
Chapter 1

Fourier Series

Jean Baptiste Joseph Fourier (1768-1830) was a French mathematician, physi-
cist and engineer, and the founder of Fourier analysis. In 1822 he made the
claim, seemingly preposterous at the time, that any function of t, continuous
or discontinuous, could be represented as a linear combination of functions
sinnt. This was a dramatic distinction from Taylor series. While not strictly
true in fact, this claim was true in spirit and it led to the modern theory of
Fourier analysis with wide applications to science and engineering.

1.1 Definitions, Real and complex Fourier se-

ries

We have observed that the functions en(t) = eint/
√

2π, n = 0,±1,±2, · · ·
form an ON set in the Hilbert space L2[0, 2π] of square-integrable functions
on the interval [0, 2π]. In fact we shall show that these functions form an ON
basis. Here the inner product is

(u, v) =

∫ 2π

0

u(t)v(t) dt, u, v ∈ L2[0, 2π].

We will study this ON set and the completeness and convergence of expan-
sions in the basis, both pointwise and in the norm. Before we get started, it
is convenient to assume that L2[0, 2π] consists of square-integrable functions
on the unit circle, rather than on an interval of the real line. Thus we will
replace every function f(t) on the interval [0, 2π] by a function f ∗(t) such
that f ∗(0) = f ∗(2π) and f ∗(t) = f(t) for 0 ≤ t < 2π. Then we will extend
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f ∗ to all −∞ < t <∞ by requiring periodicity: f ∗(t+2π) = f ∗(t). This will
not affect the values of any integrals over the interval [0, 2π], though it may
change the value of f at one point. Thus, from now on our functions will be
assumed 2π − periodic. One reason for this assumption is the

Lemma 1 Suppose F is 2π − periodic and integrable. Then for any real
number a ∫ 2π+a

a

F (t)dt =

∫ 2π

0

F (t)dt.

Proof Each side of the identity is just the integral of F over one period.
For an analytic proof, note that∫ 2π

0

F (t)dt =

∫ a

0

F (t)dt+

∫ 2π

a

F (t)dt =

∫ a

0

F (t+ 2π)dt+

∫ 2π

a

F (t)dt

=

∫ 2π+a

2π

F (t)dt+

∫ 2π

a

F (t)dt =

∫ 2π

a

F (t)dt+

∫ 2π+a

2π

F (t)dt

=

∫ 2π+a

a

F (t)dt.
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Thus we can transfer all our integrals to any interval of length 2π without
altering the results.

Exercise 1 Let G(a) =
∫ 2π+a

a
F (t)dt and give a new proof of of Lemma 1

based on a computation of the derivative G′(a).

For students who don’t have a background in complex variable theory we
will define the complex exponential in terms of real sines and cosines, and
derive some of its basic properties directly. Let z = x + iy be a complex
number, where x and y are real. (Here and in all that follows, i =

√
−1.)

Then z̄ = x− iy.

Definition 1 ez = exp(x)(cos y + i sin y)

Lemma 2 Properties of the complex exponential:

• ez1ez2 = ez1+z2

• |ez| = exp(x)
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• ez = ez = exp(x)(cos y − i sin y).

Exercise 2 Verify lemma 2. You will need the addition formula for sines
and cosines.

Simple consequences for the basis functions en(t) = eint/
√

2π, n = 0,±1,±2, · · ·
where t is real, are given by

Lemma 3 Properties of eint:

• ein(t+2π) = eint

• |eint| = 1

• eint = e−int

• eimteint = ei(m+n)t

• e0 = 1

• d
dt
eint = ineint.

Lemma 4 (en, em) = δnm.

Proof If n 6= m then

(en, em) =
1

2π

∫ 2π

0

ei(n−m)tdt =
1

2π

ei(n−m)t

i(n−m)
|2π0 = 0.

If n = m then (en, em) = 1
2π

∫ 2π

0
1 dt = 1. 2

Since {en} is an ON set, we can project any f ∈ L2[0, 2π] on the closed
subspace generated by this set to get the Fourier expansion

f(t) ∼
∞∑

n=−∞

(f, en)en(t),

or

f(t) ∼
∞∑

n=−∞

cne
int, cn =

1

2π

∫ 2π

0

f(t)e−intdt. (1.1.1)

This is the complex version of Fourier series. (For now the ∼ just denotes
that the right-hand side is the Fourier series of the left-hand side. In what
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sense the Fourier series represents the function is a matter to be resolved.)
From our study of Hilbert spaces we already know that Bessel’s inequality
holds: (f, f) ≥

∑∞
n=−∞ |(f, en)|2 or

1

2π

∫ 2π

0

|f(t)|2dt ≥
∞∑

n=−∞

|cn|2. (1.1.2)

An immediate consequence is the Riemann-Lebesgue Lemma.

Lemma 5 (Riemann-Lebesgue, weak form) lim|n|→∞
∫ 2π

0
f(t)e−intdt = 0.

Thus, as |n| gets large the Fourier coefficients go to 0.
If f is a real-valued function then cn = c−n for all n. If we set

cn =
an − ibn

2
, n = 0, 1, 2, · · ·

c−n =
an + ibn

2
, n = 1, 2, · · ·

and rearrange terms, we get the real version of Fourier series:

f(t) ∼ a0

2
+
∞∑
n=1

(an cosnt+ bn sinnt), (1.1.3)

an =
1

π

∫ 2π

0

f(t) cosnt dt bn =
1

π

∫ 2π

0

f(t) sinnt dt

with Bessel inequality

1

π

∫ 2π

0

|f(t)|2dt ≥ |a0|2

2
+
∞∑
n=1

(|an|2 + |bn|2),

and Riemann-Lebesgue Lemma

lim
n→∞

∫ 2π

0

f(t) cos(nt)dt = lim
n→∞

∫ 2π

0

f(t) sin(nt)dt = 0.

Remark: The set { 1√
2π
, 1√

π
cosnt, 1√

π
sinnt} for n = 1, 2, · · · is also ON in

L2[0, 2π], as is easy to check, so (1.1.3) is the correct Fourier expansion in
this basis for complex functions f(t), as well as real functions.

Later we will prove the following basic results:
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Theorem 1 Parseval’s equality. Let f ∈ L2[0, 2π]. Then

(f, f) =
∞∑

n=−∞

|(f, en)|2.

In terms of the complex and real versions of Fourier series this reads

1

2π

∫ 2π

0

|f(t)|2dt =
∞∑

n=−∞

|cn|2 (1.1.4)

or
1

π

∫ 2π

0

|f(t)|2dt =
|a0|2

2
+
∞∑
n=1

(|an|2 + |bn|2).

Let f ∈ L2[0, 2π] and remember that we are assuming that all such
functions satisfy f(t + 2π) = f(t). We say that f is piecewise continu-
ous on [0, 2π] if it is continuous except for a finite number of discontinu-
ities. Furthermore, at each t the limits f(t + 0) = limh→0,h>0 f(t + h) and
f(t−0) = limh→0,h>0 f(t−h) exist. NOTE: At a point t of continuity of f we

have f(t+0) = f(t−0), whereas at a point of discontinuity f(t+0) 6= f(t−0)
and f(t+ 0)− f(t− 0) is the magnitude of the jump discontinuity.

Theorem 2 Suppose

• f(t) is periodic with period 2π.

• f(t) is piecewise continuous on [0, 2π].

• f ′(t) is piecewise continuous on [0, 2π].

Then the Fourier series of f(t) converges to f(t+0)+f(t−0)
2

at each point t.

1.2 Examples

We will use the real version of Fourier series for these examples. The trans-
formation to the complex version is elementary.
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1. Let

f(t) =


0, t = 0
π−t
2
, 0 < t < 2π

0, t = 2π.

and f(t+ 2π) = f(t). We have a0 = 1
π

∫ 2π

0
π−t
2
dt = 0. and for n ≥ 1,

an =
1

π

∫ 2π

0

π − t
2

cosnt dt =
π−t
2

sinnt

nπ

∣∣2π
0 +

1

2πn

∫ 2π

0

sinnt dt = 0,

bn =
1

π

∫ 2π

0

π − t
2

sinnt dt = −
π−t
2

cosnt

nπ

∣∣2π
0 −

1

2πn

∫ 2π

0

cosnt dt =
1

n
.

Therefore,
π − t

2
=
∞∑
n=1

sinnt

n
, 0 < t < 2π.

By setting t = π/2 in this expansion we get an alternating series for
π/4:

π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
− · · · .

Parseval’s identity gives
π2

6
=
∞∑
n=1

1

n2
.

2. Let

f(t) =


1
2
, t = 0

1, 0 < t < π
1
2
, t = π

0 π < t < 2π.

and f(t+ 2π) = f(t) (a step function). We have a0 = 1
π

∫ π
0
dt = 1, and

for n ≥ 1,

an =
1

π

∫ π

0

cosnt dt =
sinnt

nπ
|π0 = 0,

bn =
1

π

∫ π

0

sinnt dt = −cosnt

nπ
|π0 =

(−1)n+1 + 1

nπ
=

{
2
πn
, n odd

0, n even.

Therefore,

f(t) =
1

2
+

2

π

∞∑
j=1

sin(2j − 1)t

2j − 1
.
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For 0 < t < π this gives

π

4
= sin t+

sin 3t

3
+

sin 5t

5
+ · · · ,

and for π < t < 2π it gives

−π
4

= sin t+
sin 3t

3
+

sin 5t

5
+ · · · .

Parseval’s equality becomes

π2

8
=
∞∑
j=1

1

(2j − 1)2
.

1.3 Fourier series on intervals of varying length,

Fourier series for odd and even functions

Although it is convenient to base Fourier series on an interval of length 2π
there is no necessity to do so. Suppose we wish to look at functions f(x) in
L2[α, β]. We simply make the change of variables

t =
2π(x− α)

β − α

in our previous formulas. Every function f(x) ∈ L2[α, β] is uniquely associ-

ated with a function f̂(t) ∈ L2[0, 2π] by the formula f(x) = f̂(2π(x−α)
β−α ). The

set { 1√
β−α ,

√
2

β−α cos 2πn(x−α)
β−α ,

√
2

β−α sin 2πn(x−α)
β−α } for n = 1, 2, · · · is an ON

basis for L2[α, β], The real Fourier expansion is

f(x) ∼ a0

2
+
∞∑
n=1

(an cos
2πn(x− α)

β − α
+ bn sin

2πn(x− α)

β − α
), (1.3.5)

an =
2

β − α

∫ β

α

f(x) cos
2πn(x− α)

β − α
dx, bn =

2

β − α

∫ β

α

f(x) sin
2πn(x− α)

β − α
dx

with Parseval equality

2

β − α

∫ β

α

|f(x)|2dx =
|a0|2

2
+
∞∑
n=1

(|an|2 + |bn|2).
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For our next variant of Fourier series it is convenient to consider the
interval [−π, π] and the Hilbert space L2[−π, π]. This makes no difference in
the formulas, since all elements of the space are 2π-periodic. Now suppose
f(t) is defined and square integrable on the interval [0, π]. We define F (t) ∈
L2[−π, π] by

F (t) =

{
f(t) on [0, π]
f(−t) for − π < t < 0

The function F has been constructed so that it is even, i.e., F (−t) = F (t).
For an even functions the coefficients bn = 1

π

∫ π
−π F (t) sinnt dt = 0 so

F (t) ∼ a0

2
+
∞∑
n=1

an cosnt

on [−π, π] or

f(t) ∼ a0

2
+
∞∑
n=1

an cosnt, for 0 ≤ t ≤ π (1.3.6)

an =
1

π

∫ π

−π
F (t) cosnt dt =

2

π

∫ π

0

f(t) cosnt dt.

Here, (1.3.6) is called the Fourier cosine series of f .
We can also extend the function f(t) from the interval [0, π] to an odd

function on the interval [−π, π]. We define G(t) ∈ L2[−π, π] by

G(t) =


f(t) on (0, π]
0 for t = 0
−f(−t) for − π < t < 0.

The function G has been constructed so that it is odd, i.e., G(−t) = −G(t).
For an odd function the coefficients an = 1

π

∫ π
−π G(t) cosnt dt = 0 so

G(t) ∼
∞∑
n=1

bn sinnt

on [−π, π] or

f(t) ∼
∞∑
n=1

bn sinnt, for o < t ≤ π, (1.3.7)

bn =
1

π

∫ π

−π
G(t) sinnt dt =

2

π

∫ π

0

f(t) sinnt dt.

Here, (1.3.7) is called the Fourier sine series of f .
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Example 1 Let f(t) = t, 0 ≤ t ≤ π.

1. Fourier Sine series.

bn =
2

π

∫ π

0

t sinnt dt =
−2t cosnt

nπ
|π0 +

2

nπ

∫ π

0

cosnt dt =
2(−1)n+1

n
.

Therefore,

t =
∞∑
n=1

2(−1)n+1

n
sinnt, 0 < t < π.

2. Fourier Cosine series.

an =
2

π

∫ π

0

t cosnt dt =
2t sinnt

nπ
|π0 −

2

nπ

∫ π

0

sinnt dt =
2[(−1)n − 1

n2π
,

for n ≥ 1 and a0 = 2
π

∫ π
0
t dt = π, so

t =
π

2
− 4

π

∞∑
j=1

cos(2j − 1)t

(2j − 1)2
, 0 < t < π.

1.4 Convergence results

In this section we will prove Theorem 2 on pointwise convergence. Let f be
a complex valued function such that

• f(t) is periodic with period 2π.

• f(t) is piecewise continuous on [0, 2π].

• f ′(t) is piecewise continuous on [0, 2π].

Expanding f in a Fourier series (real form) we have

f(t) ∼ a0

2
+
∞∑
n=1

(an cosnt+ bn sinnt) = S(t), (1.4.8)

an =
1

π

∫ 2π

0

f(t) cosnt dt, bn =
1

π

∫ 2π

0

f(t) sinnt dt.
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For a fixed t we want to understand the conditions under which the Fourier
series converges to a number S(t), and the relationship between this number
and f . To be more precise, let

Sk(t) =
a0

2
+

k∑
n=1

(an cosnt+ bn sinnt)

be the k-th partial sum of the Fourier series. This is a finite sum, a trigono-
metric polynomial, so it is well defined for all t ∈ R. Now we have

S(t) = lim
k→∞

Sk(t),

if the limit exists. To better understand the properties of Sk(t) in the limit,
we will recast this finite sum as a single integral. Substituting the expressions
for the Fourier coefficients an, bn into the finite sum we find

Sk(t) =
1

2π

∫ 2π

0

f(x)dx+
1

π

k∑
n=1

(∫ 2π

0

f(x) cosnx dx cosnt+

∫ 2π

0

f(x) sinnx dx sinnt

)
,

so

Sk(t) =
1

π

∫ 2π

0

[
1

2
+

k∑
n=1

(cosnx cosnt+ sinnx sinnt

]
f(x)dx

=
1

π

∫ 2π

0

[
1

2
+

k∑
n=1

cos[n(t− x)]

]
f(x)dx

=
1

π

∫ 2π

0

Dk(t− x)f(x)dx. (1.4.9)

We can find a simpler form for the kernel Dk(t) = 1
2

+
∑k

n=1 cosnt =

−1
2

+
∑k

m=0 cosmt. The last cosine sum is the real part of the geometric
series

k∑
m=0

(eit)m =
(eit)k+1 − 1

eit − 1

so

−1

2
+

k∑
m=0

cosmt = −1

2
+ Re

(eit)k+1 − 1

eit − 1
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= Re
(eit)k+1 − 1

2
eit − 1

2

eit − 1
= Re

1
2
(e−iu/2eiu/2 − ei(k+1/2)u

e−iu/2 − eiu/2

= Re
sin(k + 1/2)u+ i(cosu/2− cos(k + 1/2)u)

2 sinu/2
.

Thus,

Dk(t) =
sin(k + 1

2
)t

2 sin t
2

. (1.4.10)

Note that Dk has the properties:

• Dk(t) = Dk(t+ 2π)

• Dk(−t) = Dk(t)

• Dk(t) is defined and differentiable for all t and Dk(0) = k + 1
2
.

From these properties it follows that the integrand of (1.4.9) is a 2π-periodic
function of x, so that we can take the integral over any full 2π-period:

Sk(t) =
1

π

∫ a+π

a−π
Dk(t− x)f(x)dx,

for any real number a. Let us set a = t and fix a δ such that 0 < δ < π.
(Think of δ as a very small positive number.) We break up the integral as
follows:

Sk(t) =
1

π

(∫ t−δ

t−π
+

∫ t+π

t+δ

)
Dk(t− x)f(x)dx+

1

π

∫ t+δ

t−δ
Dk(t− x)f(x)dx.

For fixed t we can write Dk(t− x) in the form

Dk(t− x) =
f1(x, t) cos k(t− x) + f2(x, t) sin k(t− x)

sin[1
2
(t− x)]

= g1(x, t) cos k(t− x) + g2(x, t) sin k(t− x).

In the interval [t − π, t − δ] the functions g1, g2 are bounded. Thus the
functions

G`(x, t) =

{
g`(x, t) for x ∈ [t− π, t− δ]
0 elsewhere

, ` = 1, 2
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are elements of L2[−π, π] (and its 2π-periodic extension). Thus, by the
Riemann-Lebesgue Lemma, applied to the ON basis determied by the or-
thogonal functions cos k(t− x), sin k(t− x) for fixed t, the first integral goes
to 0 as k →∞. A similar argument shows that the integral over the interval
[t+δ, t+π] goes to 0 as k →∞. [ This argument doesn’t hold for the interval
[t − δ, t + δ] because the term sin[1

2
(t − x)] vanishes in the interval, so that

the G` are not square integrable.] Thus,

lim
k→∞

Sk(t) = lim
k→∞

1

π

∫ t+δ

t−δ
Dk(t− x)f(x)dx, (1.4.11)

where,

Dk(t) =
sin(k + 1

2
)t

2 sin t
2

.

Theorem 3 Localization Theorem. The sum S(t) of the Fourier series of
f at t is completely determined by the behavior of f in an arbitrarily small
interval (t− δ, t+ δ) about t.

This is a remarkable fact! Although the Fourier coefficients contain in-
formation about all of the values of f over the interval [0, 2π), only the local
behavior of f affects the convergence at a specific point t.

Now we are ready to prove a basic pointwise convergence result. It makes
use of another simple property of the kernal funtion Dk(t):

Lemma 6 ∫ 2π

0

Dk(x)dx = π

Proof; ∫ 2π

0

Dk(x)dx =

∫ 2π

0

(
1

2
+

k∑
n=1

cosnx)dx = π.

2

Theorem 4 Suppose

• f(t) is periodic with period 2π.

• f(t) is piecewise continuous on [0, 2π].

• f ′(t) is piecewise continuous on [0, 2π].
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Then the Fourier series of f(t) converges to f(t+0)+f(t−0)
2

at each point t.

Proof: It will be convenient to modify f , if necessary, so that

f(t) =
f(t+ 0) + f(t− 0)

2

at each point t. This condition affects the definition of f only at a finite
number of points of discontinuity. It doesn’t change any integrals and the
values of the Fourier coefficients. Then, using Lemma 6 we can write

Sk(t)− f(t) =
1

π

∫ 2π

0

Dk(t− x)[f(x)− f(t)]dx

=
1

π

∫ π

0

Dk(x)[f(t+ x) + f(t− x)− 2f(t)]dx

=
1

π

∫ π

0

[f(t+ x) + f(t− x)− 2f(t)]

2 sin x
2

sin(k +
1

2
)x dx

=
1

π

∫ π

0

[H1(t, x) sin kx+H2(t, x) cos kx]dx

From the assumptions, H1, H2 are square integrable in x. Indeed, we can use
L’Hospital’s rule and the assumptions that f and f ′ are piecewise continuous
to show that the limit

lim
x→0+

[f(t+ x) + f(t− x)− 2f(t)]

2 sin x
2

exists. Thus H1, H2 are bounded for x → 0+. Then, by the Riemann-
Lebesgue Lemma, the last expression goes to 0 as k →∞:

lim
k→∞

[Sk(t)− f(t)] = 0.

2

Exercise 3 Suppose f is piecewise continuous and 2π-periodic. For any
point t define the right-hand derivative f ′R(t) and the left-hand derivative
f ′L(t) of f by

f ′R(t) = lim
u→t+

f(u)− f(t+ 0)

u− t
, f ′L(t) = lim

u→t−

f(u)− f(t− 0)

u− t
,

respectively. Show that in the proof of Theorem 4 we can drop the requirement
that f ′ is piecewise continuous and the conclusion of the theorem will still hold
at any point t such that both f ′R(t) and f ′L(t) exist.
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Exercise 4 Show that if f and f ′ are piecewise continuous then for any point
t we have f ′(t + 0) = f ′R(t) and f ′(t− 0) = f ′L(t). Hint: By the mean value
theorem of calculus, for u > t and u sufficiently close to t there is a point c
such that t < c < u and

f(u)− f(t+ 0)

u− t
= f ′(c).

Exercise 5 Let

f(t) =

{
t2 sin(1

t
) for t 6= 0

0 for t = 0.

Show that f is continuous for all t and that f ′R(0) = f ′L(0) = 0. Show that
f ′(t + 0 and f ′(t − 0) do not exist for t = 0. Hence, argue that f ′ is not a
piecewise continuous function. This shows that the result of Exercise 3 is a
true strengthening of Theorem 4.

Exercise 6 Let

f(t) =

{
2 sin t

2

t
if 0 < |t| ≤ π,

1 if t = 0.

Extend f to be a 2π-periodic function on the entire real line. Verify that f
satisfies the hypotheses of Theorem 4 and is continuous at t = 0. Apply the
Localization Theorem (1.4.11) to f at t = 0 to give a new evaluation of the
improper integral

∫∞
0

sinx
x
dx = π

2
.

1.4.1 Uniform pointwise convergence

We have shown that for functions f with the properties:

• f(t) is periodic with period 2π,

• f(t) is piecewise continuous on [0, 2π],

• f ′(t) is piecewise continuous on [0, 2π],

then at each point t the partial sums of the Fourier series of f ,

f(t) ∼ a0

2
+
∞∑
n=1

(an cosnt+ bn sinnt) = S(t), an =
1

π

∫ 2π

0

f(t) cosnt dt

bn =
1

π

∫ 2π

0

f(t) sinnt dt,
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converge to f(t+0)+f(t−0)
2

:

Sk(t) =
a0

2
+

k∑
n=1

(an cosnt+ bn sinnt), lim
k→∞

Sk(t) =
f(t+ 0) + f(t− 0)

2
.

(If we require that f satisfies f(t) = f(t+0)+f(t−0)
2

at each point then the series
will converge to f everywhere. In this section we will make this requirement.)
Now we want to examine the rate of convergence.

We know that for every ε > 0 we can find an integer N(ε, t) such that
|Sk(t) − f(t)| < ε for every k > N(ε, t)|. Then the finite sum trigonometric
polynomial Sk(t) will approximate f(t) with an error < ε. However, in
general N depends on the point t; we have to recompute it for each t. What
we would prefer is uniform convergence. The Fourier series of f will converge
to f uniformly if for every ε > 0 we can find an integer N(ε) such that
|Sk(t) − f(t)| < ε for every k > N(ε) and for all t. Then the finite sum
trigonometric polynomial Sk(t) will approximate f(t) everywhere with an
error < ε.

We cannot achieve uniform convergence for all functions f in the class
above. The partial sums are continuous functions of t, Recall from calculus
that if a sequence of continuous functions converges uniformly, the limit
function is also continuous. Thus for any function f with discontinuities, we
cannot have uniform convergence of the Fourier series.

If f is continuous, however, then we do have uniform convergence.

Theorem 5 Assume f has the properties:

• f(t) is periodic with period 2π,

• f(t) is continuous on [0, 2π],

• f ′(t) is piecewise continuous on [0, 2π].

Then the Fourier series of f converges uniformly.

Proof: : Consider the Fourier series of both f and f ′:

f(t) ∼ a0

2
+
∞∑
n=1

(an cosnt+ bn sinnt), an =
1

π

∫ 2π

0

f(t) cosnt dt

bn =
1

π

∫ 2π

0

f(t) sinnt dt,

15



f ′(t) ∼ A0

2
+
∞∑
n=1

(An cosnt+Bn sinnt), An =
1

π

∫ 2π

0

f ′(t) cosnt dt

Bn =
1

π

∫ 2π

0

f ′(t) sinnt dt,

Now

An =
1

π

∫ 2π

0

f ′(t) cosnt dt =
1

π
f(t) cosnt|2π0 +

n

π

∫ 2π

0

f(t) sinnt dt

=

{
nbn, n ≥ 1
0, n = 0

(We have used the fact that f(0) = f(2π).) Similarly,

Bn =
1

π

∫ 2π

0

f ′(t) sinnt dt =
1

π
f(t) sinnt|2π0 −

n

π

∫ 2π

0

f(t) cosnt dt = −nan.

Using Bessel’s inequality for f ′ we have

∞∑
n=1

(|An|2 + |Bn|2) ≤
1

π

∫ 2π

0

|f ′(t)|2dt <∞,

hence
∞∑
n=1

n2(|an|2 + |bn|2) ≤ ∞.

Now ∑m
n=1 |an|∑m
n=1 |bn|

≤
m∑
n=1

√
|an|2 + |bn|2 =

m∑
n=1

1

n

√
|An|2 + |Bn|2

≤ (
m∑
n=1

1

n2
)(

m∑
n=1

(|An|2 + |Bn|2))

which converges as m → ∞. (We have used the Schwarz inequality for the
last step.) Hence

∑∞
n=1 |an| <∞,

∑∞
n=1 |bn| <∞. Now

|a0

2
+
∞∑
n=1

(an cosnt+ bn sinnt)| ≤ |a0

2
|+

∞∑
n=1

(|an cosnt|+ |bn sinnt|) ≤

|a0

2
|+

∞∑
n=1

(|an|+ |bn|) <∞,

so the series converges uniformly and absolutely. 2

16



Corollary 1 Parseval’s Theorem. For f satisfying the hypotheses of the
preceding theorem

|a0|2

2
+
∞∑
n=1

(|an|2 + |bn|2) =
1

π

∫ 2π

0

|f(t)|2dt.

Proof: The Fourier series of f converges uniformly, so for any ε > 0 there
is an integer N(ε) such that |Sk(t)− f(t)| < ε for every k > N(ε) and for all
t. Thus∫ 2π

0

|Sk(t)−f(t)|2 dt = ||Sk−f ||2 = ||f ||2−π(
|a0|2

2
+

k∑
n=1

(|an|2+|bn|2) < 2πε2

for k > N(ε). 2

Remark 1: Parseval’s Theorem actually holds for any f ∈ L2[0, 2π], as we
shall show later.

Remark 2: As the proof of the preceding theorem illustrates, differentia-
bility of a function improves convergence of its Fourier series. The more
derivatives the faster the convergence. There are famous examples to show
that continuity alone is not sufficient for convergence.

1.5 More on pointwise convergence, Gibbs

phenomena

Let’s return to our Example 1 of Fourier series:

h(t) =


0, t = 0
π−t
2
, 0 < t < 2π

0, t = 2π.

and h(t+ 2π) = h(t). In this case, an = 0 for all n and bn = 1
n
. Therefore,

π − t
2

=
∞∑
n=1

sinnt

n
, 0 < t < 2π.

The function h has a discontinuity at t = 0 so the convergence of this series
can’t be uniform. Let’s examine this case carefully. What happens to the
partial sums near the discontinuity?

17



Here, Sk(t) =
∑k

n=1
sinnt
n

so

S ′k(t) =
k∑

n=1

cosnt = Dk(t)−
1

2
=

sin(k + 1
2
)t

2 sin t
2

− 1

2
=

sin kt
2

cos (k+1)t
2

sin t
2

.

Thus, since Sk(0) = 0 we have

Sk(t) =

∫ t

0

S ′k(x)dx =

∫ t

0

(
sin kx

2
cos (k+1)x

2

2 sin x
2

)
dx.

Note that S ′k(0) > 0 so that Sk starts out at 0 for t = 0 and then increases.
Looking at the derivative of Sk we see that the first maximum is at the
critical point tk = π

k+1
(the first zero of cos (k+1)x

2
as x increases from 0).

Here, h(tk) = π−tk
2

. The error is

Sk(tk)− h(tk) =

∫ tk

0

sin(k + 1
2
)x

2 sin x
2

dx− π

2

=

∫ tk

0

sin(k + 1
2
)x

x
dx+

∫ tk

0

(
1

2 sin x
2

− 1

x

)
sin(k +

1

2
)x dx− π

2

= I(tk) + J(tk)−
π

2

where

I(tk) =

∫ tk

0

sin(k + 1
2
)x

x
dx =

∫ (k+ 1
2
)tk

0

sinu

u
du→

∫ π

0

sinu

u
du ≈ 1.851397052

(according to MAPLE). Also

J(tk) =

∫ tk

0

(
1

2 sin x
2

− 1

x

)
sin(k +

1

2
)x dx.

Note that the integrand is bounded near x = 0, (indeed it goes to 0 as x→ 0)
and the interval of integration goes to 0 as k →∞. Hence we have J(tk)→ 0
as k →∞. We conclude that

lim
k→∞

(Sk(tk)− h(tk)) ≈ 1.851397052− π

2
≈ .280600725
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To sum up,limk→∞ Sk(tk) ≈ 1.851397052 whereas limk→∞ h(tk) = π
2
≈ 1.570796327.

The partial sum is overshooting the correct value by about 17.86359697%!
This is called the Gibbs Phenomenon.

To understand it we need to look more carefully at the convergence prop-
erties of the partial sums Sk(t) =

∑k
n=1

sinnt
n

for all t.
First some preparatory calculations. Consider the geometric series Ek(t) =∑k
n=1 e

int = eit(1−eikt)
1−eit .

Lemma 7 For 0 < t < 2π,

|Ek(t)| ≤
2

|1− eit|
=

1

sin t
2

.

Note that Sk(t) is the imaginary part of the complex series
∑k

n=1
eint

n
.

Lemma 8 Let 0 < α < β < 2π. The series
∑∞

n=1
eint

n
converges uniformly

for all t in the interval [α, β].

Proof: (tricky)

k∑
n=j

eint

n
=

k∑
n=j

En(t)− En−1(t)

n
=

k∑
n=j

En(t)

n
−

k∑
n=j

En(t)

n+ 1
− Ej−1(t)

j
+
Ek(t)

K + 1

and

|
k∑
n=j

eint

n
| ≤ 1

sin t
2

(
k∑
n=j

(
1

n
− 1

n+ 1
) +

1

j
+

1

k + 1

)
=

2

j sin t
2

.

This implies by the Cauchy Criterion that
∑k

n=j
eint

n
converges uniformly on

[α, β]. 2

This shows that the Fourier series for h(t) converges uniformly on any
closed interval that doesn’t contain the discontinuities at t = 2π`, ` =
0,±1,±2, · · · . Next we will show that the partial sums Sk(t) are bounded
for all t and all k. Thus, even though there is an overshoot near the discon-
tinuities, the overshoot is strictly bounded.

From the lemma on uniform convergence above we already know that the
partial sums are bounded on any closed interval not containing a disconti-
nuity. Also, Sk(0) = 0 and Sk(−t) = −Sk(t), so it suffices to consider the
interval 0 < t < π

2
.
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We will use the facts that 2
π
≤ sin t

t
≤ 1 for 0 < t ≤ π

2
. The right-hand

inequality is a basic calculus fact and the left-hand one is obtained by solving
the calculus problem of minimizing sin t

t
over the interval 0 < t < π

2
. Note

that

|
k∑

n=1

sinnt

n
| ≤ |

∑
1≤n<1/t

t sinnt

nt
|+ |

∑
1/t≤n≤k

sinnt

n
|.

Using the calculus inequalities and the lemma, we have

|
k∑

n=1

sinnt

n
| ≤

∑
1≤n<1/t

t+
2

1
t

sin t
2

≤ t · 1

t
+

2
1
t
t
2

2
π

= 1 + 2π.

Thus the partial sums are uniformly bounded for all t and all k.
We conclude that the Fourier series for h(t) converges uniformly to h(t)

in any closed interval not including a discontinuity. Furthermore the partial
sums of the Fourier series are uniformly bounded. At each discontinuity
tN = 2πN of h the partial sums Sk overshoot h(tN + 0) by about 17.9%
(approaching from the right) as k → ∞ and undershoot h(tN − 0) by the
same amount.

All of the work that we have put into this single example will pay off,
because the facts that have emerged are of broad validity. Indeed we can
consider any function f satisfying our usual conditions as the sum of a con-
tinuous function for which the convergence is uniform everywhere and a finite
number of translated and scaled copies of h(t).

Theorem 6 Let f be a complex valued function such that

• f(t) is periodic with period 2π.

• f(t) is piecewise continuous on [0, 2π].

• f ′(t) is piecewise continuous on [0, 2π].

• f(t) = f(t+0)+f(t−0)
2

at each point t.

Then

f(t) =
a0

2
+
∞∑
n=1

(an cosnt+ bn sinnt)

pointwise. The convergence of the series is uniform on every closed interval
in which f is continuous.
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Proof: let x1, x2, · · · , x` be the points of discontinuity of f in [0, 2π) Set
s(xj) = f(xj + 0)− f(xj − 0). Then the function

g(t) = f(t)−
∑̀
j=1

s(xj)

π
h(t− xj)

is everywhere continuous and also satisfies all of the hypotheses of the theo-
rem. Indeed, at the discontinuity xj of f we have

g(xj−0) = f(xj−0)−2s(xj)

π
h(−0) = f(xj−0)−f(xj + 0)− f(xj − 0))

π
(
−π
2

)

=
f(xj − 0) + f(xj + 0)

2
= f(xj).

Similarly, g(xj + 0) = f(xj). Therefore g(t) can be expanded in a Fourier

series that converges absolutely and uniformly. However,
∑`

j=1
s(xj)

π
h(t−xj)

can be expanded in a Fourier series that converges pointwise and uniformly
in every closed interval that doesn’t include a discontinuity. But

f(t) = g(t) +
∑̀
j=1

s(xj)

π
h(t− xj),

and the conclusion follows. 2

Corollary 2 Parseval’s Theorem. For f satisfying the hypotheses of the
preceding theorem

|a0|2

2
+
∞∑
n=1

(|an|2 + |bn|2) =
1

π

∫ 2π

0

|f(t)|2dt.

Proof; As in the proof of the theorem, let x1, x2, · · · , x` be the points of
discontinuity of f in [0, 2π) and set s(xj) = f(xj + 0) − f(xj − 0). Choose
a ≥ 0 such that the discontinuities are contained in the interior of I =
(−a, 2π − a). From our earlier results we know that the partial sums of
the Fourier series of h are uniformly bounded with bound M > 0. Choose
P = supt∈[0,2π] |f(t)|. Then |Sk(t) − f(t)|2 ≤ (M + P )2 for all t and all k.
Given ε > 0 choose non-overlapping open intervals I1, I2, · · · , I` ⊂ I such
that xj ∈ Ij and (

∑`
j=1 |Ij|)(M + P )2 < ε

2
. Here, |Ij| is the length of the
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interval Ij. Now the Fourier series of f converges uniformly on the closed
set A = [−a, 2π − a] − I1 ∪ I2 ∪ · · · ∪ I`. Choose an integer N(ε) such that
|Sk(t)− f(t)|2 < ε

4π
for all t ∈ A, k ≥ N(ε). Then∫ 2π

0

|Sk(t)− f(t)|2dt =

∫ 2π−a

−a
|Sk(t)− f(t)|2dt =∫

A

|Sk(t)− f(t)|2dt+

∫
I1∪I2∪···∪I`

|Sk(t)− f(t)|2dt

< 2π
ε

4π
+ (
∑̀
j=1

|Ij|)(M + P )2 <
ε

2
+
ε

2
= ε.

Thus limk→∞ ||Sk − f || = 0 and the partial sums converge to f in the mean.
Furthermore,

ε >

∫ 2π

0

|Sk(t)− f(t)|2 dt = ||Sk − f ||2 = ||f ||2 − π(
|a0|2

2
+

k∑
n=1

(|an|2 + |bn|2)

for k > N(ε). 2

1.6 Mean convergence, Parseval’s equality, in-

tegration and differentiation of Fourier

series

The convergence theorem and the version of the Parseval identity proved
in the previous section apply to step functions on [0, 2π]. However, we al-
ready know that the space of step functions on [0, 2π] is dense in L2[0, 2π].
Since every step function is the limit in the norm of the partial sums of its
Fourier series, this means that the space of all finite linear combinations of
the functions {eint} is dense in L2[0, 2π]. Hence {eint/

√
2π} is an ON basis

for L2[0, 2π] and we have

Theorem 7 Parseval’s Equality (strong form) [Plancherel Theorem]. If f ∈
L2[0, 2π] then

|a0|2

2
+
∞∑
n=1

(|an|2 + |bn|2) =
1

π

∫ 2π

0

|f(t)|2dt,

where an, bn are the Fourier coefficients of f .

22



Integration of a Fourier series term-by-term yields a series with improved
convergence.

Theorem 8 Let f be a complex valued function such that

• f(t) is periodic with period 2π.

• f(t) is piecewise continuous on [0, 2π].

• f ′(t) is piecewise continuous on [0, 2π].

Let

f(t) ∼ a0

2
+
∞∑
n=1

(an cosnt+ bn sinnt)

be the Fourier series of f . Then∫ t

0

f(x)dx =
a0

2
t+

∞∑
n=1

1

n
[an sinnt− bn(cosnt− 1)] .

where the convergence is uniform on the interval [0, 2π].

Proof: Let F (t) =
∫ t

0
f(x)dx− a0

2
t. Then

• F (2π) =
∫ 2π

0
f(x)dx− a0

2
(2π) = 0 = F (0).

• F (t) is continuous on [0, 2π].

• F ′(t) = f(t)− a0

2
is piecewise continuous on [0, 2π].

Thus the Fourier series of F converges to F uniformly and absolutely on
[0, 2π]:

F (t) =
A0

2
+
∞∑
n=1

(An cosnt+Bn sinnt).

Now

An =
1

π

∫ 2π

0

F (t) cosnt dt =
F (t) sinnt

nπ

∣∣∣∣2π
0

− 1

nπ

∫ 2π

0

(f(t)− a0

2
) sinnt dt

= −bn
n
, n 6= 0,
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and

Bn =
1

π

∫ 2π

0

F (t) sinnt dt = −F (t) cosnt

nπ

∣∣∣∣2π
0

+
1

nπ

∫ 2π

0

(f(t)− a0

2
) cosnt dt

=
an
n
.

Therefore,

F (t) =
A0

2
+
∞∑
n=1

(−bn
n

cosnt+
an
n

sinnt),

F (2π) = 0 =
A0

2
−
∞∑
n=1

bn
n
.

Solving for A0 we find

F (t) =

∫ t

0

f(x)dx− a0

2
t =

∞∑
n=1

1

n
[an sinnt− bn(cosnt− 1)] .

2

Example 2 Let

f(t) =

{
π−t
2

0 < t < 2π
0 t = 0, 2π.

Then
π − t

2
∼

∞∑
n=1

sinnt

n
.

Integrating term-by term we find

2πt− t2

4
= −

∞∑
n=1

1

n2
(cosnt− 1), 0 ≤ t ≤ 2π.

Differentiation of Fourier series, however, makes them less smooth and
may not be allowed. For example, differentiating the Fourier series

π − t
2
∼

∞∑
n=1

sinnt

n
,
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formally term-by term we get

−1

2
∼

∞∑
n=1

cosnt,

which doesn’t converge on [0, 2π]. In fact it can’t possible be a Fourier series
for an element of L2[0, 2π]. (Why?)

If f is sufficiently smooth and periodic it is OK to differentiate term-by-
term to get a new Fourier series.

Theorem 9 Let f be a complex valued function such that

• f(t) is periodic with period 2π.

• f(t) is continuous on [0, 2π].

• f ′(t) is piecewise continuous on [0, 2π].

• f ′′(t) is piecewise continuous on [0, 2π].

Let

f(t) =
a0

2
+
∞∑
n=1

(an cosnt+ bn sinnt)

be the Fourier series of f . Then at each point t ∈ [0, 2π] where f ′′(t) exists
we have

f ′(t) =
∞∑
n=1

n [−an sinnt+ bn cosnt] .

Proof: By the Fourier convergence theorem the Fourier series of f ′ con-
verges to f ′(t0+0)+f ′(t0−0)

2
at each point t0. If f ′′(t0) exists at the point then

the Fourier series converges to f ′(t0), where

f ′(t) ∼ A0

2
+
∞∑
n=1

(An cosnt+Bn sinnt).

Now

An =
1

π

∫ 2π

0

f ′(t) cosnt dt =
f(t) cosnt

π

∣∣∣∣2π
0

+
n

π

∫ 2π

0

f(t) sinnt dt

= nbn,
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A0 = 1
π

∫ 2π

0
f ′(t)dt = 1

π
(f(2π)− f(0)) = 0 (where, if necessary, we adjust the

interval of length 2π so that f ′ is continuous at the endpoints) and

Bn =
1

π

∫ 2π

0

f ′(t) sinnt dt =
f(t) sinnt

π

∣∣∣∣2π
0

− n

π

∫ 2π

0

f(t) cosnt dt

= −nan.
Therefore,

f ′(t) ∼
∞∑
n=1

n(bn cosnt− an sinnt).

2

Note the importance of the requirement in the theorem that f is con-
tinuous everywhere and periodic, so that the boundary terms vanish in the
integration by parts formulas for An and Bn. Thus it is OK to differentiate
the Fourier series

f(t) =
2πt− t2

4
− π2

6
= −

∞∑
n=1

1

n2
cosnt, 0 ≤ t ≤ 2π

term-by term, where f(0) = f(2π), to get

f ′(t) =
π − t

2
∼

∞∑
n=1

sinnt

n
.

However, even though f ′(t) is infinitely differentiable for 0 < t < 2π we have
f ′(0) 6= f ′(2π), so we cannot differentiate the series again.

1.7 Arithmetic summability and Fejér’s the-

orem

We know that the kth partial sum of the Fourier series of a square integrable
function f :

Sk(t) =
a0

2
+

k∑
n=1

(an cosnt+ bn sinnt)

is the trigonometric polynomial of order k that best approximates f in the
Hilbert space sense. However, the limit of the partial sums

S(t) = lim
k→∞

Sk(t),
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doesn’t necessarily converge pointwise. We have proved pointwise conver-
gence for piecewise smooth functions, but if, say, all we know is that f is
continuous then pointwise convergence is much harder to establish. Indeed
there are examples of continuous functions whose Fourier series diverges at
uncountably many points. Furthermore we have seen that at points of dis-
continuity the Gibbs phenomenon occurs and the partial sums overshoot
the function values. In this section we will look at another way to recap-
ture f(t) from its Fourier coefficients, by Cesàro sums (arithmetic means).
This method is surprisingly simple, gives uniform convergence for continuous
functions f(t) and avoids most of the Gibbs phenomena difficulties.

The basic idea is to use the arithmetic means of the partial sums to
approximate f . Recall that the kth partial sum of f(t) is defined by

Sk(t) =
1

2π

∫ 2π

0

f(x)dx +

1

π

k∑
n=1

(∫ 2π

0

f(x) cosnx dx cosnt+

∫ 2π

0

f(x) sinnx dx sinnt

)
,

so

Sk(t) =
1

π

∫ 2π

0

[
1

2
+

k∑
n=1

(cosnx cosnt+ sinnx sinnt

]
f(x)dx

=
1

π

∫ 2π

0

[
1

2
+

k∑
n=1

cos[n(t− x)]

]
f(x)dx

=
1

π

∫ 2π

0

Dk(t− x)f(x)dx.

where the kernel Dk(t) = 1
2

+
∑k

n=1 cosnt = −1
2

+
∑k

m=0 cosmt. Further,

Dk(t) =
cos kt− cos(k + 1)t

4 sin2 t
2

=
sin(k + 1

2
)t

2 sin t
2

.

Rather than use the partial sums Sk(t) to approximate f(t) we use the
arithmetic means σk(t) of these partial sums:

σk(t) =
S0(t) + S1(t) + · · ·+ Sk−1(t)

k
, k = 1, 2, · · · . (1.7.12)
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Then we have

σk(t) =
1

kπ

k−1∑
j=0

∫ 2π

0

Dj(t− x)f(x)dx =

∫ 2π

0

[
1

kπ

k−1∑
j=0

Dj(t− x)

]
f(x)dx

=
1

π

∫ 2π

0

Fk(t− x)f(x)dx (1.7.13)

where

Fk(t) =
1

k

k−1∑
j=0

Dj(t) =
1

k

k−1∑
j=0

sin(j + 1
2
)t

2 sin t
2

.

Lemma 9

Fk(t) =
1

k

(
sin kt/2

sin t/2

)2

.

Proof: Using the geometric series, we have

k−1∑
j=0

ei(j+
1
2
)t = ei

t
2
eikt − 1

eit − 1
= ei

kt
2

sin kt
2

sin t
2

.

Taking the imaginary part of this identity we find

Fk(t) =
1

k sin t
2

k−1∑
j=0

sin(j +
1

2
)t =

1

k

(
sin kt/2

sin t/2

)2

.

2

Note that F has the properties:

• Fk(t) = Fk(t+ 2π)

• Fk(−t) = Fk(t)

• Fk(t) is defined and differentiable for all t and Fk(0) = k

• Fk(t) ≥ 0.

From these properties it follows that the integrand of (1.7.13) is a 2π-periodic
function of x, so that we can take the integral over any full 2π-period. Finally,
we can change variables and divide up the integral, in analogy with our study
of the Fourier kernel Dk(t), and obtain the following simple expression for
the arithmetic means:
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Lemma 10

σk(t) =
2

kπ

∫ π/2

0

f(t+ 2x) + f(t− 2x)

2

(
sin kx

sinx

)2

dx.

Exercise 7 Derive Lemma 10 from expression(1.7.13) and Lemma 9.

Lemma 11
2

kπ

∫ π/2

0

(
sin kx

sinx

)2

dx = 1.

Proof: Let f(t) ≡ 1 for all t. Then σk(t) ≡ 1 for all k and t. Substituting
into the expression from lemma 10 we obtain the result. 2

Theorem 10 (Fejér) Suppose f(t) ∈ L1[0, 2π], periodic with period 2π and
let

σ(t) = lim
x→0+

f(t+ x) + f(t− x)

2
=
f(t+ 0) + f(t− 0)

2

whenever the limit exists. For any t such that σ(t) is defined we have

lim
k→∞

σk(t) = σ(t) =
f(t+ 0) + f(t− 0)

2
.

Proof: From lemmas 10 and 11 we have

σk(t)− σ(t) =
2

kπ

∫ π/2

0

[
f(t+ 2x) + f(t− 2x)

2
− σ(t)

](
sin kx

sinx

)2

dx.

For any t for which σ(t) is defined, let Gt(x) = f(t+2x)+f(t−2x)
2

− σ(t). Then
Gt(x) → 0 as t → 0 through positive values. Thus, given ε > 0 there is a
δ < π/2 such that |Gt(x)| < ε/2 whenever 0 < x ≤ δ. We have

σk(t)− σ(t) =
2

kπ

∫ δ

0

Gt(x)

(
sin kx

sinx

)2

dx+
2

kπ

∫ π/2

δ

Gt(x)

(
sin kx

sinx

)2

dx.

Now ∣∣∣∣∣ 2

kπ

∫ δ

0

Gt(x)

(
sin kx

sinx

)2

dx

∣∣∣∣∣ ≤ ε

kπ

∫ π/2

0

(
sin kx

sinx

)2

dx =
ε

2
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and∣∣∣∣∣ 2

kπ

∫ π/2

δ

Gt(x)

(
sin kx

sinx

)2

dx

∣∣∣∣∣ ≤ 2

kπ sin2 δ

∫ π/2

δ

|Gt(x)|dx ≤ 2I

kπ sin2 δ
,

where I =
∫ π/2

0
|Gt(x)|dx. This last integral exists because F is in L1. Now

choose K so large that 2I/(Nπ sin2 δ) < ε/2. Then if k ≥ K we have

|σk(t)−σ(t)| ≤

∣∣∣∣∣ 2

kπ

∫ δ

0

Gt(x)

(
sin kx

sinx

)2

dx

∣∣∣∣∣+
∣∣∣∣∣ 2

kπ

∫ π/2

δ

Gt(x)

(
sin kx

sinx

)2

dx

∣∣∣∣∣ < ε.

2

Corollary 3 Suppose f(t) satisfies the hypotheses of the theorem and also
is continuous on the closed interval [a, b]. Then the sequence of arithmetic
means σk(t) converges uniformly to f(t) on [a, b].

Proof: If f is continuous on the closed bounded interval [a, b] then it is
uniformly continuous on that interval and the function Gt is bounded on [a, b]
with upper bound M , independent of t. Furthermore one can determine the
δ in the preceding theorem so that |Gt(x)| < ε/2 whenever 0 < x ≤ δ and
uniformly for all t ∈ [a, b]. Thus we can conclude that σk → σ, uniformly on
[a, b]. Since f is continuous on [a, b] we have σ(t) = f(t) for all t ∈ [a, b]. 2

Corollary 4 (Weierstrass approximation theorem) Suppose f(t) is real and
continuous on the closed interval [a, b]. Then for any ε > 0 there exists a
polynomial p(t) such that

|f(t)− p(t)| < ε

for every t ∈ [a, b].

Sketch of Proof: Using the methods of Section 1.3 we can find a lin-
ear transformation to map [a, b] one-to-one on a closed subinterval [a′, b′] of
[0, 2π], such that 0 < a′ < b′ < 2π. This transformation will take polyno-
mials in t to polynomials. Thus, without loss of generality, we can assume
0 < a < b < 2π. Let g(t) = f(t) for a ≤ t ≤ b and define g(t) outside that
interval so that it is continuous at T = a, b and is periodic with period 2π.
Then from the first corollary to Fejér’s theorem, given an ε > 0 there is an
integer N and
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arithmetic sum

σ(t) =
A0

2
+

N∑
j=1

(Aj cos jt+Bj sin jt)

such that |f(t) − σ(t)| = |g(t) − σ(t)| < ε
2

for a ≤ t ≤ b. Now σ(t) is
a trigonometric polynomial and it determines a poser series expansion in
t about the origin that converges uniformly on every finite interval. The
partial sums of this power series determine a series of polynomials {pn(t)} of
order n such that pn → σ uniformly on [a, b], Thus there is an M such that
|σ(t)− pM(t)| < ε

2
for all t ∈ [a, b]. Thus

|f(t)− pM(t)| ≤ |f(t)− σ(t)|+ |σ(t)− pM(t)| < ε

for all t ∈ [a, b]. 2

This important result implies not only that a continuous function on a
bounded interval can be approximated uniformly by a polynomial function
but also (since the convergence is uniform) that continuous functions on
bounded domains can be approximated with arbitrary accuracy in the L2

norm on that domain. Indeed the space of polynomials is dense in that
Hilbert space.

Another important offshoot of approximation by arithmetic sums is that
the Gibbs phenomenon doesn’t occur. This follows easily from the next
result.

Lemma 12 Suppose the 2π-periodic function f(t) ∈ L2[−π, π] is bounded,
with M = supt∈[−π,π] |f(t)|. Then |σn(t)| ≤M for all t.

Proof: From (1.7.13) and (10) we have

|σk(t)| ≤
1

2kπ

∫ 2π

0

|f(t+x)|
(

sin kx/2

sinx/2

)2

dx ≤ M

2kπ

∫ 2π

0

(
sin kx/2

sinx/2

)2

dx = M.

Q.E.D.
Now consider the example which has been our prototype for the Gibbs

phenomenon:

h(t) =


0, t = 0
π−t
2
, 0 < t < 2π

0, t = 2π.
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and h(t+ 2π) = h(t). Here the ordinary Fourier series gives

π − t
2

=
∞∑
n=1

sinnt

n
, 0 < t < 2π.

and this series exhibits the Gibbs phenomenon near the simple discontinuities
at integer multiples of 2π. Furthermore the supremum of |h(t)| is π/2 and
it approaches the values ±π/2 near the discontinuities. However, the lemma
shows that |σ(t)| < π/2 for all n and t. Thus the arithmetic sums never
overshoot or undershoot as t approaches the discontinuities, so there is no
Gibbs phenomenon in the arithmetic series for this example.

In fact, the example is universal; there is no Gibbs phenomenon for arith-
metic sums. To see this, we can mimic the proof of Theorem 6. This then
shows that the arithmetic sums for all piecewise smooth functions converge
uniformly except in arbitrarily small neighborhoods of the discontinuities
of these functions. In the neighborhood of each discontinuity the arithmetic
sums behave exactly as does the series for h(t). Thus there is no overshooting
or undershooting.

Remark 1 The pointwise convergence criteria for the arithmetic means are
much more general (and the proofs of the theorems are simpler) than for
the case of ordinary Fourier series. Further, they provide a means of getting
around the most serious problems caused by the Gibbs phenomenon. The tech-
nical reason for this is that the kernel function Fk(t) is nonnegative. Why
don’t we drop ordinary Fourier series and just use the arithmetic means?
There are a number of reasons, one being that the arithmetic means σk(t)are
not the best L2 approximations for order k, whereas the Sk(t) are the best L2

approximations. There is no Parseval theorem for arithmetic means. Fur-
ther, once the approximation Sk(t) is computed for ordinary Fourier series,
in order to get the next level of approximation one needs only to compute two
more constants:

Sk+1(t) = Sk(t) + ak+1 cos(k + 1)t+ bk+1 sin(k + 1)t.

However, for the arithmetic means, in order to update σk(t) to σk+1(t) one
must recompute ALL of the expansion coefficients. This is a serious practical
difficulty.
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1.8 Additional Exercises

Exercise 8 (1) Let X be the Eucldean space Cn of all n ≥ 1 tuples (x1, .., xn)
of complex numbers. For x, y ∈ X, define

(x.y) =
n∑
j=1

xjyj

where z denotes the complex conjugate of z ∈ C. Show that (; .; ) sat-
isfies the properties of positivity, homogeneity and linearity and with
symmetry, replaced by compex symmetry (x, y) = (x, y). Hence (; .; )
defines a compex inner product on X.

(2) Define ||x|| =
√

(x, x) for x ∈ X and verify directly that (1) ||; || is a
norm on X, (2) that the Cauchy-Schwartz inequality

|(x, y)| ≤ ||x||||y||

holds on X and (3) that the parallelogram law

||x+ y||2 + ||x− y||2 = 2||x||2 + 2||y||2

holds on X.

Exercise 9 Let X b the space R[−π, π] with inner product

(f, g) =
1

π

∫ π

−π
f(x)g(x)dx.

Show that the sequence of functions{
1√
2
, cos(x), sin(x), cos(2x), sin(2x), .....

}
is an orthonormal sequence in X.

Exercise 10 Let X = R[−1, 1] with inner product

(f, g) =

∫ 1

−1

f(x)g(x)dx.
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Find polynomials P0, P1, P2 of degree 0, 1, 2 respectively such that for j, k =
0, 1, 2

(Pj, Pk) = δj,k =

{
0, j 6= k
1, j = k

Hint: First find P0(x) = c satisfying (P0, P0) = 1. Next, find P1(x) = a+ bx
satisfying

(P1, P0) = 0, (P1, P1) = 1.

Next, find P2(x) = d+ ex+ fx2 satisfying

(P2, P0) = (P2, P1) = 0, (P2, P2) = 1.

This procedure can be continued indefinitely and is called the Gram-Schmidt
process.

Exercise 11 Let f(x) = x, x ∈ [−π, π].

(a) Show that f(x) has the Fourier series

∞∑
n=1

2

n
(−1)n−1 sin(nx).

(b) Let α > 0. Show that f(x) = exp(αx), x ∈ [−π, π] has the Fourier
series (

eαπ − e−απ

π

)(
1

2α
+
∞∑
k=1

(−1)k
α cos(kx)− k sin(kx)

α2 + k2

)
.

(c) Let α be any real number other than an integer. Let f(x) = cos(αx), x ∈
[−π, π]. Show that f has a Fourier series

sin(απ)

απ
+

1

π

∞∑
n=1

[
sin(α + n)π

α + n
+ +

sin(α− n)π

α− n

]
cos(nx).

(d) Find the Fourier series of f(x) = −α sin(αx), x ∈ [−π, π]. Do you
notice any relationship to that in (c)?

(e) Find the Fourier series of f(x) = |x|, x ∈ [−π, π].
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(f) Find the Fourier series of

f(x) = sign(x) =


−1, x < 0
0, x = 0
1, x > 0

Do you notice any relationship to that in (e)?

Exercise 12 Show that if f ∈ R[−π, π] is odd, then all its Fourier cosine
coefficients an = 0, n ≥ 0 so f has a Fourier series

∑∞
n=1 bn sin(nx). Like-

wise, if f is even, show that all its Fourier sine coeffcients bn = 0, n ≥ 0 and
f has a Fourier series a0/2 +

∑∞
n=1 an cos(nx).

Exercise 13 By substituting special values of x in convergent Fourier series,
we can often deduce interesting series expansions for various numbers, or just
find the sum of important series.

(a) Use the Fourier series for f(x) = x2 to show that

∞∑
n=1

(−1)n−1

n2
=
π2

12
.

(b) Prove that the Fourier series for f(x) = x converges in (−π, π) and
hence that

∞∑
l=0

(−1)l

2l + 1
=
π

4
.

(c) Show that the Fourier series of f(x) = exp(αx), x ∈ [−π, π) converges

in [−π, π) to exp(αx) and at x = π to exp(απ)+exp(−απ)
2

. Hence show
that

απ

tanh(απ)
= 1 +

∞∑
k=1

2α2

k2 + α2
.

(d) Show that

π

4
=

1

2
+
∞∑
n=1

(−1)n−1

4n2 − 1
.
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(e) Show that
∞∑
l=0

1

(2l + 1)2
=
π2

8
.

Exercise 14 Let f ∈ R[−π, π] be 2π periodic and let σn, n = 0, 1, 3, ... de-
note its Fejer means. Show that

max {|σn(x)| : x ∈ [−π, π]} ≤ sup {|f(x)| : x ∈ [−π, π]} .

Exercise 15 The following exercise concerns an extension of Parsevals for-
mula to R[−π, π]. Consider R[−π, π] with inner product

(f, g) =
1

π

∫ π

−π
f(x)g(x)dx, f, g ∈ R[−π, π]

and ||f || =
√

(f, f). Fix f ∈ R[−π, π] and ε > 0.

(a) Because f ∈ R[−π, π], choose a partition

−π = x0 < x1 < x2 < ... < xn = π

such that if

Mj := sup {f(x) : x ∈ [xj−1, xj]} , mj := inf {f(x) : x ∈ [xj−1, xj]} , j = 1, ..., n

then
n∑
j=1

(Mj −mj)(xj − xj−1) < ε.

Now define g(x) := Mj, x ∈ [xj−1, xj), 1 ≤ j ≤ n and g(b) arbitrarily.
Show that ∫ π

−π
|f(x)− g(x)|dx < ε.

(b) Show that there is a continuous function h : [−π, π]→ R such that∫ π

−π
|g(x)− h(x))|dx < ε

and
|h(x)| ≤M = max {|M1|, ..., |Mn|} , x ∈ [−π, π].

Hint: Sketch the graph of g and modify g near each xj.
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(c) Deduce that ∫ π

−π
|f(x)− h(x))|dx < 2ε

and

||f − h||2 =
1

π

∫ π

−π
|f(x)− h(x))|2dx < 4ε

π
M∗

where M∗ = sup {|f(x)| : x ∈ [a, b)}.

(d) Deduce that given any f ∈ R[−π, π] and δ > 0, we can find a continuous
h : [−π, π]→ R such that ||f − h|| < δ/2 and hence, that there exists a
trigonometric polynomial t such that

||f − t|| < δ.

(e) Let Sn be the sequence of partial sums of the Fourier series of f . Show
that

lim
n→∞

||f − Sn|| = 0.

(f) If (an) and (bn) are the Fourier series coefficients of f , deduce that

a2
0/2 +

∞∑
n=1

(a2
n + b2n) =

1

π

∫ π

−π
f 2(x)dx.

This is Parseval’s identity for R[−π, π].

Exercise 16 By applying Parsevals identity to suitable Fourier series:

(a) Show that
∞∑
n=1

1

n2
=
π2

6
.

(b) Show that
∞∑
n=1

1

n4
=
π4

90
.

(c) Evaluate
∞∑
n=1

1

α2 + n2
, α > 0.
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(d) Show that
∞∑
l=0

1

(2l + 1)4
=
π4

96
.

Exercise 17 Is
∞∑
n=1

cos(nx)

n1/2

the Fourier series of some f ∈ R[−π, π]? The same question for the series

∞∑
n=1

cos(nx)

log(n+ 2)
.

Exercise 18 Show that

Π∞n=2

(
1− 2

n(n+ 1)

)
= 1/3.

Exercise 19 Show that

Π∞n=1

(
1 +

6

(n+ 1)(2n+ 9)

)
= 21/8.

Exercise 20 Show that

Π∞n=0(1 + x2n

) =
1

1− x
, |x| < 1.

Hint:(Multiply the partial products by 1− x.)

Exercise 21 Let a, b ∈ C and suppose that they are not negative integers.
Show that

Π∞n=1

(
1 +

a− b− 1

(n+ a)(n+ b)

)
=

a

b+ 1
.

Hint: Note that (b+1)
(a−1)

= ab+ a− b− 1, (b+ 1) + (a− 1) = a+ b.

Exercise 22 Is Π∞n=0(1 + n−1) convergent?

Exercise 23 Prove the inequality

0 ≤ eu − 1 ≤ 3u, u ∈ (0, 1)

and deduce that Π∞n=1

(
1 + 1

n
[e1/n − 1]

)
converges.
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Exercise 24 The Euler Mascheroni Constant. Let

Hn =
n∑
k=1

1

k
, n ≥ 1.

Show that 1/k ≥ 1/x, x ∈ [k, k + 1] and hence that

1/k ≥
∫ k+1

k

1/xdx.

Deduce that

Hn ≥
∫ n+1

1

1/xdx = log(n+ 1)

and that

[Hn − log(n+ 1)]− [Hn − log n] =
1

n+ 1
+ log

(
1− 1

n+ 1

)
= −

∞∑
k=2

(
1

n+ 1

)k
/k < 0.

Deduce that Hn− log n decreases as n increases and thus has a non-negative
limit γ, called the Euler-Mascheroni constant and with value approximately
0.5772... not known to be either rational or irrational. Finally show that

Πn
k=1(1 + 1/k)e−1/k = Πn

k=1(1 + 1/k)Πn
k=1e

−1/k =
n+ 1

n
exp(−(Hn − log n)).

Deduce that
Π∞k=1(1 + 1/k)e−1/k = e−γ.

Many functions have nice infinite product expansions which can be de-
rived from first principles. The following examples illustrate some of these
nice expansions.

Exercise 25 The aim of this exercise, is to establish Euler’s reflection for-
mula:

Γ(x)Γ(1− x) =
π

sin(πx)
, Re(x) > 0.
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Step 1: Set y = 1− x, 0 < x < 1 in the integral∫ ∞
0

sx−1

(1 + s)x+y
ds =

Γ(x)Γ(y)

Γ(x+ y)

to obtain

Γ(x)Γ(1− x) =

∫ ∞
0

tx−1

1 + t
dt.

Step 2: Let now C consist of 2 circles about the origin of radii R and ε
respectively which are joined alog the negative real axis from R to −ε. Show
that ∫

C

zx−1

1− z
dz = −2iπ

where zx−1 takes its principle value.

Now let us write,

−2iπ =

∫ π

−π

iRx exp(ixθ)

1−R exp(iθ)
dθ +

∫ ε

R

tx−1 exp(ixπ)

1 + t
dt

+

∫ π

−π

iεx exp(ixθ)

1− ε exp(iθ)
dθ +

∫ R

ε

tx−1 exp(−ixπ)

1 + t
dt.

Let R→∞ and ε→ 0+ to deduce the result for 0 < x < 1 and for Rex 0 by
continuation.

Exercise 26 Using the previous exercise, derive the following expansions for
all arguments the RHS is meaningful.

(1)
sin(x) = xΠ∞j=1

(
1− (x/jπ)2) .

(2)

cos(x) = Π∞j=1

(
1−

(
x

(j − 1/2)π

)2
)
.

(3) Eulers product formula for the Gamma function.

xΓ(x) = Π∞n=1

[
(1 + 1/n)x(1 + x/n)−1

]
.
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(4) Weierstrass’s product formula for the Gamma function

(Γ(x))−1 = xexγΠ∞k=1

[
(1 + x/k)e−x/k

]
.

Here, γ is the Euler-Mascheroni constant.

Exercise 27 Define

H(z) = Π∞n=0

(
1 + azqn

1− zqn

)
, |q| < 1, |z| < 1, |a| < 1.

(i) Show that

H(z) = Π∞n=0

(
1 +

(a+ 1)zqn

1− zqn

)
converges absolutely.

(ii) Show that
(1− z)H(z) = (1 + az)H(zq).

(iii) Write

H(z) =
∞∑
n=0

Anz
n, A0 = 1.

Use (ii) to show that

(1− qn)An = (1 + aqn−1)An−1, n ≥ 1

Deduce that

An =
(1 + a)(1 + aq)...(1 + aqn−1)

(1− q)(1− q2)...(1− qn)
, n ≥ 1.

So for |z| < 1,

1 +
∞∑
n=1

(1 + a)(1 + aq)...(1 + aqn−1)

(1− q)(1− q2)...(1− qn)
zn = Π∞n=0

(
1 + azqn

1− zqn

)
.

(iv) Deduce that if 0 < |b| < |a| and |zb| < 1,

1 +
∞∑
n=1

(
(b+ a)(b+ aq)...(b+ aqn−1)

(1− q)(1− q2)...(1− qn)

)
zn = Π∞n=0

(
1 + azqn

1− bzqn

)
.
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Exercise 28 Let D(n) denote the number of partitions of n into distinct
parts (that is, n=sum of positive integers, all different). For example, D(5) =
2 as 5 = 4 + 1, 5 = 3 + 2. Show formally that

∞∑
n=0

D(n)qn = Π∞j=1(1 + qj).
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