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CONFORMAL KILLING TENSORS AND VARIABLE SEPARATION
FOR HAMILTON-JACOBI EQUATIONS*

E. G. KALNINS' AND WILLARD MILLER, JR.*

Abstract. Every separable coordinate system for the Hamilton-Jacobi equation g/ W;W;=0 corresponds
to a family of n— 1 conformal Killing tensors in involution, but the converse is false. For general n we find a
practical characterization of those families of conformal Killing tensors that correspond to variable separa-
tion, orthogonal or not.

1. Introduction. This paper is devoted to the separation of variables problem for
the Hamilton—Jacobi equation

(1.1) gl WIW, =0, gl=gl} 1<i,j<n

and the explicit relation between variable separation and second order conformal
Killing tensors on the (local) manifold V, with metric tensor {g,;} analytic in the local
coordinates {x'}. (Here all coordinates and tensors are complex valued and we adopt
the notation in Eisenhart’s book [1].) Equation (1.1) is intimately related to the separa-
tion of variables problem for the Laplace or wave equation,

(12) Lo (fgga,4)=0, g=dei(g,).
Vg

It is straightforward to show that any coordinate system yielding (product) R-separa-
tion of (1.2) also yields (additive) separation of (1.1). (We have also shown for flat
space and n =3, 4 that the converse holds, i.e., the two equations separate in exactly the
same coordinate systems, orthogonal or not [2], [3].)

In 1891 Stackel [4] showed that (1.1) is additively separable in the orthogonal
coordinate system {x'} if and only if there exists a nonzero function Q(x’) such that
the metric d§? where

(1.3) ds*=g, dx'dx/= H(dx’)’ = Qh?(dx’)’ = Qds>
can be expressed in Stdckel form:

(S}
(1.4) h?:E’ 1:1’. N

where O is a Stickel determinant, ® =det(,,), (4,,(x*)) is a Stickel matrix (row k
depends only on the variable x*), and ©! is the (i, 1)-cofactor of this matrix. Thus the
condition for additive separation of (1.1) in coordinates {x/} is that ds? is conformal to
a metric d§? in Stickel form. Separable solutions of (1.1) take the form W=3"_ B,(x").

Moon and Spencer [5] show that (1.2) admits orthogonal R-separable solutions,
i.e., solutions of the form ¢ =eRII7_, 4,(x") where R is a fixed function, if and only if
(1) ds? is conformal (with factor Q') to a Stickel form metric d§2, (2) that

2R n
(1.5) —Q%—zgfi(xi), Y=H,H,,--,H,,
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and (3) that eR satisfy

¢ 8/ -R —R
(1.6) > ®—f3xj(fjaxje )+ae =0
j=1 Y

where a is a constant. (See, however, [6] for a discussion of condition (1.6).) In practice,
to determine the orthogonal R-separable coordinate systems for the Laplace equation
on the manifold ¥V, one first finds all orthogonal separable systems for the Hamilton—
Jacobi equation (1.1) and then determines for each system whether or not conditions
(1.5) and (1.6) can be satisfied. For nonorthogonal coordinates the relationship is
similar but more complicated, see [2], [3].

The relation between variable separation for (1.1) and conformal Killing tensors
on V, is most conveniently presented in terms of the symplectic structure on the
cotangent bundle ¥, of this manifold. Corresponding to local coordinates {x/} on ¥,
we introduce coordinates {x/,p;} on V,. New coordinates {£*(x')} on ¥, correspond to
coordinates {%*,p,} on V, where p, =p,dx' /3%*. The Poisson bracket of two functions
F(x’,p,), G(x/,p,) on V, is given by

(1.7) [F,G]=8x/F8p,G—8plFasz.

Let

(1.8) H=g"p,p;.

A first order symmetry of (1.1) is a linear function L in the momenta p;,
(1.9) L=¢(x)p;

such that

(1.10) [L,H]=p(x)H

for some analytic function p. Clearly, L is a symmetry if and only if {£/} is a conformal
Killing vector for ¥, [1]. Indeed it is straightforward to show that (1.10) is equivalent to

(1.11) gi,j+£j,i:pgij

where §, ; is the jth covariant derivative of ;. Similarly a second order symmetry of (1.1)
is a quadratic function

(1.12) A=a"(x)p,p;, a’=a’,
such that
(1.13) [4,H]=(Q"(x)p,)H
where the {Q'} are analytic. Condition (1.13) is equivalent to
1
(1.14) a;;,tag i+ Gjk,i=> (Qigjk+ 0,8t ngki)’

i, {a"} (or {a;;}) is a conformal Killing tensor of order 2. It is obvious that p(x)H is a
(trivial) conformal Killing tensor for any analytic function p. Thus by addition of
multiples pH of H if necessary, one could assume that every nontrivial conformal
Killing tensor is traceless, a;=0. (We shall ordinarily not make this assumption.) Note
that then the Q, can be expressed simply in terms of the components of a traceless A:
Q,=(4/(n+2))ai . For future use we also note that the condition for two quadratic
functions 4 and B=5b"p, p; to be in involution, i.e., [4, B]=0, is

(1.15) a,; bit+a bl+a, bi=b,; a;+b,, ai+b, al.
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We can now state the basic relation between separation of variables for (1.1) and
conformal Killing tensors: To every orthogonal coordinate system { '} which permits
additive separation of variables in (1.1), there correspond n— 1 second order conformal
Killing tensors 4,,- - -,A4, _, which are in involution and such that {H,4,,---,4,_,} is
linearly independent. The separable solutions W=37_ W¥)(y*) are characterized by
the relations

(t16)  H(yp)=0.  4(y.p)=\.  I=1-n—1 p=0,W,

where A,,---,A,_, are the separation constants. The basis tensors 4, are of course not
unique, but the space spanned by these tensors is uniquely determined. (A new proof of
this correspondence is contained in Theorems 4 and 7 to follow. Expressions (1.16) are
then obvious from Stéckel’s construction.) For nonorthogonal separable coordinates,
the same characterization is valid except that one or more of the A4, are conformal
Killing vectors. For n=<4 all possible separable systems and their corresponding confor-
mal Killing tensors have been explicitly determined [2], [3].

A remaining problem with the theory is that there exist involutive families of n— 1
conformal Killing tensors that are not related to any separable coordinate system. In
this paper we give a complete solution to this problem. That is, we provide directly
verifiable necessary and sufficient conditions for a family of conformal Killing tensors
to determine a separable coordinate system for (1.1), and we show how to compute the
separable coordinates from the given tensors. In §2 we study the case of orthogonal
separable coordinates where the Killing tensor characterization is especially simple.
Finally, in §3 we treat the general nonorthogonal case. The results of this paper are a
nontrivial extension of the results in [7], [8] for the equation g/ 9, d,W=E with E+0.

2. The orthogonal case. Let {x/} be a local orthogonal coordinate system on V,
and let ds’=g, dx'dx/=H}(dx’)* be the metric for ¥, as expressed in these
coordinates. It follows from (1.3) and (1.4) that the Hamilton—Jacobi equation (1.1) is
separable in the {x'} if and only if there exists an analytic function Q(x) such that
H;= Qh where the metric d§>=h?(dx’) is in Stickel form. We begin our study of such
“conformally Stackel” metrics by deriving a more convenient characterization for them.

It is well known that the metric d§? is in Stickel form with respect to the
coordinates {x/} if and only if the conditions

@.1) aﬁmﬁ 3 aln@,? dInh? N alnﬁf dInh? LY alnﬁi _
ox/oxk  dx/  oxk ox/  oxk oxk  9x/

are satisfied [1, App. 13]. Let d§>=K *(dx/)* where K?=h}/h%; in particular K?=1. A
straightforward computation using (2.1) yields

LEMMA 1. If the metric d§*=h%(dx’)? is in Stickel form then so is the metric
d52=h2ds>.

Now let ds®>=H?(dx/)>=Qds*. If d§* is in Stickel form, then by Lemma 1 the
metric H, >ds>=h;;*ds§? is also in Stickel form. Conversely, if H; 2ds? is in Stickel
form then ds*= H?2(H, *ds*) is conformal to a Stickel form metric. This proves

LEMMA 2. ds*=H?(dx’)* is conformal to a Stickel form metric if and only if the
coefficients H satisfy the conditions

0, Jj#k,

?InK? 9InK? dlnK? dInK? ImK? JinK? dInK}
(2.2) e +— + =

ax/ox*  9x/  oxk ox/  dx* axk  ax/
where K}=H?/H_.

0, Jj#k,
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Note that for i =n, equations (2.2) are satisfied identically and for k=n they read
2InK2 9lnk? dln(K2/K?2)
(2.3) ——+ : m
dx’ox" dx/ dx

THEOREM 1. Let A be a second order conformal Killing tensor such that the n roots
p(x)," -+, p,(x) of the characteristic equation

(2.4) det(a;;—pg,;)=0

are pairwise distinct. Furthermore, suppose the eigenvector fields corresponding to these n
roots are normalizable, i.e., there exists a coordinate system { y’} on V, such that

=0, Jj#n.

i - N2 . ; . 2
(2.5) ds*=g dx'dx’=H}dy’)", Y=a,dx'dx/=pH}(dy’)".

Then the Hamilton—Jacobi equation (1.1) is separable in the coordinates { y’3.
Proof. Conditions (1.14) for A are equivalent to

(2.6) ay,ln(”’;f") =0, I#k.
Hy

Setting p,=p,—p,, a=1,---,n—1, we see that these equations can be written in the
form

a) aaln( ”2)— a=1,---,n—1,

B,

2.7 b) d nln(—2) 0,

<) ( =0, I1<a,B=n—1, a#p,
or

0ump= (1g— o), In( HZ ) +pd,InH2,  aB,
(2.8) Qb= 0y In( H?),
anl"l‘a:”‘aanln(Ho%)'

The integrability conditions 9,0.u,=d.0;,u, for the system (2.8) can be written in the
‘ ijla JUira
orm
H2 H2 H2
B B —
(up—,u,a)[aaﬁln(? Hz)aﬂln( HZ)]—O, aF*p,
H} H} H,
B B B
(p,y—,u,a)[aayln(;{’z —a In (—2)8 ln(H
2 2 H2 H2
o _Y B —
29) e (_) o\ H,%)““(Hz)] >
a, B,y pairwise distinct,

ool ) oo 22

2
Hj H?
-;Iz)al (H2)]:0, Ol?é,B.

+9,1n

+9,1n

+3,In
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Since the p; are pairwise distinct by assumption, we have pg—p,#0 for a#p, so
conditions (2.9) become

9’2InK? 9InK? dInK? dInkK? dInK? JInK? dlnK?
- + +

2.10 A , : —=0, i+ k,
(2.10) ay/ay* ayf ay* oy’ oyk ayk 0y’ /
where K?=H?/H_, i=1,---,n. It follows from Lemma 2 that H>(dy’)* is conformal
toa Stackel metrlc hence (1 1) separates in the coordinates { y/}. Q.E.D.

Note that if (1.1) is separable in the coordinates {y’}, then equations (2.10) hold
and the integrability conditions for the system (2.8) are satisfied identically. Thus (2.8)
admits a basis of n— 1 vector solutions {p{#)}, B=1,- - -,n— 1. This proves

THEOREM 2. Necessary and suffzczent condmons that the metric ds*=g, Sdx!dx/
=H 2(dyf )2 on V, is conformal to a Stickel form metric with respect to the coordinates
(v} are:

1) The space admzts n—1 conformal Killing tensors a(ﬂ) B=1,---,n—1 such that
the n tensors {g; ;, at } form a linearly independent set at each point x.

2) The roots p('g) for each of the characteristic equations det(a{®)—p®)g, )=0 are

simple.

3)

(2.11) (a®—piPg, )Nwy=0,  h=1,--,n, B=1,---,n—1,

where p\P),- - -, oP) are the roots of a{ and X ,,=dx' /dy".

Note that condition 3) requires the vector fields 7\(]), *+,N(, to be normal and to
satisfy equations (2.11) for all B. Theorem 2 and its proof are patterned after the
corresponding theorem due to Eisenhart which relates Killing tensors and (true) Stackel
forms [1], [9]. The theorem is not very useful in a practical sense because of the
difficulty in deciding when the vector fields {X,)} defined by (2.11) are normalizable,
i.e., when there exists an orthogonal coordinate system { y '} such that {X( m} is orthog-
onal to the coordinate surface y”*=const, for each h=1,-- -, n.

To solve this problem we recall some classical results in differential geometry that
can be found in Fisenhart’s book [1]. Given a family of orthogonal vector fields
{N (%), 1=h=n} we define their coefficients of rotation vy, by

see [1,p. 97]. A necessary and sufficient condition that there exist coordinates { y*} and
nonzero invariant functions f, such that X;,)=(3x'/d YV, h=1,---,n, is

(2.13) Yue=0, 1=<Lh,k<n, h,k,Ipairwise distinct.
Let a;; be a tensor field with n roots p,,- - -,p, (not necessarily distinct) and let {N( iy
bea correspondmg orthonormal set of eigenvectors:
(2.14) (aij_phgij)}\i(h):()’ h=1,---,n,
(2.15) NopA =8,  1=h,k=n.
It follows easily from (2.12), (2.14) and (2.15) that
(2.16) aij,kN(h)A{l)sz):(ph_pl)thm9 h#1.
From (2.13) we find
THEOREM 3 (Eisenhart [1,p. 118]). If a;; has pairwise distinct roots p,,- - -, p, then the

vector fields {N,,} are normalizable if and only if
(2.17) a; NoNpNewy =0, i<h,l,m=n, h,l,m distinct.
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This leads us to our fundamental result:

THEOREM 4. Necessary and sufficient conditions that the orthogonal coordinate system
{»/} be separable for the Hamilton-Jacobi equation (1.1) are the existence of n—1
quadratic functions A®), B=1,- - - ,n—1, (1.12), such that:

1) The {A‘®} are second order symmetries of (1.1), i.e., the {a{P} are conformal
Killing tensors.

2) The {A'®} are in involution: [ AV, AP]1=0, 1<a,f=n—1.

3) The set {H,AD,- - -, A"~ Y} is linearly independent (as n quadratic forms at each
point X).

4) At least one of the quadratic forms, say AV, has pairwise distinct roots.

5) In any local coordinate system {x’} the quadratic forms satisfy the algebraic
commutation property

(2.18) a{PalP=a{Pa.
(This property is independent of local coordinates.)
Proof. We suppose that conditions 1)-5) are satisfied. Conditions 4) and 5) imply

that the quadratic forms can be simultaneously diagonalized by a family of orthonor-
mal vector fields. In local coordinates {x’} we have

(2.19) (a®—pPg )Npy=0,  h=1,--,n, B=1,---,n—1,

where p®),- -+, p#) are the roots of a{# and N, A ,;=8,,. Setting pi =1, for h=
1 n Ie ij MM k)i~ Onk g
1,- - -,n we can express condition 3) as

(2.20) det(p{) 0.

Furthermore, by (1.14), (1.15), (2.16), and (2.19), conditions 1) and 2) imply
o A e

(2.21) det| 1 1 1 | =0, 1=<=a=<n—1, h,l,mdistinct,
Ymht  Yimh  Yhim

and
pi Py o
(2.22) det e P o =0, I=a<f=n—1.

Yhim T Yimn Yuim Y Yont  Ynt T Yiman

From (2.20) and (2.21) we have ¥,,,,=Yj;ms= Yaim- Substituting this result into (2.22)
and using (2.20) we find ¥,,,,= Yjms = Ynm=0. Thus, by (2.13) the vector fields {\/,)}
are normalizable. It then follows from Theorem 2 that the {A‘®)} determine an orthog-
onal separable coordinate system {y’}.

Conversely, given an orthogonal separable coordinate system { y/} for (1.1), we see
from the definition of separability, (e.g., (3.5)), that H=fH’ for some function f where
H’ is in Stickel form with respect to these coordinates. It follows from [7, Thm. 6], that
there exist Killing tensors (with respect to H') A4,,---,4, , that satisfy properties
2)-5). It is obvious that the 4, are conformal Killing tensors for H. Q.E.D.

3. The general case. We now examine the separation for variables problem for
(1.1) for the more general case in which the separable coordinates may be nonorthog-
onal. Our definition of variable separation is identical with that presented in [2], [3] and
is based on a division of the separable coordinates into three classes: ignorable, essential
of type 1 and essential of type 2. Let {x’} be a coordinate system on V, with con-
travariant metric tensor (g"/) and such that the first n, coordinates x* are essential of
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type 1, the next n, coordinates x" are essential of type 2, and the last n, coordinates x*
are ignorable, n=n,+n,+n,. (In the following, indices a,b,c range from 1 to n,
indices r,s,t range from n,+1 to n,+n,, indices «, B8,y range from n,+n,+1 to n,
and indices i,j, k range from 1 to n.) This means that in terms of the coordinates {x’}
the metric satisfies g'*=Qg* where 9,8*=0, a=n,+n,+1,---,n, and that the sep-
aration equations take the form

(3.1) W2+ 3 ASB(x )W W=, (x%N),
a’B
(3.2) 23 B WW,+ 3 CoB(x )W W=D (x",]),
a a,B
(3.3) W=\,

Here A%F(=452), C*A(=CF*) and ®, are defined and analytic in a neighborhood
N C C™™*" of some given point (x},- - -,x1*"2). Furthermore,

n+n,
(3.4) O,(xA)= Nb(x"), i=1,---,n+n,,
j=2
where the complex parameters A,,- - -, A, are arbitrary and the vectors 8>\j<i>, Jj=2,---,

n,+n, are linearly independent for x EN.
We say that the coordinates {x/} are separable for the H-J equation

(3.5) 28 aWaWw=0

if there exist analytic functions 4, B, C,® above and functions U,(x"), ¥V,(x'), analytic
in N, such that (3.5) can be written in the form

(3.6) S U, +3 V8,0

(idel(lt)ically in the parameters A,,---,A, ., ), where W=37_ WU)(x/), W,=3,W=
oW,

The functions U,, V, are uniquely determined by (3.6) up to an arbitrary mul-
tiplicative factor Q(x). To analyse the structure of these solutions it is convenient to
introduce an (n,+n,)X(n,+n,) Stickel matrix (6,,(x"), i,j=1,---,n,+n, whose
first column (not unique) is subject only to the condition © =det(, ;)70 and whose
remaining columns are determined by (3.4). Then

_ Q@al _ Q@rl
(37) Ua— e ° V;_ ®

where @™ is the (Im)-cofactor of the matrix (6, ;)- The nonzero components of the
contravariant metric tensor are thus

ab — Q®al ab ra— jor — Q@rl) af .r
g —( @ )8 s g =8 _( @ Br ('x ),

1 af a,B( a @al a,B( 1 @rl
(3.8) 58=0| 24P (x) g +2C (x5 |, a#B,

o — o, a ®al o, r ®r1
o= Sap () G+ 3o S .



CONFORMAL KILLING TENSORS FOR HAMILTON—JACOBI EQUATIONS 133

Furthermore,

(3.9) 2 A, otherwise,

”'*”2@)’"’ {0 ifm=1,
=1

SO,
H(x,p)=g"p,p;=0,

(3'10) Am(x’p)Eaé{n)ptpj:}\m9 m=29”"nl+n29
L (x’p)Epa:Aa’ :a 14

where the nonzero terms of the symmetric quadratic form (a(),,) are

a —_ @ a roa — @)rm a
afl = ( )8 b afs, = (9 )B
o
C)

1

(3.11) .

Qrm
a?rﬁ)—EA?,B +2Cra’ﬂ_—> a7 B,
r

ao — a,o o a,a @rm
a(m)—gAc —®—+§ g
It follows immediately from [8, Thm. 2] that
(a) A,,, L, are conformal Killing tensors,
(3.12)
(b) [4,41=0, [4,,L,]=0, [L,, Lz]=0.

Note that while relations (3.6) determine the coordinates and the metric in an essen-
tially unique manner, there is some freedom of choice for the conformal Killing tensors
A,,, due to the nonuniqueness of the first column in the Stickel matrix. (This freedom
is due to the fact that we may replace 4,, by A4,,+f(x)H without altering relations
(3.10).)

We shall now analyse the structure of these separation equations and their rela-
tionship to the commutation properties (3.12). First we derive practical, necessary and
sufficient conditions to determine if a given coordinate system {x/} yields separation
for the Hamilton—Jacobi equation (1.1). Let g/ be the components of the contravariant
metric tensor in these coordinates. It is convenient to reorder the coordinates in a
standard form. Let n, be the number of ignorable variables x*. Of the remaining n—n,
variables, suppose n, variables x” have the property g””=0 and the remaining #,
variables x¢ satisfy g““#0. We relable the variables so that 1<a<n,, n,+1<n=<n;+
ny,and n,+n,+1<a<n.

THEOREM 5. Suppose (g") is in standard form with respect to the variables {x'}. The
Hamilton—Jacobi equation (1.1) is separable for this system if and only if:

1) The contravariant metric assumes the form

n nj nj
8””Ha‘2 0 0 n,
(g")= 0 0 H?B | n,

0 Hr—zBru gaB n3

where BX=B(x").
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2) The metric ds?=3"_ H2(dx“)*+ E;“;;,'l’}r (H2(dx")? is conformal to a Stickel
form metric, i.e., relations (2.2) hold for K}=H?/H ., .
3) For each g*A(x), g*PH} .., is a Stickel multiplier for the metric ds*/H ., .i.e.,

8,8°F+0,g°4 8, In H2+3,g°# 3, In H?+g*#(9,,In H?+0,In H?3,In H? ) =0.

Proof. This result follows directly from [§, Thm. 1] and Lemma 2.

THEOREM 6. Let (g'/) be the metric tensor on V, in the coordinates {x'}. If the
Hamilton-Jacobi equation (1.1) is separable in these coordinates then there exist a func-
tion Q(x) and a k-dimensional vector space & of second order conformal Killing tensors on
V,, such that:

1) Each L, and AERQ is a (true) Killing tensor for the Hamiltonian H, where
H=Q(X)H, and HEQ.

2)[4,B]=0,[L,,Ls]=0,[L,,A]=0 for all 4, BEQ.

3) For each of the n, essential coordinates of type 1, x°, the form dx*¢ is a simulta-
neous eigenform for each A € Q, with simple root pZ.

4) For each of the n, essential coordinates of type 2, x’, the form dx” is a simulta-
neous eigenform for every A €@, with root p* of multiplicity 2. The root p* corresponds to
only one eigenform.

5) 9,(a*f—pfg*f)=0,i=1,---,n,+n,, A€Q.

6) gab.._.o ifasﬁb; gar:gaazgrszo.

T k=n+ny(n;—1)/2.

These results are readily obtained from the following theorem. Let {x'} be a local
coordinate system for ¥, with coordinates divided into three classes containing n,, n,
and n, variables, respectively. (We call these variables essential of types 1 and 2 or
ignorable, respectively, even though they may have nothing to do with variable separa-
tion.) Let H=g"p; p,.

THEOREM 7. Suppose there exists a k-dimensional space @ of second order conformal
Killing tensors and an n,-dimensional space of Killing vectors with basis L,=p,, a=n,+
n,+1,- -+, n. Furthermore, suppose conditions 2)-T) of Theorem 6 are satisfied. Then the
Hamilton-Jacobi equation (1.1) is separable in the coordinates {x'}. There exists a
Stackel matrix (6,;(x")) such that the Killing tensors A, A,,, m=2,---,n,+n,, (3.10)
and L, Lg=p, pg, ny+n,+1<a=<PB=<n, form a basis for Q.

Proof. Most of the proof follows closely that of [8, Thm. 3], with the added
complication that the elements of @ are conformal, rather than true, Killing tensors.
Conditions 3), 4) and 6) imply that for any 4 €& we have

ny ny n3
8ab aHa_2 0 0 n,
(3.13) ()= 0 0 pg™|n-
0 0, 8% a*® | n,

If (p?)=(p?) for 4, BEQ it follows from (3.13) and condition 5) that 4 — B is a linear
combination of the n;(n;+1)/2 conformal Killing tensors L,Lg=p, pg, ¢=<B.
The condition (1.13) can be written as

aijajgkl+a1jajgik_+_akjajgli_gijajakl_gljajaik_gkjajali

3.14 4 . A
( ) :thk1+ ng1k+ nglz.
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Setting (i, k,/)=(a,b,b) in (3.14) we obtain

(315) aa(pb——pa):(pb_pa)aalng_z’ aapaz_QaHaz'
Setting (i, k,1)=(a,r,a) we find

(3.16) 3,(p,—ps)=(p,—p,)9,Ing"™ if g"*=0

and for (i,k,l)=(a,a,a),

(317) 8rpa+(pa_pr)arlnHa_z_‘-grBQBo gasgsBQB:Qa'

The case (i,k,l/)=(a,a,r) leads to Q"=0 and (i,k,!)=(r,a, B) leads to
(875 +8%8"")d,0,+ (0,—p,) (83,8 +g*'3,g"")

+ Q%P+ QPg =0 (sumons).
Multiplying both sides of (3.18) by gz, &5 and summing on a and B we find

(3.18)

drdsprt 85905+ (Pr— pS)gRaaSgar+ (p,—pr )gS,BaR gk

(3.19)
+8r Q%5+ gSﬁQﬁan =0.

For R=S=rin this expression we find

(3'20) arpr+grﬂQB:0‘
Furthermore, for r=3S, r# R in (3.19) we obtain
(3.21) aR(pS_pR):(pR_pS)gSBaRgBS-

Substitution of (3.20) and (3.21) into (3.18), elimination of all derivative terms 9, p; and
computation of the coefficient of p, in the resulting equation lead to

(3.22) g,,9,8""=0,(Ing*") if r#sand g*"=0.
Since this expression is independent of a, we can set
(3.23) gV =BX(x")H .

Expressions (3.15)-(3.17) and (3.20)—(3.23) lead to
(3.24) ai(pj_pi):(pj_pi)ailnl{jza i,j=1,---,ny+n,.

Comparing this equation with (2.6) we see that the metric d§?>=37{"H?2(dx")? is
conformal to a Stickel form metric.

The integrability conditions a,.ajaaﬂ :a,aiaﬂﬁ for condition 5) are simply that
g*PH? ., is a Stickel multiplier for the metric d§*/H,’ ., . Thus, the Hamilton—Jacobi
equation separates in the coordinates x. Q.E.D.

Remark 1. 1t is sufficient to require that condition 5) of Theorem 6 be valid for
i=n,+1,---,n,+n, since the requirement that the elements of @ be conformal Killing
tensors with (i,/,k)=(a,a, B) in (3.14) yields this condition for i=1,- - - n,.

Remark 2. Most of the conditions [ 4, B]=0, 4, B €@ (this is just (3.14) with g¥/
replaced by b/ and Q'=0) are satisfied as a consequence of (3.24) and condition 5).
However, the cases (i,k,!/)=(a,a,a) and (i,k,l/)=(r,a,f) lead to the additional re-
quirements

(3.25) 10;0;,= 00,14, i———l,-‘-,m,(m+nl+n2)

where A4 has roots p; and B has roots p,.
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It is now easy to formulate and prove our main result, the characterization of those
involutive families of conformal Killing tensors that correspond to variable separation
for the Hamilton—Jacobi equation.

Let {x/} be a local coordinate system on the Riemannian manifold ¥, and let
0,=\i;dx', 1=j=n, be a local basis of one-forms on ¥,. The dual basis of vector
fields is X = A3, 1<h=n, where N\, =8(). We say that the forms {6 )} are
normalizable if there exist local analytic functions g, y/ such that 6, =g, dy’, (no
sum).

THEOREM 8. Suppose there exists a k-dimensional vector space & of second order
conformal Killing tensors on V, such that:

1) [4,B]=0 for each A,BEQ.

2) There is a basis of one-forms 6,,=X ., dx', | <h=<n, such that:

a) The n, forms 6, 1=a=n,, are simultaneous eigenforms for every AEQ
with root p:

(aij_ngij)Aj(a)zo-

b) The n, forms 6,,, n,+1=<r=<n,+n,, are simultaneous eigenforms for every
A ER with root p:

(a=pfg" )N 0y =0.

The root p has multiplicity 2 but corresponds to only one eigenform.

3) XP(Ny0y@7N iy = PAN )8 N jp)) =0, h=n,+1,---,n,+n,, for all AEQ and

alla,B=n,+n,+1,---,n.

4) [L,,Lg]=0 where L,= N®p, and each L, is a conformal Killing vector.

5) [4,L,]=0 for each AEQ.

6) k=n+ny(n;—1)/2 where ny;=n—n,—n,.

7 Glupy=N i8N j(»y=0if 1=a<b=n, and G ;)= G 40y=G,,,=0 for 1<a=<n,,

ntl=sr,s=n +n,,n+n,+1<a=n.

Then there exist local coordinates {y’} for V, such that 6 ;)=f(y)dy’ for suitably
chosen functions ), and the Hamilton-Jacobi equation (1.1) is separable in these coordi-
nates. Conversely, to every separable coordinate system {y’} for the Hamilton-Jacobi
equation there corresponds a family @ of conformal Killing tensors on V, with properties
D-7).

Proof. This result follows immediately from Theorem 7, once we show that the
are normalizable.

The rest of the proof coincides almost word for word with the proof of [8, Thm. 4].
To see this, we remark that the proof of [8, Thm. 4] exploits the relations [ 4, B]=0 for
A,B€@, identical to those in the present case, and the relations [4, H]=0. In the
present case, 4 is only a conformal Killing tensor so [4, H]=0 is replaced by (3.14).
Multiplying (3.14) by A, );A (n,)4A (m,) @nd summing on i,k,/ we obtain an identity
E ., my the right-hand side of which is A(, ), 0'Gimy A k@ Gimm, +
Amy) ,Q’G(mzmz). Examining each step in the proof of [8, Thm. 4], we see that the
analogy of this identity is needed only in those instances where m,, m,, m; are such
that the right-hand side of E>"  vanishes. ~ Q.E.D.

Examples illustrating the practical application of Theorems 4 and 8 can easily be
obtained from the corresponding examples in [7] and [8].
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