
0.1 Newton’s method and the Mean Value

Theorem

Newton’s method for computing the zeros of functions is a good example of
the practical application of the Mean Value Theorem. Let f(x) be a real-
valued function on the real line that has two continuous derivatives. We
are looking for a root of f , i.e., a point x̂ such that f(x̂) = 0. In Newton’s
method, which is geometrical, we consider the curve y = f(x). Then the
curve crosses the x-axis at the point (x̂, f(x̂)). Let x0 be an initial guess
for the root. To improve on the guess we construct the tangent line to the
curve y = f(x) that passes through the point (x0, f(x0)) on the curve. This
tangent line satisfies the equation

y − f(x0) = f ′(x0)(x − x0).

The tangent line crosses the x-axis at the point

x1 = x0 −
f(x0)

f ′(x0)
,

and we take x1 as our improved estimate of the root x̂. Now we repeat this
procedure with x1 to get an improved estimate x2, and so on. Thus we have
a sequence {xn} such that

xn+1 = xn − f(xn)

f ′(xn)
, n = 0, 1, · · · .

We need to give conditions that will guarantee that the sequence will converge
to a root of f(x), and will provide information about the rate of convergence.

To analyze this procedure we define an updating function T (x) by

T (x) = x − f(x)

f ′(x)
.

We will not yet fix the domain D of this function, but it is clear that we
must require f ′(x) 6= 0 for all x ∈ D. Then x̂ will be a fixed point of T ,
(T (x̂) = x̂) if and only if f(x̂) = 0. To get the growth rate for the iteration
we compute the derivative of T (x):

T ′(x) =
f(x)f ′′(x)

[f ′(x)]2
.
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Since T ′(x̂) = 0, in the neighborhood of the root we will be able to select
a decay constant c < 1, so the root is an attractive fixed point of T . In
particular let D = [x̂ − r, x̂ + r] where |T ′(x)| ≤ c < 1 for all x ∈ D. (If
f ′(x̂) 6= 0 we can always find an r such that the inequality holds for the given
constant c.) Then if u, v ∈ D, the Mean Value Theorem gives T (u)−T (v) =
T ′(ũ)(u− v) for some ũ ∈ D between u and v. Thus |T (u)−T (v)| ≤ c|u− v|
for all u, v ∈ D. In particular

|xn − x̂| ≤ c|xn−1 − x̂| ≤ · · · ≤ cn|x0 − x̂|.

Thus if x0 ∈ D then so are all of the xn ∈ D and xn → x̂ as n → ∞.
The convergence of the Newton algorithm is actually much faster than

indicated from this analysis. This is due to the fact that T ′(x̂) = 0. We can,
indeed, prove quadratic convergence. Suppose we can find a finite positive
numbers A, B such that B > |f ′′(x)| for all x ∈ D, and A < |f ′(x)| for all
x ∈ D, and set C = B/A. By the Mean Value Theorem there is a point
x̃n ∈ D, between x̂ and xn, such that

f(xn) = f(xn) − f(x̂) = f ′(x̃n)(xn − x̂),

so xn − x̂ = f(xn)/f ′(x̃n). Furthermore, the Mean Value Theorem applied
to f ′(x) yields a point x̆n between xn and x̃n such that

f ′(xn) − f ′(x̃n) = f ′′(x̆n)(xn − x̃n).

Then

|xn+1 − x̂| = |(xn+1 − xn) + (xn − x̂)| = | f(xn)

f ′(x̃n)
− f(xn)

f ′(xn)
|

= | f(xn)

f ′(xn)f ′(x̃n)
(f ′(xn) − f ′(x̃n))| = |xn − x̂

f ′(xn)
(f ′(xn) − f ′(x̃n))|

= |(xn − x̃n)(xn − x̂)
f ′′(x̆n)

f ′(xn)
| ≤ C|xn − x̂|2.

Thus |xn+1 − x̂| ≤ C|xn − x̂|2 and the convergence is quadratic. This means
that the number of digits of accuracy in our approximation roughly doubles
with each iteration.
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Example 1 We approximate
√

7 by using Newton’s method to find the pos-
itive root of the function

f(x) = x2 − 7.

Here the iteration step is given by the function

T (x) = x − f(x)

f ′(x)
=

x

2
+

7

2x
.

Let D = {x : 2 ≤ x ≤ 7} and choose the intial approximation x0 = 2. Note
that
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≤ 3

8
= c

for x ∈ D. Thus

|xn −
√

2| ≤ 3

8
|xn−1 −

√
7| ≤ · · · ≤ (

3

8
)n|2 −

√
7| → 0

as n → ∞. The rate of covergence is much faster than this, however. Indeed
|f ′′(x)| = 2 = B and |f ′(x)| = |2x| ≥ 4 = A for all x ∈ D. Thus, setting
C = B

A
= 1

2
, we have

|xn+1 −
√

7| ≤ 1

2
|xn −

√
7|2, n = 0, 1, · · · ,

and the number of guaranteed digits of accuracy more than doubles with each
iteration. Indeed, we have (computing the first 10 digits)

x0 = 2
x1 = 2.75
x2 = 2.647727273
x3 = 2.645752048
x4 = 2.645751311

Here, x4 is correct to more than 10 digits (if we calculated to that many
decimal places) and (x4)

2 = 7.000000000. Since x3 has 6 digits accuracy, x5

would have about 24 digits accuracy.

Example 2 We approximate
√

7 by using the midpoint method to find the
positive root of the function

f(x) = x2 − 7.
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The method is symplicity itself. As in the last example, we start with the
initial guess x0 = 2 and find f(2) = −3 < 0. For our next guess we take
x1 = 3 and find f(3) = 2 > 0. Note that f is a continuous function, so by
the Intermediate Value Theorem it must have a root in the interval (2, 3), of
length 1. Now choose the midpoint of this interval: x2 = (x0 + x1)/2 = 2.5.
We see that f(x2) = −.75, so by the Intermediate Value Theorem there must
be a root of f in the interval (2.5, 3) of length 1/2. The midpoint of this
interval is x3 = 2.75. Now f(2.75) = .5625, so a root must lie in the interval
(2.5, 2.75) of length 1/22 The midpoint of this interval is x4 = 2.625. Since
f(2.625) = −.109375, the root must lie in the interval (2.625, 2.75) of length
1/23. Continuing in this way, for each n > 0 we get an approximation xn of√

7 with accuracy 1/2n−1. This method is much simpler to implement than
the Newton method, since we don’t have to compute a derivative at each step,
and it works for continuous functions that may not be differentiable at some
points. However the rate of convergence is only linear, i.e., the error is cut
in half at each step, whereas the Newton method has a quadratic convergence
rate. Indeed for the midpoint method our approximations are

x0 = 2
x1 = 3
x2 = 2.5
x3 = 2.75
x4 = 2.625
x5 = 2.6875

and the convergence is very slow.
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