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CONFORMAL KILLING TENSORS AND VARIABLE SEPARATION
FOR HAMILTON-JACOBI EQUATIONS*

E. G. KALNINSf AND WILLARD MILLER, JR.

Abstract. Every separable coordinate system for the Hamilton-Jacobi equation gij W.Wj.=0 corresponds
to a family of n- conformal Killing tensors in involution, but the converse is false. For general n we find a
practical characterization of those families of conformal Killing tensors that correspond to variable separa-
tion, orthogonal or not.

1. Introduction. This paper is devoted to the separation of variables problem for
the Hamilton-Jacobi equation

(1.1) giJOx,W)WxJ:O, gij:gi, <_i,j<_n

and the explicit relation between variable separation and second order conformal
Killing tensors on the (local) manifold V with metric tensor {gi} analytic in the local
coordinates {x}. (Here all coordinates and tensors are complex valued and we adopt
the notation in Eisenhart’s book [1].) Equation (1.1) is intimately related to the separa-
tion of variables problem for the Laplace or wave equation,

Oxi(V-giJOxj)--O g:det(giy ).

It is straightforward to show that any coordinate system yielding (product) R-separa-
tion of (1.2) also yields (additive) separation of (1.1). (We have also shown for flat
space and n 3, 4 that the converse holds, i.e., the two equations separate in exactly the
same coordinate systems, orthogonal or not [2], [3].)

In 1891 Stickel [4] showed that (1.1) is additively separable in the orthogonal
coordinate system {x) if and only if there exists a nonzero function Q(xj) such that
the metric d2 where

(1.3) ds2-gijdxidxJ-Hj2(dxJ)2-Qh(dxj)2-Qd2

can be expressed in Stiickelform:

1,...

where is a Stickel determinant, =det(0k), (Ok(Xk)) is a Stickel matrix (row k
depends only on the variable xk), and i is the (i, 1)-cofactor of this matrix. Thus the
condition for additive separation of (1.1) in coordinates {xj) is that ds 2 is conformal to
a metric d2 in Stickel form. Separable solutions of (1.1) take the form W=iB(xi).

Moon and Spencer [5] show that (1.2) admits orthogonal R-separable solutions,
i.e., solutions of the form -eHT:Ai(xi) where R is a fixed function, if and only if
(1) ds 2 is conformal (with factor Q-) to a Stckel form metric d2, (2) that
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CONFORMAL KILLING TENSORS FOR HAMILTON-JACOBI EQUATIONS 19.7

and (3) that e R satisfy

(1.6)
@jl

j=l -J Oxj( fJO#e-R) +ae-R--O

where a is a constant. (See, however, [6] for a discussion of condition (1.6).) In practice,
to determine the orthogonal R-separable coordinate systems for the Laplace equation
on the manifold V, one first finds all orthogonal separable systems for the Hamilton-
Jacobi equation (1.1) and then determines for each system whether or not conditions
(1.5) and (1.6) can be satisfied. For nonorthogonal coordinates the relationship is
similar but more complicated, see [2], [3].

The relation between variable separation for (1.1) and conformal Killing tensors
on V is most conveniently presented in terms of the symplectic structure on the
cotangent bundle 17" of this manifold. Corresponding to local coordinates (xj) on V
we introduce coordinates (xJ,p} on l?n. New coordinates (k(x)} on V correspond to
coordinates (k,.k) on Pn where pk=p)Xt/Ok. The Poisson bracket of two functions
F(x,p), G(xJ,pj) on l? is given by

(1.7) F, G )x,FOpG- Dp,F)x,G.
Let
(1.8) H=g’+p,p+.
A first order symmetry of (1.1) is a linear function L in the momenta pj.,

(1.9) L-9(x)pj
such that

(1.10) [L,H]--p(x)H
for some analytic function O. Clearly, L is a symmetry if and only if (J) is a conformal
Killing vector for V [1 ]. Indeed it is straightforward to show that (1.10) is equivalent to

(1.11)
where ;,j. is thejth covariant derivative of i" Similarly a second order symmetry of (1.1)
is a quadratic function

(1.12) A-ai+(x)p,p, ai+-a+i,

such that

(1.13) A,H] ( Q’(x)p,)H
where the (Q) are analytic. Condition (1.13) is equivalent to

(1.14) a y,k + aki,j + ayk,i - (Q gjk+ Qk g,y+ Qygki )
i.e., (aij) (or (aij)) is a conformal Killing tensor of order 2. It is obvious that p(x)H is a
(trivial) conformal Killing tensor for any analytic function p. Thus by addition of
multiples pH of H if necessary, one could assume that every nontrivial conformal
Killing tensor is traceless, a=0. (We shall ordinarily not make this assumption.) Note
that then the Qi can be expressed simply in terms of the components of a traceless A:
Qi-(4/(n + 2))a For future use we also note that the condition for two quadratic1,l"
functions A and B-bijpip to be in involution, i.e., [A, B]-0, is

b

_
bi,atk + bki, _[_ bjk(1.15) aij,lblk -+- aki,lbJ+ ak,t a ,la
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We can now state the basic relation between separation of variables for (1.1) and
conformal Killing tensors" To every orthogonal coordinate system (yi) which permits
additive separation of variables in (1.1), there correspond n- second order conformal
Killing tensors A1,-..,A,_ which are in involution and such that (H,A,...,A,_) is
linearly independent. The separable solutions W=E=W(k)(yk) are characterized by
the relations

(1.16) H(yJ,pj)-O, A,(yJ,ps)-t,
where ,-..,k,_ are the separation constants. The basis tensors A are of course not
unique, but the space spanned by these tensors is uniquely determined. (A new proof of
this correspondence is contained in Theorems 4 and 7 to follow. Expressions (1.16) are
then obvious from Stickel’s construction.) For nonorthogonal separable coordinates,
the same characterization is valid except that one or more of the A are conformal
Killing vectors. For n_<4 all possible separable systems and their corresponding confor-
mal Killing tensors have been explicitly determined [2], [3].

A remaining problem with the theory is that there exist involutive families of n-
conformal Killing tensors that are not related to any separable coordinate system. In
this paper we give a complete solution to this problem. That is, we provide directly
verifiable necessary and sufficient conditions for a family of conformal Killing tensors
to determine a separable coordinate system for (1.1), and we show how to compute the
separable coordinates from the given tensors. In 2 we study the case of orthogonal
separable coordinates where the Killing tensor characterization is especially simple.
Finally, in 3 we treat the general nonorthogonal case. The results of this paper are a
nontrivial extension of the results in [7], [8] for the equation g’J OiWjW=E with E 4:0.

2. The orthogonai case. Let {xJ} be a local orthogonal coordinate system on V
and let ds2-gijdxidxJ-nj2(dxJ)2 be the metric for V as expressed in these
coordinates. It follows from (1.3) and (1.4) that the Hamilton-Jacobi equation (1.1) is
separable in the {xi} if and only if there exists an analytic function Q(x) such that
H-Qh where the metric dg2-h(dx)2 is in Stackel form. We begin our study of such
"conformally Stickel" metrics by deriving a more convenient characterization for them.

It is well known that the metric dg2 is in Stickel form with respect to the
coordinates {xJ } if and only if the conditions

are satisfied [1,App. 13]. Let dg K(dxS) where K 2 2 2--h/h.; in particular K.- 1. A
straightforward computation using (2.1) yields

LEMMA 1. If the metric d-h(dxJ) is in Stickel form then so is the metric
d2 --.h 2d2.

Now let ds-Hj.2(dx)- Qd2. If d2 is in Stickel form, then by Lemma the
metric H-2ds2-h2d2 is also in Stickel form. Conversely, if H-ds2 is in Stickel
form then ds2-Hff(H- ds) is conformal to a Stickel form metric. This proves

LEMMA 2. ds2=Hj2(dxJ)2 is conformal to a Stiickel form metric if and only if the
coefficients I-I. satisfy the conditions

021nK/2 01nK/2 01nK/2 01nK 01nKf 01nKi2 01nK(2.2) ++=0, jk,
Ox Ox k Ox 3x k 3x xk 3xk Oxj

where Kf- 2 2t6
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Note that for i--n, equations (2.2) are satisfied identically and for k--n they read

lnKi2 ln(K/Ki)
0 jvn(2 3) 021nK/2

t-
)xJOx OXj OX

THEOREM 1. Let A be a second order conformal Killing tensor such that the n roots

O(x),..., p,(x ) of the characteristic equation

(2.4) det(aij- Pgij ) --0
are pairwise distinct. Furthermore, suppose the eigenvector fields corresponding to these n
roots are normalizable, i.e., there exists a coordinate system (yJ) on V, such that

(2.5) ds2- gijdxidxJ-nj(dyj)2, -aijdxidxJ-pjnj2(dyj)2.
Then the Hamilton-Jacobi equation (1.1) is separable in the coordinates

Proof. Conditions (1.14) for A are equivalent to

(2.6) Oy,ln( ,p!- pk )H
-0, 14:k.

Setting/ O- O,, a 1,. ., n 1, we see that these equations can be written in the
form

(2.7) b) 0y.ln -- 0,

or

0/t- (/a-)0ln(Hff) +0InHn2

(2.8)

The integrability conditions 00j.=0j.0/ for the system (2.8) can be written in the
form

(2.9)

/-/.

(/-/) vln -0ln v

In -0,

ln( H2)H +ln
a, fl, 3’ pairwise distinct,
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Since the pg are pairwise distinct by assumption, we have #-4=0 for a4 fl, so
conditions (2.9) become

OlnK OlnK2 OlnKi2 OlnK 0, j:/:k(2.10) O21nK? olnK? OlnK?+q-
yJ0yk yJ yk y y’ y, y

where K- 2 2Hi/HA i-1,...,n. It follows from Lemma 2 that Hj.(dy)2 is conformal
to a Stickel metric, hence (1.1) separates in the coordinates (yJ}. Q.E.D.

Note that if (1.1) is separable in the coordinates (yJ}, then equations (2.10) hold
and the integrability conditions for the system (2.8) are satisfied identically. Thus (2.8)
admits a basis of n- vector solutions (p}t)}, fl- 1,. .,n- 1. This proves

THEOREM 2. Necessary and sufficient conditions that the metric ds2-ggjdxidxj

=H/(dyJ)2 on V is conforma! to a Stickel form metric with respect to the coordinates
{ya} are:

1) The space admits n-1 conformal Killing tensors a, fl= 1,...,n-1 such that
the n tensors (gij, a}-#) } form a linearly independent set at each point x.

2) The roots p(’t)for each of the characteristic equations det(aj)- p(B)gij)--O are
simple.

3)
(2.11) (a)--p(h#)gij)Xi(h)--O, h--1,...,n, fl--1,. .,n--1,

where p(l#, .,p(f are the roots ofaf and )i(h OXi/Oyh.
Note that condition 3) requires the vector fields ki(,...,kg(n to be normal and to

satisfy equations (2.11) for all ft. Theorem 2 and its proof are patterned after the
corresponding theorem due to Eisenhart which relates Killing tensors and (true) St/ickel
forms [1], [9]. The theorem is not very useful in a practical sense because of the
difficulty in deciding when the vector fields ()ki(h)} defined by (2.11) are normalizable,
i.e., when there exists an orthogonal coordinate system (y) such that ()q(h)) is orthog-
onal to the coordinate surface yh const, for each h 1,. ., n.

To solve this problem we recall some classical results in differential geometry that
can be found in Eisenhart’s book [1]. Given a family of orthogonal vector fields

(N(h)(X), _< h -< n } we define their coefficients of rotation "Ylh k by

(2.12) "Ylhk--k(l)i,jki(h){k), <l,h,k<_n;

see [1, p. 97]. A necessary and sufficient condition that there exist coordinates (yh) and
nonzero invariant functions fh such that )i(h) (Oxi/OYh )fh, h 1,’’ ", n, is

(2.13) lhk=O, <_l,h,k<_n, h,k,l pairwise distinct.

Let ag be a tensor field with n roots P 1,"" ", Pn (not necessarily distinct) and let
be a corresponding orthonormal set of eigenvectors:

(2.14) (aij--Phgij)ki(h)--O, h--1,... ,n,

(2.15) )ki(h))k(k)i--hk, <_h,k<_n.

It follows easily from (2.12), (2.14) and (2.15) that
j k(2.16) aij,kki(h)k(l)i(m) (Ph--Pl)’hlm, h=/=l"

From (2.13) we find
THEOREM 3 (Eisenhart [1,p. 118]). If aq has pairwise distinct roots P," ",On then the

vector fields (i(h } are normalizable if and only if
(2.17) aij,kXih)?oXkm)--O i<_h,l,m<_n, h,l,m distinct.
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This leads us to our fundamental result:
THEOREM 4. Necessary and sufficient conditions that the orthogonal coordinate system

(yJ) be separable for the Hamilton-Jacobi equation (1.1) are the existence of n-1
quadratic functions A(t), fl= 1,... ,n- 1, (1.12), such that:

1) The (A()) are second order symmetries of (1.1), i.e., the (a})) are conformal
Killing tensors.

2) The (A()) are in involution: [A(),A(t)]--0, 1 <_a, fl<_n-1.
3) The set {H,A(1), .,A(’-l)} is linearly independent (as n quadratic forms at each

point x).
4) At least one of the quadratic forms, say A(1), has pairwise distinct roots.
5) In any local coordinate system (xj} the quadratic forms satisfy the algebraic

commutation property

(2 18) a(’)a(-a})a(’)ij k k

(This property is independent of local coordinates.)
Proof. We suppose that conditions 1)-5) are satisfied. Conditions 4) and 5) imply

that the quadratic forms can be simultaneously diagonalized by a family of orthonor-
mal vector fields. In local coordinates {x} we have

(2.19) (a})--ph#)gij)Xi(h)--O, h--1,...,n, fl--1,. .,n--1,

where p(z),...,p(f) are the roots of a! and Xi(h)X(k)i--Shk. Setting p(hn)- 1, for h-
l,- .,n we can express condition 3) as

(2.20) det(p)) 4= O.

(2.22) det pt) pht) Ot) 0, --< a < fl--< n 1.

"Yh m "Y h "Yh -- "Y h "Y h -- "Y h

From (2.20) and (2.21) we have "mhl--’Ylmh--’Yhlm" Substituting this result into (2.22)
and using (2.20) we find "mhl--’Ylmh--’Yhlm--O. Thus, by (2.13) the vector fields (h))
are normalizable. It then follows from Theorem 2 that the (At)) determine an orthog-
onal separable coordinate system (y}.

Conversely, given an orthogonal separable coordinate system (y) for (1.1), we see
from the definition of separability, (e.g., (3.5)), that H=fH’ for some function f where
H’ is in Stckel form with respect to these coordinates. It follows from [7, Thm. 6], that
there exist Killing tensors (with respect to H’) Al,...,An_ that satisfy properties
2)-5). It is obvious that the Aj are conformal Killing tensors for H. Q.E.D.

3. The general case. We now examine the separation for variables problem for
(1.1) for the more general case in which the separable coordinates may be nonorthog-
onal. Our definition of variable separation is identical with that presented in [2], [3] and
is based on a division of the separable coordinates into three classes: ignorable, essential

of type and essential of type 2. Let (x) be a coordinate system on V with con-
travariant metric tensor (giJ) and such that the first n coordinates x are essential of

and

Furthermore, by (1.14), (1.15), (2.16), and (2.19), conditions 1) and 2) imply

( Pa) P(ha) P(ma) )(2.21) det -0, l_<a_<n- 1, h,l,m distinct,

Ymh Ylmh Yhlm
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type 1, the next n 2 coordinates x are essential of type 2, and the last n
are ignorable, n n + n 2 + n3. (In the following, indices a, b, c range from to n,
indices, r, s, range from n / to n + n 2, indices a,/3, 3’ range from n + n 2 + to n,
and indices i,j,k range from to n.) This means that in terms of the coordinates {xj}
the metric satisfies gik_ Q#,ik where 0,"k-0, a-n + n 2 + 1,...,n, and that the sep-
aration equations take the form

Wa + X

(3.2) 2 XBT(xr)WrW.+ E Cra’fl(xr)WaWfl-Or(xr, X)

(3.3)
Here A’’t(-Aa’"), C’(=Cf’") and (I) are defined and analytic in a neighborhood
NC C"+’ of some given point (x,. ,x +":). Furthermore,

hi+n2
(3.4) (i(xi,X) E kjOij(xi), i--1,"" ",n +n2,

j=2

where the complex parameters hi,.-.,X are arbitrary and the vectors Ox.(I), j-2,. -,
n + n 2 are linearly independent for x N.

We say that the coordinates (xj} are separable for the H-J equation

(3.5) X g’O,WOW=O
if there exist analytic functions A, B, C, (I) above and functions U,(xi), Vr(Xi), analytic
in N, such that (3.5) can be written in the form

(3.6) E Ua*a -- E Vrtr O
a

(identically in the parameters X2’"" "’X,,+,2), where W=X.a= 1W(J)(xJ), Wi--OiW=
OiW(i).

The functions Ua, V are uniquely determined by (3.6) up to an arbitrary mul-
tiplicative factor Q(x). To analyse the structure of these solutions it is convenient to
introduce an (n +n2)(n +n2) Stgckel matrix (Oij(xi)), i,j- 1,-’-,nl +n2 whose
first column (not unique) is subject only to the condition O-det(0,.j)4=0 and whose
remaining columns are determined by (3.4). Then

Qoal Qorl

(3.7) Ua-- 0 Vr-- 0

where 0lm is the (lm)-cofactor of the matrix (Oq). The nonzero components of the
contravariant metric tensor are thus

0
ab, gra__ g.r-- QOrl

o

( Oat

r)
O rl )(3.8) -g"-Q EA’B(xa)’---+E C’B(x W ’a
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Furthermore,

(3.9)
nl +n2 0lm ( 0 if m- 1,E ------ t)l hm otherwise,
1--1

SO,

(3.10)
H(x,p)--giypip-O,
Am(x,p)=a(m)piPj Xm, rn 2,. .,n +n2,
L(x,p)----p-X, p-OxW

ijwhere the nonzero terms of the symmetric quadratic form (a(m)) are

a(m) 0
ab, a(m B,

1 E,4 ’a + E c:,a o(3.11) - a(m 0
O :#: fl

c

) O
a(m)- E A’a----+ E Cra’a t9

It follows immediately from [8, Thm. 2] that

(3.12)
(a) Am, L, are conformal Killing tensors,

(b) [AmAt]--O [Am,La]-O [L,L]-0.

Note that while relations (3.6) determine the coordinates and the metric in an essen-
tially unique manner, there is some freedom of choice for the conformal Killing tensors
Am, due to the nonuniqueness of the first column in the Stickel matrix. (This freedom
is due to the fact that we may replace A by Am+f(x)H without altering relations
(3.10).)

We shall now analyse the structure of these separation equations and their rela-
tionship to the commutation properties (3.12). First we derive practical, necessary and
sufficient conditions to determine if a given coordinate system (xJ} yields separation
for the Hamilton-Jacobi equation (1.1). Let gij be the components of the contravariant
metric tensor in these coordinates. It is convenient to reorder the coordinates in a
standard form. Let rt be the number of ignorable variables x. Of the remaining n-n
variables, suppose n
variables x satisfy gaa =/= O. We relable the variables so that _< a_< n , n + _< n -< n +
n2, and n +n2+

THEOREM 5. Suppose (gij) is in standardform with respect to the variables {xi}. The
Hamilton-Jacobi equation (1.1) is separable for this system if and only if:

1) The contravariant metric assumes the form

where B B(xr).

gl gl n

tabn2 0 0

0 0 H;-2B7
n!

n2

n3
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2) The metric dg2-Yn la2a(dxa)2--n’+n21nr2(dxr)2 is conformal to a Stickelr--n!

form metric i.e. relations (2.2) hold for K-/H,+n"
3) For each g(x) gH2n,+n i a Stckel multiplier for the metric d/H+n, i.e.,

O,jg + Oig OjlnHf + Ojg Oiln2 +g(Oijln + 0, In OjlnHi2 ) -O.
Proof. Ts result follows directly from [8, Thm. 1] and Lemma 2.
THEOREM 6. Let (gij) be the metric tensor on V in the coordinates (xi). If the

Hamilton-Jacobi equation (1.1) is separable in these coordinates then there exist a func-
tion Q(x) and a r-dimensional vector space of second order conformal Killing tensors on
V such that:

1) Each L and A is a (true) Killing tensor for the Hamiltonian , where
H Q(x), and .

2) [A,B]0, [L,L]0, [L,A]Ofor allA,B.
3) For each of the n essential coordinates of type 1, x, the form dx is a simulta-

neous eigenform for each A , with simple root

4) For each of the n 2 essential coordinates of type 2, x, the form dx is a simulta-
neous eigenform for eery , with root of multiplicity 2. The root corresponds to

only one eigenform.
5) Oi(a-pg)=O, i= 1,. .,n +n,A.
6) gab 0 if a b; gar gaa grS O.
7) x=n+n3(n 1)/2.
These results are readily obtained from the following theorem. Let (x} be a local

coordinate system for V, with coordinates divided into three classes containing n, n2
and n variables, respectively. (We call these variables essential of types and 2 or
ignorable, respectively, even thou they may have nothing to do with variable separa-
tion.) Let H=gipip.

THEOREM 7. Suppose there exists a x-dimensional space of second order conformal
Killing tensors and an n3-dimensional space of Killing vectors with basis L=p, a= n +
n 2 + 1,...,n. Furthermore, suppose conditions 2)-7) of Theorem 6 are satisfied. Then the
Hamilton-Jacobi equation (1.1) is separable in the coordinates (xi). There exists a
Stckel matrix (Oi(xi)) such that the Killing tensors A, Am, m-2,...,n +n2, (3.10)
and LL#=pp#, n +n2+ afln,form a basis for

Proof. Most of the proof follows closely that of [8,Thm. 3], with the added
complication that the elements of are conformal, rather than true, lling tensors.
Conditions 3), 4) and 6) imply that for any A we have

(3.13) (aiJ)

nl n2 n3

ablan2 0 0

0 prg a/

nl

n2

n3

If (pA)_ (pB) for A,B it follows from (3.13) and condition 5) that A-B is a linear
combination of the n3(n -+- 1)/2 conformal Killing tensors LL/s---pp/, a<_ ft.

The condition (1.13) can be written as

(3.14)
aijOjgk’+ alJOjgi+ akJOjg’i- giJOja’-- glJOjai- gJOja ’i

Qig,t+ Qtgi, + Qkgli.
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Setting (i,k,l)=(a,b,b) in (3.14) we obtain

(3.15) a(Pb--Pa)--(Pb--Pa)alnn2, aPa--- -QaH2a.
Setting (i, k, l) (a, r, a) we find

(3.16) Oa(Pr--Pa)---(pr--Pa)alng if gray-O

and for (i,k,l)--(a,a,a),
as,, fl--(3 17) OrOa-t-(Pa-Pr)Orlnn2nt-groOB, g ,st Q

The case (i,k,l)=(a,a,r) leads to Qr=0 and (i,k,l)=(r,a,) leads to

( g  gor+ + )( + g" )
-q- OagrB-+- QBgra- 0

Multiplying both sides of (3.18) by gRgsa and summing on a and fl we find

OSPR+ORPS t_ (Or-- [3S )gRSgar-- ( lot PR),SOR g, fir
(3.19)

+gRQ"+gs,Q8 o.

For R S-- r in this expression we find

(3.20) )rPr-Jr-grQO-O.
Furthermore, for r--S, r :/= R in (3.19) we obtain

(3.21) 3R( Ps- PR ) ( OR Ps )gsa3R gS.

sum on s ).

Substitution of (3.20) and (3.21) into (3.18), elimination of all derivative terms 3iPj and
computation of the coefficient of ps in the resulting equation lead to

(3.22) grvlgVr-lk(lng’r) if r=/=s and gary-O.

Since this expression is independent of a, we can set

(3.23) g"r-B[’(x)H-2.
Expressions (3.15)-(3.17) and (3.20)-(3.23) lead to

(3.24) 3i(pj-pi)-(pj-pi)3ilnI-I, i,j- 1,. .,n ff-n 2

Comparing this equation with (2.6) we see that the metric d2-n+noi2(dxi)2-i=l is
conformal to a Stickel form metric.

The integrability conditions 33a=33iaa for condition 5) are simply that
2 2gaH2, +n2 is a Stickel multiplier for the metric dg /H;,, +,_. Thus, the Hamilton-Jacobi

equation separates in the coordinates x. Q.E.D.
Remark 1. It is sufficient to require that condition 5) of Theorem 6 be valid for

n 4- 1,. ., n 4- n 2 since the requirement that the elements of be conformal Killing
tensors with (i,j, k) (a, a, fl) in (3.14) yields this condition for 1,..., n

Remark 2. Most of the conditions [A, B] 0, A, B ( (this is just (3.14) with gij
replaced by b; and Q=0) are satisfied as a consequence of (3.24) and condition 5).
However, the cases (i,k,l)=(a,a,a) and (i,k,l)=(r,a, fl) lead to the additional re-
quirements

(3.25) #i)iPi=Pi)itJ, i, i= 1,. .,m, (m+n,
where A has roots
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It is now easy to formulate and prove our main result, the characterization of those
involutive families of conformal Killing tensors that correspond to variable separation
for the Hamilton-Jacobi equation.

Let (xj) be a local coordinate system on the Riemannian manifold V and let
O(j)--i() dx, <_j<_n, be a local basis of one-forms on Vn. The dual basis of vector
fields is X(h)= Nh)0x,, 1 <_h<_n, where Ai(h)ki(j) ((;)). We say that the forms (0o.).) are
normalizable if there exist local analytic functions go), Y such that Oo. g(9)dyj, (no
sum).

THEOREM 8. Suppose there exists a r-dimensional vector space of second order
conformal Killing tensors on Vn such that:

1) [A,B]=0 for each A,B.
2) There is a basis of one-forms O(h)--ki(h)dX i, <_h<_n, such that:

a) The n forms Ota), <_a<_nl, are simultaneous eigenforms for every A
with root pAa:

( aiJ-- pAagij ) j<a) O.

b) The nz forms O(r), n + <_r<_n + n2, are simultaneous eigenforms for every
A with root Or"

( ai ogi )X() O.

The root OA has multiplicity 2 but corresponds to only one eigenform.
3) x(hl(i(,)aiJtj(B)--O,i()gijtj(B))--O, h--n + 1,. .,n +n2, for all A and

alla, fl=n +n2+ 1,...,n.
4) [L,,Lt]- 0 where La-Ai(a)pi and each L is a conformal Killing vector.
5) [A,L,]=0 for each A 6g.

6) x=n+n3(n 1)/2 where n3=n-nl-n 2.

7) G(ab)=X(a)gJXj(b)--O if <_a<b<_n, and G(ar)- G(a)- G(r)-O for <_a<_nl,
n + <_r,s<_n + n2, n + n2+ <_a<_n.

Then there exist local coordinates (yJ} for V such that O(j)=f(J)(y)dyj for suitably
chosen functions f(), and the Hamilton-Jacobi equation (1.1) is separable in these coordi-
nates. Conversely, to every separable coordinate system (yJ} for the Hamilton-Jacobi
equation there corresponds a family of conformal Killing tensors on V with properties
1)-7).

Proof. This result follows immediately from Theorem 7, once we show that the O(h
are normalizable.

The rest of the proof coincides almost word for word with the proof of [8, Thm. 4].
To see this, we remark that the proof of [8,Thm. 4] exploits the relations [A,B]=0 for
A, B d, identical to those in the present case, and the relations [A, H] 0. In the
present case, A is only a conformal Killing tensor so [A,H]=0 is replaced by (3.14).
Multiplying (3.14) by )(m,)X(m)k.(,,,)t and summing on i,k,l we obtain an identity
A,HEm,,m:,. 3, the right-hand side of which is 2t(,,,,)Q’G(mm)+)t(m:)QG(m,, +

X(,,,zQtG(m,:I. Examining each step in the proof of [8,Thm. 4], we see that the
analogy of this identity is needed only in those instances where ml, m2, m are such

A,Hthat the right-hand side of Em,,,:,m vanishes. Q.E.D.
Examples illustrating the practical application of Theorems 4 and 8 can easily be

obtained from the corresponding examples in [7] and [8].
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