method of proof

is obvious: compute the Fourier series expansion of f̂(λ) on the interval
[−Ω,Ω].)

Proof: We have

f̂(λ) =
∞∑

k=−∞

cke
iπkλ

Ω , ck =
1

2Ω

∫ Ω

−Ω

f̂(λ)e−
iπkλ

Ω dλ,

where the convergence is uniform on [−Ω,Ω]. This expansion holds only on
the interval: f̂(λ) vanishes outside the interval.

Taking the inverse Fourier transform we have

f(t) =
1

2π

∫ ∞
−∞

f̂(λ)eiλtdλ =
1

2π

∫ Ω

−Ω

f̂(λ)eiλtdλ

=
1

2π

∫ Ω

−Ω

∞∑
k=−∞

cke
i(πk+tΩ)λ

Ω dλ

=
1

2π

∞∑
k=−∞

ck

∫ Ω

−Ω

e
i(πk+tΩ)λ

Ω dλ =
∞∑

k=−∞

ck
Ω sin(Ωt+ kπ)

π(Ωt+ kπ)
.

Now

ck =
1

2Ω

∫ Ω

−Ω

f̂(λ)e−
iπkλ

Ω dλ =
1

2Ω

∫ ∞
−∞

f̂(λ)e−
iπkλ

Ω dλ =
π

Ω
f(−πk

Ω
).
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Hence, setting k = −j,

f(t) =
∞∑

j=−∞

f(
jπ

Ω
)
sin(Ωt− jπ)

Ωt− jπ
.

2

Exercise 10 Suppose f(t) satisfies the conditions of Theorem 9. Derive the
Parseval formula ∫ ∞

−∞
|f(t)|2dt =

π

Ω

∞∑
k=−∞

|f(
πk

Ω
)|2.

There is a trade-off in the choice of Ω. Choosing it as small as possible
reduces the sampling rate, hence the amount of data to be processed or
stored. However, if we increase the sampling rate, i.e. oversample, the series
converges more rapidly. Moreover, sampling at exactly the Nyquist rate leads
to numerical instabilities in the reconstruction of the signal. This difficulty is
related to the fact that the reconstruction is an expansion in sinc (Ωt/π−j) =
(sin(Ωt− jπ)/(Ωt− jπ). The sinc function is frequency band-limited, but
its Fourier transform is discontinuous, see (??), (1.2.7). This causes the sinc
function to decay slowly in time, like 1/(Ωt− jπ). Summing over j yields
the, divergent, harmonic series:

∑∞
j=−∞ |sinc (Ωt/π − j)|. Thus a small error

ε for each sample can lead to arbitrarily large reconstruction error. Suppose
we could replace sinc (t) in the expansion by a frequency band-limed function
g(t) such that ĝ(λ) was infinitely differentiable. Since all derivatives ĝ(n)(λ)
have compact support it follows from Section 1.2.1 that tng(t) is square
integrable for all positive integers n. Thus g(t) decays faster than |t|−n as
|t| → ∞. This fast decay would prevent the numerical instability.

Exercise 11 Show that the function

h(λ) =

{
exp( 1

1−λ2 ) if − 1 < λ < 1

0 if |λ| ≥ 1,

is infinitely differentiable with compact support. In particular compute the
derivatives dn

dλn
h(±1) for all n.

In order to employ such functions g(t) in place of the sinc function it will
be necessary to oversample. Oversampling will provide us with redundant
information but also flexibility in the choice of expansion function, and im-
proved convergence properties. We will now take samples f(jπ/aΩ) where
a > 1. (A typical choice is a = 2.) Recall that the support of f̂ is contained
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in the interval [−Ω,Ω] ⊂ [−aΩ, aΩ]. We choose g(t) such that 1) ĝ(λ) is ar-
bitrarily differentiable, 2) its support is contained in the interval [−aΩ, aΩ],
and 3) ĝ(λ) = 1 for λ ∈ [−Ω,Ω]. Note that there are many possible functions
g that could satisfy these requirements. Now we repeat the major steps of
the proof of the sampling theorem, but for the interval [−aΩ, aΩ]. Thus

f̂(λ) =
∞∑

k=−∞

cke
iπkλ
aΩ , ck =

1

2aΩ

∫ aΩ

−aΩ

f̂(λ)e−
iπkλ
aΩ dλ.

At this point we insert ĝ by noting that f̂(λ) = f̂(λ)ĝ(λ), since ĝ(λ) = 1 on
the support of f̂ . Thus,

f̂(λ) =
∞∑

k=−∞

ckĝ(λ)e
iπkλ
aΩ , (1.5.16)

where from property 6 in Section 1.2.1, ĝ(λ)e
iπkλ
aΩ , is the Fourier transform of

g(t+ πk/aΩ). Taking the inverse Fourier transform of both sides (OK since
the series on the right converges uniformly) we obtain

f(t) =
∞∑

j=−∞

f(
jπ

aΩ
)g(t− πj/aΩ). (1.5.17)

Since |g(t)tn| → 0 as |t| → ∞ for any positive integer n this series converges
very rapidly and is not subject to instabilities.

Remark: We should note that, theoretically, it isn’t possible to restrict
a finite length signal in the time domain f(t) to a finite frequency interval.
Since the support of f is bounded, the Fourier transform integral f̂(λ) =∫∞
−∞ f(t)e−iλtdt converges for all complex λ and defines f̂(λ) as an analytic

function for all points in the complex plane. A well known property of
functions analyic in the entire complex plane is that if they vanish along a
segment of a curve, say an interval on the real axis, then they must vanish
everywhere. Thus a finite length time signal cannot be frequency bounded
unless it is identically 0. For practical transmission of finite signals they must
be truncated in the frequency domain (but in such a way that most of the
information content of the original signal is retained.)

Exercise 12 Construct a function ĝ(λ) which 1) is arbitrarily differentiable,
2) has support contained in the interval [−4, 4], and 3) ĝ(λ) = 1 for λ ∈
[−1, 1]. Hint: Consider the convolution 1

2c
R[−2,2] ∗ h2(λ) where R[−2,2] is the

rectangular box function on the interval [−2, 2], h2(λ) = h(λ/2), h is defined
in Exercise 11, and c =

∫∞
−∞ h(λ)dλ.
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1.6 Relations between Fourier series and Fourier

integrals: aliasing

Another way to compare the Fourier transform with Fourier series is to peri-
odize a function. The periodization of a function f(t) on the real line is the
function

P [f ](t) =
∞∑

m=−∞

f(t+ 2πm) (1.6.18)

Then it is easy to see that P [f ] is 2π-periodic: P [f ](t) = P [f ](t + 2π), as-
suming that the series converges. However, this series will not converge in
general, so we need to restrict ourselves to functions that decay suffiuciently
rapidly at infinity. We could consider functions with compact support, say
infinitely differentiable. Another useful but larger space of functions is the
Schwartz class. We say that f ∈ L2[−∞,∞] belongs to the Schwartz class if
f is infinitely differentiable everywhere, and there exist constants Cn,q (de-
pending on f) such that |tn dq

dtq
f | ≤ Cn,q on R for each n, q = 0, 1, 2, · · · . Then

the projection operator P maps an f in the Schwartz class to a continuous
function in L2[0, 2π] with period 2π. (However, periodization can be applied
to a much larger class of functions, e.g. functions on L2[−∞,∞] that decay
as c

t2
as |t| → ∞.) Assume that f is chosen appropriately so that its peri-

odization is a continuous function. Thus we can expand P [f ](t) in a Fourier
series to obtain

P [f ](t) =
∞∑

n=−∞

cne
int

where

cn =
1

2π

∫ 2π

0

P [f ](t)e−intdt =
1

2π

∫ ∞
−∞

f(t)e−intdx =
1

2π
f̂(n)

where f̂(λ) is the Fourier transform of f(t). Then,

∞∑
n=−∞

f(t+ 2πn) =
1

2π

∞∑
n=−∞

f̂(n)eint, (1.6.19)

and we see that P [f ](t) tells us the value of f̂ at the integer points λ = n,
but not in general at the non-integer points. (For t = 0, equation (1.6.19) is
known as the Poisson summation formula. If we think of f as a signal, we see
that periodization (1.6.18) of f results in a loss of information. However,
if f vanishes outside of [0, 2π)) then P [f ](t) ≡ f(t) for 0 ≤ t < 2π and

f(t) =
∑
n

f̂(n)eint, 0 ≤ t < 2π
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without error.)

Exercise 13 Let f(t) = a
t2+a2 for a > 0.

• Show that f̂(t) = πe−a|λ|. Hint: It is easier to work backwards.

• Use the Poisson summation formula to derive the identity

∞∑
n=−∞

1

n2 + a2
=
π

a

1 + e−2πa

1− e−2πa
.

What happens as a→ 0+ ? Can you obtain the value of
∑∞

n=1
1
n2 from

this?

1.7 The Fourier integral and the uncertainty

relation of quantum mechanics

The uncertainty principle gives a limit to the degree that a function f(t) can
be simultaneously localized in time as well as in frequency. To be precise, we
introduce some notation from probability theory.

We recall some basic definitions from probability theory. A continuous
probability distribution for the random variable t on the real line R is a
continuous function ρ(t) on R such that 0 ≤ ρ(t) ≤ 1 and

∫∞
−∞ ρ(t) dt = 1.

We also require that
∫∞
−∞ p(t)ρ(t) dt converges for any polynomial p(t). Here∫ t2

t1
ρ(t) dt is interpreted as the probability that a sample t taken from R falls

in the interval t1 ≤ t ≤ t2. The expectation (or mean) t̄ of the distribution
is t̄ = Eρ(t) ≡

∫∞
−∞ tρ(t) dt and the standard deviation σ ≥ 0 is defined by

σ2 =

∫ ∞
−∞

(t− t̄)2ρ(t) dt = Eρ
(
(t− t̄)2

)
.

Here σ is a measure of the concentration of the distribution about its mean.
The most famous continuous distribution is the normal (or Gaussian) distri-
bution function

ρ0(t) =
1

σ
√

2π
e−(t−µ)2/2σ2

(1.7.20)

where µ is a real parameter and σ > 0. This is just the bell curve, centered
about t = µ. In this case Eρ0(t) = µ and σ2 = Eρ0(t2). The standard
notation for the normal distribution with mean µ and standard deviation σ
is N(µ, σ).

Every nonzero continuous f ∈ L2[−∞,∞] defines a probability distribu-

tion function ρ(t) = |f(t)|2
||f ||2 , i.e., ρ(t) ≥ 0 and

∫∞
−∞ ρ(t)dt = 1. For convenience

we will normalize the function, so that ||f || = 1.
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Definition 4 • The mean of the distribution defined by the normalized
f is

t =

∫ ∞
−∞

t|f(t)|2dt.

• The dispersion of f about a ∈ R is

∆af =

∫ ∞
−∞

(t− a)2|f(t)|2dt.

(∆tf is called the variance of f , and
√

∆tf the standard deviation.

The dispersion of f about a is a measure of the extent to which the graph
of f is concentrated at a. If f = δ(x − a) the “Dirac delta function”, the
dispersion is zero. The constant f(t) ≡ 1 has infinite dispersion. (However
there are no such L2 functions.) Similarly we can define the dispersion of the
Fourier transform of f about some point α ∈ R:

∆αf̂ =

∫ ∞
−∞

(λ− α)2|f̂(λ)|2dλ.

Note:
∫∞
−∞ |f̂(λ)|2dλ = 1. Also it makes no difference which definition of the

Fourier transform that we use, f̂ or Ff , because the normalization gives the
same probability measure.

Example 2 Let fs(t) = (2s
π

)1/4e−st
2

for s > 0, the Gaussian distribution.

From the fact that
∫∞
−∞ e

−t2dt =
√
π we see that ||fs|| = 1. The normed

Fourier transform of fs is f̂s(λ) = ( 2
sπ

)1/4e
−λ2

4s . By plotting some graphs one
can see informally that as s increases the graph of fs concentrates more and
more about t = 0, i.e., the dispersion ∆0fs decreases. However, the dispersion
of f̂s increases as s increases. We can’t make both values, simultaneously, as
small as we would like. Indeed, a straightforward computation gives

∆0fs =
1

4s
, ∆0f̂s = s,

so the product of the variances of fs and f̂s is always 1
4
, no matter how we

choose s.

Theorem 10 (Heisenberg inequality, Uncertainty theorem) If f(t) 6= 0 and
tf(t) belong to L2[−∞,∞] then ∆af∆αf̂ ≥ 1

4
for any a, α ∈ R.
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Sketch of proof: We will give the proof under the added assumptions that
f ′(t) exists everywhere and also belongs to L2[−∞,∞]. (In particular this
implies that f(t)→ 0 as t→ ±∞.) The main ideas occur there.

We make use of the canonical commutation relation of quantum me-
chanics, the fact that the operations of multiplying a function f(t) by t,
(Tf(t) = tf(t)) and of differentiating a function (Df(t) = f ′(t)) don’t com-
mute: DT − TD = I. Thus

d

dt
[tf(t)]− t

[
d

dt
f(t)

]
= f(t).

Now it is easy from this to check that

(
d

dt
− iα) [(t− a)f(t)]− (t− a)

[
(
d

dt
− iα)f(t)

]
= f(t)

also holds, for any a, α ∈ R. (The a, α dependence just cancels out.) This
implies that (

(
d

dt
− iα)[(t− a)f(t)], f(t)

)
−
(

(t− a)[(
d

dt

−iα)f(t)], f(t)) = (f(t), f(t)) = ||f ||2.
Integrating by parts in the first integral, we can rewrite the identity as

−
(

[(t− a)f(t)], [(
d

dt
− iα)f(t)]

)
−
(

[(
d

dt
− iα)f(t)], [(t− a)f(t)]

)
= ||f ||2.

The Schwarz inequality and the triangle inequality now yield

||f ||2 ≤ 2||(t− a)f(t)|| · ||( d
dt
− iα)f(t)||. (1.7.21)

From the list of properties of the Fourier transform in Section 1.2.1 and the
Plancherel formula, we see that ||( d

dt
− iα)f(t)|| = 1√

2π
||(λ − α)f̂(λ)|| and

||f || = 1√
2π
||f̂ ||. Then, dividing by ||f || and squaring, we have

∆af∆αf̂ ≥
1

4
.

2

Note: Normalizing to a = α = 0 we see that the Schwarz inequality becomes
an equality if and only if 2stf(t) + d

dt
f(t) = 0 for some constant s. Solving

this differential equation we find f(t) = c0e
−st2 where c0 is the integration

constant, and we must have s > 0 in order for f to be square integrable.
Thus the Heisenberg inequality becomes an equality only for Gaussian dis-
tributions.
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Exercise 14 Let

f(t) =

{
0 if t < 0,√

2e−t if t ≥ 0.

Compute ∆af∆αf̂ for any a, α ∈ R and compare with Theorem 10.

These considerations suggest that for proper understanding of signal anal-
ysis we should be looking in the two dimensional time-frequency space (phase
space), rather than the time domain or the frequency domains alone. In sub-
sequent chapters we will study tools such as windowed Fourier transforms
and wavelet transforms that probe the full phase space. The Heisenberg in-
equality also suggests that probabilistic methods have an important role to
play in signal analysis, and we shall make this clearer in later sections.

1.8 Digging deeper. Probabilistic tools.

The notion of a probability distribution can easily be extended to n dimen-
sions. A continuous probability distribution (multivariate distribution) for
the vector random variables t = (t1, t2, · · · , tn) ∈ Rn is a continuous function
ρ(t) = ρ(t1, · · · , tn) on Rn such that 0 ≤ ρ(t) ≤ 1 and

∫
Rn
ρ(t) dt1 · · · dtn = 1.

We also require that
∫∞
−∞ p(t)ρ(t) dt converges for any polynomial p(t1, · · · , tn).

If S is an open subset of Rn and χS(t) is the charactistic function of S, i.e.,

χS(t) =

{
1 if t ∈ S
0 ift /∈ S,

then
∫
S
ρ(t) dt1 · · · dtn is interpreted as the probability that a sample t taken

from Rn lies in the set S. The expectation (or mean) µi of random variable
ti is

µi = Eρ(ti) ≡
∫
Rn
tiρ(t) dt1 · · · dtn, i = 1, 2, · · · , n

and the standard deviation σi ≥ 0 is defined by

σ2
i =

∫
Rn

(ti − µi)2ρ(t) dt1 · · · dtn = Eρ
(
(ti − µi)2

)
.

The covariance matrix of the distribution is the n× n symmetric matrix

C(i, j) = E ((ti − µi)(tj − µj)) , 1 ≤ i, j ≤ n.

Note that σ2
i = C(i, i), In general, the expectation of any function f(t1, · · · , tt)

of the random variables is defined as E (f(t1, · · · , tn)).
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Exercise 15 Show that the eigenvalues of a covariance matrix are nonneg-
ative.

One of the most important multivariate distributions is the multivariate
normal distribution

ρ(t) =
1√

(2π)n det(C)
exp

[
−1

2
(t− µ)C−1(t− µ)tr

]
. (1.8.22)

Here µ is the column vector with components µ1, · · · , µn where µi = E(ti)
and C is an n× n nonsingular symmetric matrix.

Exercise 16 Show that C is in fact the covariance matrix of the distribution
(1.8.22). This takes some work and involves making an orthogonal change
of coordinates where the new coordinate vectors are the orthonormal eigen-
vectors of C.

Important special types of multivariate distributions are those in which
the random variables are independently distributed, i.e., there are 1 variable
probability distributions ρ1(t1), · · · , ρn(tn) such that ρ(t) = Πn

i=1ρi(t1). If,
further, ρ1(τ) = · · · = ρn(τ) for all τ we say that the random variables are
independently and identically distributed (iid).

Exercise 17 If the random variables are independently distributed, show
that

C(ti, tj) = σ2
i δij.

Example 3 If C is a diagonal matrix in the multivariate normal distribution
(1.8.22) then the random variables t1, · · · , are independently distributed. If
C = σ2I where I is the n × n identity matrix and µi = µ for all i then
the distribution is iid. where each random variable is is distributed according
to the normal distribution N(µ, σ2), i.e., the Gaussian distribution (1.7.20)
with mean µ and variance σ2.

An obvious way to construct an iid multivariate distribution is to take a
random sample T1, · · · , Tn from of values of a single random variable t with
probability distribution ρ(t). Then the multivariate distribution function for
the vector random variables T = (T1, · · ·Tn) is the function ρ(T ) = Πn

i=1ρ(Ti).
It follows that for any integers k1, · · · , kn we have

E(T k1
1 · · ·T knn ) = Πn

i=1E(T kii ).

Note that if t has mean µ and standard deviation σ2 then E(Ti) = µ, E((Ti−
µ)2) = σ2 and E(T 2

i ) = σ2 + µ2.
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Exercise 18 Show that E(TiTj) = µ2 + σ2δij.

Now we define the sample mean of the random sample as

T̄ =
1

n

n∑
i=1

Ti.

The sample mean is itself a random variable with expectation

E(T̄ ) = E

(
1

n

∑
i

Ti

)
=

1

n

∑
i

E(Ti) =
1

n

∑
i

µ = µ (1.8.23)

and variance

E
(
(T̄ − µ)2

)
=

1

n2

n∑
i,j=1

E(TiTj)−
2µ

n

n∑
i=1

E(Ti) + E(µ2) (1.8.24)

=
1

n2
(
∑
i,j

(µ2 + δijσ
2)− 2nµ2

n
+ µ2 = µ2 +

n

n2
σ2 − µ2 =

σ2

n
.

Thus the sample mean has the same mean as a random variable as t, but
its variance is less than the variance of t by the factor 1/n. This suggests
that the distribution of the sample mean is increasingly “peaked” around the
mean as n grows. Thus if the original mean is unknown, we can obtain better
and better estimates of it by taking many samples. This idea lies behind the
Law of Large Numbers that we will prove later.

A possible objection to the argument presented in the previous paragraph
is that we already need to know the mean of the distribution to compute the
varience of the sample mean. This leads us to the definition of the sample
variance:

S2 =
1

n− 1

n∑
i=1

(Ti − T̄ )2, (1.8.25)

where T̄ is the sample mean. Here S is the sample standard deviation
(The sample mean and sample standard deviation are typically reported as
outcomes for an exam in a high enrollment undergraduate math course.) We
will explain the factor n− 1, rather than n.

Theorem 11 The expectation of the sample variance S2 is E(S2) = σ2.

Proof:

E(S2) =
1

n− 1
E(
∑
i

(Ti−T̄ )2) =
1

n− 1

[∑
i

E(T 2
i )− 2E(T̄

∑
i

Ti) + nE(T̄ 2)

]
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=
1

n− 1

[
n(µ2 + σ2)− 2

n

∑
i,j

E(TiTj) +
1

n

∑
i,j

E(TiTj)

]

=
1

n− 1
[(n− 2n+ n)µ2 + (n− 2 + 1)σ2] = σ2. 2

If we had used n as the denominator of the sample variance then the expec-
tation would not have been σ2.

We continue to explore the extent to which the probability distribution
function of a random variable peaks around its mean. For this we need to
make use of a form of the Markov inequality, a simple but powerful result
that applies to a wide variety of probability distributions.

Theorem 12 Let x be a nonnegative random variable with continuous prob-
ability distribution function p(x) (so that p(x) = 0 for x < 0) and let d be a
positive constant. Then

Pr(x ≥ d) ≤ 1

d
E(x). (1.8.26)

PROOF: The theorem should be interpreted as saying that the probability
that a random selection of the variable x is ≥ d is ≤ 1

d
E(x). Now

E(x) =

∫ ∞
0

xp(x) dx =

∫ d

0

xp(x) dx+

∫ ∞
d

xp(x) dx

≥
∫ d

0

xp(x) dx+ d

∫ ∞
d

p(x) dx ≥ d

∫ ∞
d

p(x) dx = d Pr(X ≥ d).

2

Corollary 1 Chebyshev’s inequality. Let t be a random variable with ex-
pected value µ and finite variance σ2. Then for any real number α > 0,

Pr(|t− µ| ≥ ασ) ≤ 1

α2
.

Proof: We apply the Markov inequality to the random variable x = (t−µ)2

with d = (σα)2. Thus

Pr((t− µ)2 ≥ (σα)2) ≤ 1

(σα)2
E((t− µ)2) =

1

(α)2
.

This is equivalent to the statement of the Chebyshev inequality. 2
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Example 4 Setting α = 1/
√

2 we see that at least half of the sample values
will lie in the interval (µ− σ/

√
2, µ+ σ/

√
2).

Corollary 2 Law of Large Numbers. Let ρ(t) be a probability distribution
with mean µ and standard deviation σ′. Take a sequence of independent ran-
dom samples from this population: T1, · · · , Tn, · · · and let T̄ (n) = 1

n

∑n
i=1 Ti

be the sample mean of the first n samples. Then for any ε > 0 we have
limn→∞ Pr(|T̄ (n) − µ| > ε) = 0.

Proof: From equations (1.8.23) and (1.8.24) we have E(T̄ (n)) = µ, E
(
(T̄ (n) − µ)2

)
=

σ′2/n. Applying the Chebyshev inequality to the random variable T̄ (n) with
σ = σ′/

√
n, α =

√
nε/σ′ we obtain

Pr(
∣∣T̄ (n) − µ

∣∣ ≥ ε) ≤ σ′2

nε2
.

Thus the probability that the sample mean differs by more than ε from the
distribution meam gets smaller as n grows and approaches 0. In particular
limn→∞ Pr(|T̄ (n) − µ| > ε) = 0. 2

This form of the Law of Large Numbers tells us that for any fixed ε >
0 and sufficiently large sample size, we can show that the sample average
will differ by less than ε from the mean with high probability, but not with
certainty. It shows us that the sample distribution is more and more sharply
peaked around the mean as the sample size grows. With modern computers
than can easily generate large random samples and compute sample means,
this insight forms the basis for many practical applications, as we shall see.
decreasing magnitude down the diagonal.

1.9 Additional Exercises

Exercise 19 Find the Fourier transform of the following functions (a sketch
may help!). Also write down the inversion formula for each, taking account
of where they are discontinuous.

(i) Let A, T > 0. Let f be the rectangular pulse

f(t) =

{
A, t ∈ [0, T ]
0, t /∈ [0, T ]

(ii) Let A, T > 0. Let f be the two-sided pulse

f(t) =


−A, t ∈ [−T, 0]
A, t ∈ (0, T ]
0, t /∈ [−T, T ]
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(iii) Let f be the triangular pulse

f(t) =


t+ 1, t ∈ [−1, 0]
1− t, t ∈ (0, 1]
0, t /∈ [−1, 1]

Deduce that ∫ ∞
0

sin2(x/2)

x2
dx =

π

4
.

(iv) Let a > 0 and

f(t) :=

{
sin(at), |t| ≤ π/a
0, else

(v) Let

f(t) :=

{
0, t < 0
exp(−t), t ≥ 0

Deduce that∫ ∞
0

cos(xt) + x sin(xt)

1 + x2
dx =


π exp(−t), t > 0
π/2, t = 0
0, t < 0

(vi) Let a, b ∈ R and f(t) := exp−|at+b|, t ∈ R.

(vii) Let f(t) := (t2 − 1) exp−t
2/2, t ∈ R.

Exercise 20 Prove the following: If f is even,

F [f ](x) =

√
2

π

∫ ∞
0

f(t) cos(xt)dt

and if f is odd,

F [f ](x) =

√
2

π

∫ ∞
0

f(t) sin(xt)dt.

Exercise 21 The Fourier Cosine (Fc[f ](.)) and Fourier Sine (Fs[f ](.)) of
f : R→ R are defined as follows:

Fc[f ](x) :=

√
2

π

∫ ∞
0

f(t) cos(xt)dt.

Fs[f ](x) :=

√
2

π

∫ ∞
0

f(t) sin(xt)dt.
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Find the Fourier Cosine and Sine transform of the following funcions:

f(t) :=

{
1, t ∈ [0, a]
0, t > a

f(t) :=

{
cos(at), t ∈ [0, a]
0, t > a

Exercise 22 Let f, g, h : R→ R. Let a, b ∈ R. The following question deals
with (convolution *): Show that:

(i) * is linear:
(af + bg) ∗ h = a(f ∗ h) + b(g ∗ h).

(ii) * is commutative:
f ∗ g = g ∗ f.

(iii) * is associative:
(f ∗ g) ∗ h = f ∗ (g ∗ h).

Exercise 23 Let g : R→ R. Find a function H such that for all x,

1√
2π

∫ x

−∞
g(t)dt = (H ∗ g)(x).

(H is called the Heaviside function).

Exercise 24 Let f, g : R → R. Let f ′ exist. Assuming the convergence of
the relevent integrals below, show that

(f ∗ g)′(x) = f ′(x) ∗ g(x).

Exercise 25 For a ∈ R, let

fa(t) =

{
0, t < a
1, t ≥ a

Compute fa ∗ fb for a, b ∈ R. Deduce that

(fa ∗ f−a)(x) =
xf0(x)√

2π
.

Does fa ∗ (1− fb) exist? For a ∈ R, let

ga(t) :=

{
0, t < 0
exp(−at), t ≥ 0

Compute ga ∗ gb.

34



Exercise 26 Fourier transforms are useful in ”deconvolution” or solving
”convolution integral equations”. Suppose, that we are given functions g, h
and are given that

f ∗ g = h.

Our task is to find f in terms of g, h.

(i) Show that
F [f ] = F [h]/F [g]

and hence, if we can find a function k such that

F [h]/F [g] = F [k]

then f = k.

(ii) As an example, suppose that

f ∗ exp(−t2/2) = (1/2)t exp(−t2/4).

Find f .

Exercise 27 (i) We recall that the Laplace transform of a function f :
[0,∞)→ R is defined as

L[f ](p) =

∫ ∞
0

f(t) exp(−pt)dt

whenever the right hand side makes sense. Show formally, that if we
set

g(x) :=

{
f(x), x ≥ 0
0, x < 0

then
L[f ](p) :=

√
2πF [g](−ip).

(ii) Let h : R→ R and define:

h+(x) :=

{
h(x), x ≥ 0
0, x < 0

and

h−(x) :=

{
h(−x), x > 0
0, x ≤ 0

Show that h(x) = h+(x) + h−(x) and express F [h] in terms of L[h+]
and L[h−].
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