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0.1 Abstract and introduction

These notes describe some of the most important interrelationships between
the theory of Lie groups and algebras, and special functions, with a strong
emphasis on results obtained in the 50 years after the publication of the
Bateman Project. An informal justification for this treatment is that most
functions commonly called “ special ” obey symmetry properties that are best
described via group theory (the mathematics of symmetry). In particular,
those special functions that arise as explicit solutions of the partial differential
equations of mathematical physics, such as via separation of variables, can
be characterized in terms of their transformation properties under the Lie
symmetry groups and algebras of the differential equations. (The same ideas
extend to difference and q-difference equations.) We shall treat, briefly, the
following topics:

1. Special functions as matrix elements of Lie group representations. (ad-
dition theorems, orthogonality relations)

2. Special functions as basis functions for Lie group representations (gen-
erating functions)

3. Special functions as solutions of Laplace-Beltrami eigenvalue problems
(with potential) via separation of variables.

4. Special functions as Clebsch-Gordan coefficients for the reduction of
tensor products of irreducible group representations (the motivation
for Wilson polynomials).
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In practice, the first two items involve hypergeometric functions predomi-
nantly and are special cases of the third item. The group theoretic basis for
variable separation allows treatment of non-hypergeometric functions, such
as those of Lamé and Heun. The last item provides an important motivation
for the constuction of the Askey-Wilson polynomials.

I conclude with a brief examination of special functions (or functions
that deserve to be called “special”) that arise when one restricts certain
irreducible Lie group representations to a discrete lattice subgroup. The two
most important examples are an irreducible representation of the Heisenberg
group (and its relation to the windowed Fourier transform, the Weil-Brezin-
Zak transform and theta functions), and an irreducible representation of
the affine group (and its relation to the continuous and discrete wavelet
transforms). We briefly describe the properties of the Daubechies family
of scaling functions, a very modern family of “special” functions arising as
solutions of two-scale difference equations.

I am omitting some topics of equal or greater importance than the above,
such as quantum groups, Askey-Wilson polynomials, Koornwinder’s addition
theorems for disk and Jacobi polynomials and other polynomials transform-
ing under group actions, special functions related to root systems of semi-
simple Lie algebras, Dunkl’s theory of special funtions related to discrete
symmetries on spheres, etc., because they will be treated by other partici-
pants in this meeting, for lack of time, or lack of expertise.
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Chapter 1

Preliminaries

A group is an abstract mathematical entity which expresses the intuitive
concept of symmetry. Here I collect some standard definitions and results
from classical group theory.

1.1 Definition of a group

A group is an abstract mathematical entity which expresses the intuitive
concept of symmetry.

Definition 1 A group G is a set of objects {g, h, k, · · · } (not necessarily
countable) together with a binary operation which associates to any ordered
pair of elements g, h in G a third element gh. the binary operation (called
group multiplication) is subject to the following requirements:

1. There exists an element e in G called the identity element such that
ge = eg = g for all g ∈ G.

2. For every g ∈ G there exists in G an inverse element g−1 such that
gg−1 = g−1g = e.

3. Associative law. The identity (gh)k = g(hk) is satisfied for all g, h, k ∈
G.
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1.2 Lie groups and algebras, transformation

groups

Let W be an open connected set containing e = (0, · · · , 0) in the space Cn
of all (real or complex) n-tuples g = (g1, · · · , gn).

Definition 2 An n-dimensional local linear Lie group G is a set of m×m
nonsingular matrices A(g) = A(g1, · · · , gn), defined for each g ∈ W , such
that

1. A(e) = Im (the identity matrix)

2. The matrix elements of A(g) are analytic functions of the parameters
g1, · · · , gn and the map g→ A(g) is one-to-one.

3. The n matrices ∂A(g)
∂gj

, j = 1, · · · , n, are linearly independent for each

g ∈W. That is, these matrices span an n-dimensional subspace of the
m2-dimensional space of all m×m matrices.

4. There exists a neighborhood W ′ of e in Cn, W
′ ⊆ W , with the property

that for every pair of n-tuples g,h in W ′ there is an n-tuple k in W
satisfying

A(g)A(h) = A(k)

where the operation on the left is matrix multiplication.

If G be a local linear group of m×m matrices, we can construct a (con-
nected, global) linear Lie group G̃ containing G. Algebraically, G̃ is the
abstract subgroup of GL(m,C) generated by the matrices of G. If B ∈ G̃
we can introduce coordinates in a neighborhood of B by means of the map
g → BA(g) where g ranges over a suitably small neighborhood of e. In
general an n-dimensional (global) linear Lie group K is an abstract matrix
group which is also an n-dimensional local linear group G.

Examples: GL(n,R), SL(n,R), O(n), GL(n,C), SL(n,C), U(n)), are all
linear Lie groups.

Definition 3 Lie algebra L(G): Tangent space at the identity.

• One parameter curve through the identity in G: A(g(t)) where g(0) = e
.
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• L(G) consists of all matrices A = d
dt
A(g(t))|t=0 as g runs over all

differentiable curves through the origin.

• L(G) is a vector space: if g(t) → A and h(t) → B and α, β scalars,
then g(αt)h(βt)→ αA+ βB.

• L(G) is closed under commutation: if g(t) → A and h(t) → B then
g(t)h(t)g−1(t)h−1(t) = k(t2)→ [A,B] = AB − BA.

• Properties of the commutator:

[A,B] = −[B,A] (skew symmetry)

[αA+ βB, C] = α[A, C] + β[B, C], α, β scalars (linearity)

[[A,B], C] + [[B, C],A] + [[C,A],B] = 0, (Jacobi identity).

Holds automatically for matrix Lie algebras.

• Basic relation between Lie algebra and local Lie group: A(t) is a one-
parameter subgroup of G, i.e.,

A(t) ∈ G,A(t1)A(t2) = A(t1+t2)⇐⇒ A(t) = exp(tA) =
∞∑
j=0

(tA)j

j!
, A ∈ L(G).

Definition 4 Action of a Lie group as a Lie transformation group: Let G
be a local Lie group and M a local coordinate manifold. G acts as a local
transformatin group on M if there is an analytic mapping M× g → M :
x× g→ xg such that

(xg)h = x(gh), xe = x, g,h ∈ G, x ∈M.

We can transfer this action to functions f(x) onM by defining operators
T (g) such that

T (g)f(x) = f(xg),
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or, more generally,
T (g)f(x) = ν(g, x)f(xg),

where the multiplier ν(g, x) satisfies ν(gh, x) = ν(g, x)ν(h, xg). These oper-
ators satify the (local) group law

T (g)T (h) = T (gh).

By transferring this action to the tangent space at the identity,

T (A)f(x) =
d

dt
T (exp tA)f(x)|t=0,

one gets a realization of L(G) by first order linear differential operators:

T (αA+ βB) = αT (A) + βT (B),

T ([A,B]) = [T (A), T (B)] = T (A)T (B)− T (B)T (A).

EXAMPLE: ax+ b or “affine” group.

• g = (a, b), a > 0, b real. gh = (a, b) · (c, d) = (ac, ad+ b).

• Linear Lie group: g ⇔ A(g), such that A(g)A(h) = A(gh).

(a, b) = g⇔ A(g) =

(
a b
0 1

)
.

• A basis for the two-dimensional Lie algebra is given by the matrices

L1 =
d

dt

(
et 0
0 1

)
|t=0 =

(
1 0
0 0

)

L2 =
d

dt

(
1 t
0 1

)
|t=0 =

(
0 1
0 0

)
,

with commutation relation

[L1,L2] = L2.
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• An action on the real line given by

xg =
x− b
a

or

T (g)f(x) = f(
x− b
a

).

• The induced differential operators that represent the Lie algebra acting
on functions of x are

T (L1) = L1 = −x d
dx
, T (L2) = L2 = − d

dx
, [L1, L2] = L2.

EXAMPLE: The (three-dimensional real) Heisenberg group HR

•

HR =

g(x1, x2, x3) =

 1 x1 x3

0 1 x2

0 0 1

 : xi ∈ R

 .

• This is a subgroup of GL(3, R) with group product

g(x1, x2, x3) · g(y1, y2, y3) = g(x1 + y1, x2 + y2, x3 + y3 + x1y2).

The identity element is the identity matrix g(0, 0, 0) and g(x1, x2, x3)−1 =
g(−x1,−x2, x1x2 − x3).

• A basis for the three-dimensional Lie algebra is given by the matrices

L1 =
d

dt

 1 t 0
0 1 0
0 0 1

 |t=0 =

 0 1 0
0 0 0
0 0 0


L2 =

d

dt

 1 0 0
0 1 t
0 0 1

 |t=0 =

 0 0 0
0 0 1
0 0 0


L3 =

d

dt

 1 0 t
0 1 0
0 0 1

 |t=0 =

 0 0 1
0 0 0
0 0 0


with commutation relations

[L1,L2] = L3, [L1,L3] = [L2,L3] = 0.
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• An action on the real line given by

xg[x1, x2, x3] = x+ x1

and a family of representations on functions f(x) by

T λ(g)f(x) = e2πiλ(x3+xx2)f(x+ x1)

where λ is a constant.

• The induced differential operators that represent the Lie algebra acting
on functions of x are

T (L1) = L1 =
d

dx
, T (L2) = L2 = 2πiλx, T (L3) = L3 = 2πiλ.

1.3 Group representations

Definition 5 Let V be a Hilbert space. A representation of a group G
with representation space V is a homomorphism T : g → T(g) of G into
the space of bounded linear operators on V .

It follows that

T(g1)T(g2) = T(g1g2), T(g)−1 = T(g−1), (1.1)

T(e) = I, g1, g2, g ∈ G, (1.2)

Definition 6 A matrix representation of G is a homomorphism T : g →
T (g) of G into GL(n,C) or GL(∞, C).

Definition 7 The representation T is reducible if there is a proper sub-
space W of V which is invariant under T. Otherwise, T is irreducible
.

A representation is irreducible if the only invariant subspaces of V are {θ},
(the zero vector) and V itself. For large classes of groups and group represen-
tations, a reducible representation T can be decomposed into a direct sum
of irreducible representations in an almost unique manner. This is called the
Clebsch-Gordan decomposition.
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1.4 Orthogonality relations for finite groups

Let G be a finite group and select one irreducible representation T(µ) of G in
each equivalence class of irreducible representations. Introduction of a basis
in each representation space V (µ) leads to a matrix representation T (µ). Here
nµ = dimV (µ). We can choose the T (µ) to be unitary. Then∑

g∈G

T
(µ)
i` (g)T̄ (ν)

sm (g) =
N

nµ
δisδ`mδµν .

These are the orthogonality relations for matrix elements of irreducible
representations of G. We can write these relations in a basis-free manner.

1.5 Invariant measures on Lie groups

Let G be a real n-dimensional global Lie group of m×m matrices. There is
a unique (up to a constant) volume element dA in G with respect to which
the associated integral over the group is left-invariant, i.e.,∫

G

f(BA)dA =

∫
G

f(A)dA, B ∈ G,

where f is a continuous function on G such that either of the integrals con-
verges.

1.6 Orthogonality relations for compact Lie

groups

If G is a compact Lie group then the integral of any continuous function over
group space converges and the orthogonality relations generalize to∫

G

T
(µ)
i` (A)T

(ν)
sk (A)δA = (δis/nµ)δ`kδµν , 1 ≤ i, ` ≤ nµ, 1 ≤ s, k ≤ nν ,

where δA = V −1 dA and V =
∫
G

1 dA.
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1.7 The Peter-Weyl theorem

Let L2(G) be the space of all functions on the compact goup G which are
(Lebesgue) square-integrable:

L2(G) = {f(A) :

∫
G

|f(A)|2δA <∞}.

With respect to the inner product

〈f1, f2〉 =

∫
G

f1(A)f2(A)δA.

L2(G) is a Hilbert space. Let

ϕ
(µ)
ij (A) = n1/2

µ T
(µ)
ij (A).

It follows from the orthogonality relations that {ϕ(µ)
ij }, where 1 ≤ i, j ≤ nµ

and µ ranges over all equivalence classes of irreducible representations, forms
an ON set in L2(G).

Theorem 1 (Peter-Weyl). If G is a compact linear Lie group, the set {ϕ(µ)
ij }

is an ON basis for L2(G).
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Chapter 2

Special functions as matrix
elements

Let T be a representation of the Lie group G on the Hilbert space V and
let {vn} be an ON basis for V . (Here {vn} is typically chosen so that it has
simple transformation properties with respect to the subgroups in some chain
G ⊃ G1 ⊃ G2 ⊃ · · · ⊃ {e}.) Then the matrix elements of the operators T(g)
with respect to this basis satisfy the addition theorem

Tkm(g1g2) =
∑
j

Tkj(g1)Tjm(g2), g1, g2 ∈ G.

If T is a unitary representation then these matrices are unitary:

Tmn(g−1) = Tnm(g).

For important classes of groups G and bases {vn} these matrix elements are
familiar special functions. With respect to the inner product on the Hilbert
space, the matrix elements can be expressed as

Tkm(g) =< T(g)vm, vk >,

which for function space models ot T may provide an integral representation
of the matrix elements.
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2.1 A classical example: The rotation group

and spherical harmonics

A very important example of the orthogonality relations for compact lin-
ear Lie groups and the Peter-Weyl theorem is the rotation group SO(3) =
SO(3, R). This case was already treated in the Bateman project. Recall that
SO(3) has a convenient realization as the group of all 3× 3 real matrices A
such that AtA = I3 and detA = 1. This is the natural realization of SO(3)
as the group of all rotations in R3 which leave the origin fixed. One conve-
nient parametrization of SO(3) is in terms of the Euler angles. A rotation
through angle ϕ about the z axis is given by

Rz(ϕ) =

 cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 ∈ SO(3)

and rotations through angle ϕ about the x and y axis are given by

Rx(ϕ) =

 1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

 ∈ SO(3),

Ry(ϕ) =

 cosϕ 0 sinϕ
0 1 0

− sinϕ 0 cosϕ

 ∈ SO(3),

respectively. Differentiating each of these curves in SO(3) with respect to ϕ
and setting ϕ = 0 we find the following linearly independent matrices in the
tangent space at the identity:

Lz =

 0 −1 0
1 0 0
0 0 0

 , Lx =

 0 0 0
0 0 −1
0 1 0

 , Ly =

 0 0 1
0 0 0
−1 0 0

 .

One can check from the definition AtA = E3 that the tangent space at the
identity is at most three-dimensional, so the matrices Lx, Ly, Lz form a basis
for this space.

The Euler angles ϕ, θ, ψ for A ∈ SO(3) are given by

A(ϕ, θ, ψ) = Rz(ϕ)Rx(θ)Rz(ψ)
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=

 cosϕ cosψ − sinϕ sinψ cos θ sinϕ cosψ + cosϕ sinψ cos θ sinψ sin θ
− cosϕ sinψ − sinϕ cosψ cos θ sinϕ sin θ − sinϕ sinψ + cosϕ cosψ cos θ − cosϕ sin θ

cosψ sin θ cos θ

 ,

dA = sin θdϕdθdψ.

Since SO(3) is compact, dA is both left- and right-invariant. The volume of
SO(3) is

VSO(3) =

∫
SO(3)

dA =

∫ 2π

0

dψ

∫ 2π

0

dϕ

∫ π

0

sin θdθ = 8π2.

The irreducible unitary representations of SO(3) are denoted T(`), ` = 0, 1, 2, · · · ,
where dim T(`) = 2`+1. Expressed in terms of an ON basis for the represen-
tation space V (`) consisting of simultaneous eigenfunctions for the operators
T(`)(Rz(ϕ)), the matrix elements are

T `km(ϕ, θ, ψ) = ik−m
[

(`+m)!(`−k)!
(`+k)!(`−m)!

]1/2

ei(kϕ+mψ) [sin θ]m−k(1+cos θ)`+k−m

2`Γ(m−k+1) 2F1

(
−`,−k
m− 1

; cos θ−1
cos θ+1

)
= ik−m

[
(`+m)!(`−k)!
(`+k)!(`−m)!

]1/2

ei(kϕ+mψ)P−k,m` (cos θ),

where −` ≤ k,m ≤ `. Here 2F1

(
a, b
c

, x

)
is the Gaussian hypergeometric

function and Γ(z) is the gamma function. A generating function for the
matrix elements is

g(A, z) =
(βz + ᾱ)`−m(αz − β̄)`+m

[(`−m)!(`+m)!]1/2
=
∑̀
k=−`

T `km(A)
(−1)k−mz`+k

[(`− k)!(`+ k)!]1/2

where

α = ei(ϕ+ψ)/2 cos
θ

2
, β = iei(φ−ψ)/2 sin

θ

2
.

The group property

T `km(A1A2) =
∑̀
j=−`

T `kj(A1)T `jm(A2)

defines an addition theorem obeyed by the matrix elements. The unitary
property of the operator T(`)(A) implies

T `km(A−1) = T `mk(A),
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or in Euler angles,

(−1)m−kP−k,m` (cos θ) =
(`+ k)!(`−m)!

(`− k)!(`+m)!
P−m,k` (cos θ).

Also, |T `km(A)| ≤ 1 or

|P−k,m` (cos θ)| ≤
[

(`+ k)!(`−m)!

(`+m)!(`− k)!

]1/2

, 0 ≤ θ ≤ π.

The matrix elements T `om(ϕ, θ, ψ), are proportional to the spherical harmonics
Y m
` (θ, ψ). Indeed

T `om(ϕ, θ, ψ) = im
(

4π

2`+ 1

)1/2

Y m
` (θ, ψ) = im

[
(`−m)!

(`+m)!

]1/2

Pm
` (cos θ)eimψ

where the Pm
` (cos θ) are the associated Legendre functions. Moreover,

T `oo(ϕ, θ, ψ) = P`(cos θ)

where P`(cos θ) is the Legendre polynomial.
Orthogonality relations:∫

SO(3)

T `km(A)T `
′
k′m′(A)dA =

8π2

2`+ 1
δkk′δmm′δ``′ .

Thus∫ 2π

0

dψ

∫ 2π

0

dϕ

∫ π

0

dθ T `km(ϕ, θ, ψ)T `
′
k′m′(ϕ, θ, ψ) sin θ =

8π2

2`+ 1
δkk′δmm′δ``′ .

The ψ and ϕ integrations are trivial, while the θ integration gives∫ π

0

P k,m
` (cos θ)P k,m

`′ (cos θ) sin θdθ =
2

2`+ 1

(`− k)!(`−m)!

(`+ k)!(`+m)!
δ``′ .

For k = m = 0 these are the orthogonality relations for the Legendre
polynomials. (Note: By definition, P 0,−m

` (cos θ) = Pm
` (cos θ), P 0,0

` (cos θ) =
P`(cos θ), where Pm

` , P` are Legendre functions.)
By the Peter-Weyl theorem, the functions

ϕ`km(ϕ, θ, ψ) = (2`+ 1)1/2T `km(ϕ, θ, ψ),
−` ≤ k,m ≤ `, ` = 0, 1, 2, · · ·
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constitute an ON basis for L2(SO(3)). If f ∈ L2(SO(3)) then

f(ϕ, θ, ψ) =
∞∑
`=0

∑̀
k,m=−`

a`kmϕ
`
km(ϕ, θ, ψ)

where

a`km = (f, ϕ`km) =
1

8π2

∫ 2π

0

dψ

∫ 2π

0

dϕ

∫ π

0

dθ ×

×f(ϕ, θ, ψ)ϕ`km(ϕ, θ, ψ) sin θ.

2.2 Matrix elements of some other group rep-

resentations: SL(2,C), SL(2,R), SU(2)

Example 1 SL(2,C).

SL(2, C) =

{
A =

(
a b
c d

)
: a, b, c, d ∈ C, det(A) = 1

}
.

L (SL(2, C)) = s`(2, C) =

{
A =

(
α β
γ δ

)
: α, β, γ, δ ∈ C, trace(A) = 0

}
.

Basis for Lie algebra: L+, L−, L3

[L3, L±] = ±L±, [L+, L−] = 2L3.

L+ =

(
0 −1
0 0

)
, L− =

(
0 0
−1 0

)
, L3 =

(
1
2

0
0 −1

2

)
.

Finite-dimensional representations

Tu(A)f(z) = (bz + d)2uf(
az + c

bz + d
), 2u = 0, 1, 2, · · · .

Basis for representation space:

fj(z) = zj, j = 0, 1, · · · , 2u.

Matrix elements: Tu(A)fj(z) =
∑2u

`=oD`j(A)f`(z)

(az + c)j(bz + d)2u−j =
2u∑
`=0

D`j(A)z`
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D`j(A) =
a`d2u−jcj−`j!

`!(j − `)! 2F1

(
−` −2u+ j

j − `+ 1
;
bc

ad

)
.

Addition theorem:

D`j(AB) =
2u∑
k=0

D`k(A)Dkj(B), `, j = 0, 1, · · · , 2u.

Restrict to subgroup SU(2) and use Euler angles to parametrize group ele-
ments. Then D`j(φ, θ, ψ) is a Wigner D-function and D0m(φ, θ, ψ) ∼ Y m

` (θ, φ)
is a spherical harmonic, where ` = 2u. With respect to the normalized basis,
the matrix elements are unitary: Uu

nm(A−1) = Uu
mn(A).

Note: The addition theorem shows that for fixed ` the matrix element
D`j(A) transforms under right multiplication bt B exactly as the bais function
fj. passing to the Lie algebra action we see that the addition theorem for the

2F1 polynomials is obtained from exponentiating the differential recurrence
relations Eβγ, Eβγ for the

2F1

(
α, β
γ

; z

)
where Eβγ raises the β and γ parameters by one and Eβγ lowers the β and
γ parameters by one.

Some infinite-dimensional representations:

Tu(A)f(z) = (bz + d)2uf(
az + c

bz + d
), 2u ∈ C, 2u 6= 0, 1, · · · , f analytic

Basis for representation space:

fj(z) = zj, j = 0, 1, · · · .

Matrix elements: Tu(A)fj(z) =
∑∞

`=0 B`j(A)f`(z)

(az + c)j(bz + d)2u−j =
∞∑
`=0

B`j(A)z`

B`j(A) =
a`d2u−jcj−`j!

`!(j − `)! 2F1

(
−`,−2u+ j
j − `+ 1

;
bc

ad

)
.

Addition theorem:

B`j(AB) =
∞∑
k=0

B`k(A)Bkj(B), `, j = 0, 1, · · ·
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Restricted to the subgroup{(
a b

b a

)
: a, b ∈ C, |a|2 − |b|2 = 1

}
the representation is unitary and irreducible for u = n where 2n is a positive
integer. Then the matrix elements with respect to the normalized basis are
unitary.

Another realization of this infinite dimensional representation (acting on
functions of two complex variables, z, t:

Tu(A)f(z, t) = (d+ bt)u(a+
c

t
)u exp(

bzt

d+ bt
)f

(
zt

(at+ c)(bt+ d)
,
at+ c

bt+ d

)
,

| c
at
| < 1, |bt

d
| < 1.

Basis: fj(z, t) = Γ(−2u)j!
Γ(j−2u)

L
(−2u−1)
j (z)tj−u, j = 0, 1, · · ·

Tu(A)fj =
∞∑
`=0

B`j(A)f`

Special case:

(1− b)2u exp(
−bz
1− b

) =
∞∑
`=0

b`L
(−2u−1)
` (z), |b| < 1.

Example 2 SL(2, R) = {a ∈ SL(2, C) : A real }
Representation

Tu(A)f(x) = (bx+ d)2uf(
ax+ c

bx+ d
), u ∈ C, f infinitely differentiable

Compute matrix elements in continuum basis xλ corresponding to generator
L3 ∼ x d

dx
− u of noncompact one-parameter subgroup

exp tL3 =

(
e

t
2 0

0 e−
t
2

)
.

Use Mellin transform to map

f(x)⇐⇒ (F+(λ), F−(λ))

18



F+(λ) =

∫ ∞
0

xλ−1f(x)dx ≡
∫ ∞
−∞

xλ−1
+ f(x)dx

F−(λ) =

∫ ∞
0

xλ−1f(−x)dx ≡
∫ ∞
−∞

xλ−1
− f(x)dx.

Thus,

f(x) =

{
1

2πi

∫ a+i∞
a−i∞ f+(λ)x−λdλ, x > 0,

1
2πi

∫ a+i∞
a−i∞ f+(λ)(−x)−λdλ, x < 0,

where 0 < a < −2<u. Induce representation operators

Tu(A)

(
F+(λ)
F−(λ)

)
=

∫ a+i∞

a−i∞

(
K++(λ, µ;u;A) K+−(λ, µ;u;A)
K−+(λ, µ;u;A) K−−(λ, µ;u;A)

)(
F+(µ)
F−(µ)

)
dµ

Addition theorems:(
K++(λ, µ;u;AB) K+−(λ, µ;u;A)
K−+(λ, µ;u;A) K−−(λ, µ;u;A)

)
=

∫ a+i∞

a−i∞

(
K++(λ, ν;u;A) K+−(λ, ν;u;A)
K−+(λ, ν;u;A) K−−(λ, ν;u;A)

)
×

(
K++(ν, µ;u;B) K+−(ν, µ;u;B)
K−+(ν, µ;u;B) K−−(ν, µ;u;B)

)
dν.

The K±,± are expressible in terms of Gaussian hypergeometric functions. For
example, if

A =

(
cosh θ sinh θ
sinh θ cosh θ

)
then

K++(λ, µ;u;A) =
1

2πi

Γ(λ)Γ(−λ− 2u)

Γ(−2u)

coshλ+µ+2u(θ)

sinhλ+µ(θ)
2F1

(
λ, µ
−2u

;− 1

sinh2 θ

)
,

etc.
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Chapter 3

Symmetries of differential
equations

Hypergeometric functions and their generalizations arise as solutions of “canon-
ical” systems of partial differential equations via a particularly simple sepa-
ration of variables (in so-called subgroup coordinates). They can be charac-
terized via the Lie symmetry algebras of the system of differential equations.
Their differential recurrence relations correspond to the possible Lie symme-
tries of the equations. orthgonality relations for polynomial hypergeometric
functions can be derived easily from this approach, and the derivations extend
to differential and q-difference equations, including Askey-Wilson polynomi-
als.

LetD be a linear partial differential operator in n dimensions (with locally
analytic coefficients). Let λ be a parameter.

Definition 8 The linear partial differential operator S is a symmetry op-
erator for the equation DΦ = λΦ if S maps local solutions Φ to local solu-
tions SΦ. This is basically equivalent to the requirement that [S,D] = 0.

The linear partial differential operator S̃ is a conformal symmetry
operator for the equation DΦ = 0 if S̃ maps local solutions Φ of DΦ = 0
to local solutions SΦ.

The first order symmetry operators for DΦ = λΦ form a Lie algebra, the
symmetry algebra of this equation. The associated local Lie symmetry
group maps solutions to solutions. The first order conformal symmetry op-
erators for DΦ = 0 form a Lie algebra, the conformal symmetry algebra
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of this equation. The associated local Lie conformal symmetry group
maps solutions to solutions.

Special functions frequently arise as solutions of the PDEs of mathe-
matical physics, characterized by their transformation properties under the
symmetry algebra. This generalizes all of the preceding examples.

3.1 The wave equation and Gaussian hyper-

geometric functions

Consider the complex wave (or Laplace) equation in four-dimensional space

(∂u1∂u2 − ∂u3∂u4)Φ = 0.

(A simple complex linear change of coordinates recasts this equation into the
more familiar form

(∂2
x1

+ ∂2
x2

+ ∂2
x3

+ ∂2
x4

)Φ = 0.)

The functions

Φ

(
α, β
γ

)
≡ 2F1

(
α, β
γ

;
u3u4

u1u2

)
u−α1 u−β2 uγ−1

3

are solutions of the complex wave equation, where 2F1 is a Gaussian hyper-
geometric function. These solutions are easily characterized in terms of the
local Lie symmetries of the wave equation. It is evident that certain linear
combinations of the dilation generators Dj = uj∂j are symmetries. The hy-
pergeometric solutions are characterized to within a constant factor by the
requirements that they are analytic functions of the uj in a neighborhood of
u4 = 0 and that they satisfy the eigenvalue equations (described by dilation
symmetries)

(D1 +D4)Φ = −αΦ, (D2 +D4)Φ = −βΦ, (D3 −D4)Φ = (γ − 1)Φ.

Note that we have a separable solution of the wave equation in terms of the
variables

z =
u3u4

u1u2

, u1, u2, u3.

It is evident that the operators ∂uj , 1 ≤ j ≤ 4 are also symmetries,
i.e., they map solutions to solutions. In particular these operators map the
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basis functions Φ

(
α, β
γ

)
into other solutions. By consideration of the

comutation relations of the ∂uj with the dilation symmetries D` or by direct
power series computation one easily obtains the relations

∂u1Φ

(
α, β
γ

)
= αΦ

(
α + 1, β

γ

)
, ∂u2Φ = βΦ

(
α, β + 1

γ

)
∂u3Φ = (γ − 1)Φ

(
α, β
γ − 1

)
, ∂u4Φ =

αβ

γ
Φ

(
α + 1, β + 1

γ + 1

)
.

Note that upon factoring out the dependence on u1, u2, u3 we obtain well
known differential recurrence relations for the functions

2F1

(
α, β
γ

; z

)
.

A notation which suggests the raising operator (lowering operator) nature of
the ∂uj is Eα ≡ ∂u1 , E

β ≡ ∂u2 , Eγ ≡ ∂u3 , E
αβγ ≡ ∂u4 . Note that the wave

equation is just
(EαEβ − EγEαβγ)Φ = 0.

The conformal symmetries of the wave equation yield eight more symme-
tries which also have a recurrence relation interpretation: Eα, Eβ, Eγ, Eαγ,
Eαγ, E

βγ, Eβγ, Eαβγ. For example

EαβγΦ = (γ − 1)Φ

(
α− 1, β − 1

γ − 1

)
.

• The SL(2) representations in the preceding chapter are all special cases
of what we have here. For each of those models there was a single pair
of raising and lowering operators, correspnding to recurrence relations
for hypergeometric series. Here the full local symmetry group is SL(6).

If we make the change of variable (1 − x)/2 = u3u4/u1u2 and factor out
the dependence on u1, u2, u3 in the recurrence relations for Eαβγ and Eαβγ we
obtain a pair of well-known recurrence relations for the Jacobi polynomials
P

(α,β)
n :

d

dx
P (α,β)
n (x) =

α + β + n+ 1

2
P

(α+1,β+1)
n−1 (x)

[(x2 − 1)
d

dx
+ (α− β + (α + β + 2)x)]P

(α+1,β+1)
n−1 (x) = nP (α,β)

n (x)

22



where

P (α,β)
n (x) =

(
n+ α
n

)
2F1

(
−n, α + β + n+ 1

α + 1
;
1− x

2

)
, n = 0, 1, 2, · · · .

Note that the polynomials of orders 0 and 1 are given by

P
(α,β)
0 (x) = 1, P

(α,β)
1 (x) =

α + β

2
+

1

2
(α + β + 2)x.

Composition of the two recurrence relations leads to the standard Sturm-
Liouville eigenvalue equation:

(1− x2)P (α,β) ′′

n + [β − α− (α + β + 2)x]P (α,β) ′

n = n(α + β + n+ 1)P (α,β)
n .

(This is precisely the ordinary differential equation for the Jacobi polynomials
that we would obtain by directly separating variables in the wave equation.
However, here we have demonstrated that this equation can be “factored” in
terms of the recurrences.)

Now we derive the orthogonality relations for the Jacobi polynomials
through a variant of the usual Sturm-Liouville procedure that exploits the
factorization. Let Sα,β be the space of all polynomials in x with complex
inner product

< g1, g2 >α,β=

∫ 1

−1

g1(x)g2(x)ρα,β(x) dx,

g1, g2 ∈ Sα,β.

(We will consider the polynomials P
(α,β)
n to belong to Sα,β. The interval of

integration is motivated by the singularities.) Motivated by the recurrence
relations we define maps

τ (α,β) =
d

dx
: Sα,β → Sα+1,β+1

τ ∗(α+1,β+1) = (x2 − 1)
d

dx
+ (α− β + (α + β + 2)x) : Sα+1,β+1 → Sα,β,

and look for density functions ρα,β(x) such that

< g, τ (α,β)f >α+1,β+1=< τ ∗(α+1,β+1)g, f >α,β, (3.1)
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for all f ∈ Sα,β, g ∈ Sα+1,β+1. That is, we require that τ ∗ is the adjoint op-
erator to τ . A straightforward integration by parts argument, using the fact
that f and g are arbitrary polynomials, leads to the necessary and sufficient
conditions:

ρα+1,β+1(x) = (1−x2)ρα,β(x),
d

dx
ρα+1,β+1(x) = [β−α−(α+β+2)x]ρα,β(x)

with solution, unique up to a constant multiplicative factor,

ρα,β(x) = (1− x)α(1 + x)β.

This solution will provide a satisfactory weight function for Sα,β provided
α > −1, β > −1, which we now assume.

Since τ and τ ∗ are mutual adjoints, it follows immediately that

τ ∗τ : Sα,β → Sα,β

is a self-adjoint operator with eigenvalues

λn = n(α + β + n− 1), n = 0, 1, · · ·

and eigenfunctions
gn = P (α,β)

n (x).

It is easy to show that λn = λm if and only if n = m. Using the well-known
fact that eigenfunctions corresponding to distinct eigenvalues of a self-adjoint
operator are orthogonal we obtain the orthogonality relations

< P (α,β)
n , P (α,β)

m >α,β=

∫ 1

−1

P (α,β)
n (x)P (α,β)

m (x)(1− x)α(1 + x)β dx

= δnmMn(α, β).

The polynomials {P (α,β)
n } could have been computed from a knowledge of

the weight function ρα,β via the Gram-Schmidt process and are uniquely

determined once the coefficient of xn in P
(α,β)
n (x) is specified. Since the

measure is invariant under the interchange x↔ −x, α↔ β, it follows easily
that

P (α,β)
n (−x) = P (β,α)

n (x),

a nontrivial identity.
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Now we try to determine the normalization of the Jacobi polynomials,
i.e., to compute Mn(α, β). Identity (3.1) with g = P

(α+1,β+1)
n−1 , f = P

(α,β)
n

yields the recurrence

1

2
(α + β + n+ 1)Mn−1(α + 1, β + 1) = −nMn(α, β),

so it is sufficient to compute

||1||α,β ≡M0(α, β) =< 1, 1 >α,β=

∫ 1

−1

(1− x)α(1 + x)β dx.

This is the beta-integral and can be easily evaluated by a well-known trick,
but for pedagogical purposes we shall determine what a knowledge of the
recurrence symmetries and the connection with orthogonality alone will tell
us. Using the evident facts that

< P
(α,β)
1 , P

(α,β)
0 >α,β= 0, < (1 + x), 1 >α,β=< 1, 1 >α,β+1,

we obtain the recurrence relations

1

2
(α + β + 2)||1||α,β+1 = (β + 1)||1||α,β

1

2
(α + β + 2)||1||α+1,β = (α + 1)||1||α,β.

These recurrence relations have the solution

||1||α,β =
Γ(β + 1)Γ(α + 1)

Γ(α + β + 2)
2α+βh(α, β)

where h(α + 1, β) = h(α, β + 1) = h(α, β). (Here we are using the property
Γ(z + 1) = zΓ(z) of the Gamma function. If f(z + 1) = zf(z) then f(z) =
Γ(z)h(z) where h(z+1) = h(z).) This is as far as we can go using recurrence
relations alone, since the Gamma function isn’t uniquely determined by its
fundamental recurrence relation. We need additional facts to compute h.

One way to proceed is to replace α, β by α + k, β + k, k = 0, 1, 2, · · · ,
and write the resulting identity in the form∫ 1

−1

[(
1− x

2

)α+k (
1 + x

2

)β+k
Γ(α + β + 2k + 2)

Γ(α + k + 1)Γ(β + k + 1)

]
dx = h(α, β).
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Letting k → +∞ we find from Stirling’s formula, that the integrand of the
left-hand side converges to 1 and that h(α, β) ≡ 2.

None of the steps in the foregoing development is very novel and the
results are, of course, well known. What is remarkable, is the fact that the
same development works for families of polynomials satisfying difference and
q-difference equations. Indeed the derivation of the norm is frequently more
straightforward than in the differential equations case.

3.2 Canonical equations for generalized hy-

pergeometric functions. Introduction to

Gel’fand theory

The above approach generalizes to all N -variable hypergeometric series. For
example consider the basis functions

Φ ≡ F1

(
α, β, β′

γ
;
u3u4

u1u2

,
u3u6

u1u5

)
u−α1 u−β2 u−β

′

5 uγ−1
3

where F1 is the Appell function

F1

(
α, β, β′

γ
;x, y

)
=

∞∑
m,n=0

(α)m+n(β)m(β′)n
(γ)m+nm!n!

xmyn, |x|, |y| < 1.

Now Φ satisfies the canonical equations

(∂u1u2 − ∂u3u4)Φ = 0, (∂u1u5 − ∂u3u6)Φ = 0, (∂u5u4 − ∂u2u6)Φ = 0,

and the eigenvalue equations

(D1 +D4 +D6)Φ = −αΦ, (D2 +D4)Φ = −βΦ,

(D3 −D4 −D6)Φ = (γ − 1)Φ, (D5 +D6)Φ = −β′Φ.
A basis of first order symmetries for these equations is given by

∂uk , k = 1, · · · , 6

and the dilations

D1 +D4 +D6, D2 +D4, D3 −D4 −D6, D5 +D6.
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The 6 symmetries ∂uk correspond exactly to the 6 differential recursion for-
mulas for F1:

(x∂x + y∂y + α)F1 = αF1(α + 1), (x∂x + β)F1 = βF1(β + 1),

(x∂x + y∂y + γ − 1)F1 = (γ − 1)F1(γ − 1), (y∂y + β′)F1 = β′F1(β′ + 1),

∂xF1 =
αβ

γ
F1(α + 1, β + 1, γ + 1), ∂yF1 =

αβ′

γ
F1(α + 1, β′ + 1, γ + 1).

This is closely related to the Gel’fand theory of hypergeometric functions.
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Chapter 4

Symmetry characterization of
variable separation for the
Helmholtz and Schrödinger
equations

Separable solutions for Laplace-Beltrami eigenvalue equations can be charac-
terized group theoretically. For real Euclidean n-space, the real n-sphere and
the real (n− 1, 1) hyperboloid, all separable systems are known. If an equa-
tion admits multiple separable systems we can expand the special functions
corresponding to one eigensystem in terms of the other.

R-separable solutions:

Ψ(x) = R(x)
N∏
k=1

Ψ(k)(xk, λj), separation constants λj, j = 1, · · · , N.

Theorem 2 Necessary and sufficient conditions for the existence of an or-
thogonal R-separable coordinate system {xi} for the Laplace-Beltrami eigen-
value equation

(∆N + V (x)) Ψ = EΨ

on an N-dimensional pseudo-Riemannian manifold are that there exists a
linearly independent set {A1 = ∆N + V,A2, · · · , AN} of second-order differ-
ential symmetry operators on the manifold such that:

• [Ak, A`] = 0, 1 ≤ k, ` ≤ N ,

28



• Each Ak is in self-adjoint form,

• There is a basis {ω(j) : 1 ≤ j ≤ N} of simultaneous
eigenforms for the {Ak}.

If conditions (1)-(3) are satisfied then there exist functions gi(x) such that:

ω(j) = gjdxj, j = 1, · · · , N.

The R-separable solutions

Ψ(x) = R(x)
N∏
k=1

Ψ(k)(xk)

are characterized by the eigenvalue equations

AkΨ = λkΨ

where λ1, · · · , λN are the separation constants. The main point of the theo-
rems is that, under the required hypotheses the eigenforms ω` of the quadratic
forms aij are normalizable, i.e., that up to multiplication by a nonzero func-
tion, ω` is the differential of a coordinate. This fact permits us to compute
the coordinates directly from a knowledge of the symmetry operators.

NOTE:

• If ∆N is the Laplace-Beltrami operator on flat space the symmetry
algebra is the Lie algebra of the Euclidean group e(N) (or a Minkowski
group). The universal enveloping algebra maps onto the space of all
differential symmetries of ∆N .

• If ∆N is the Laplace-Beltrami operator on a space of nonzero constant
curvature the symmetry algebra is the Lie algebra so(N+1) (or so(p, q)
with p + q = N + 1). The universal enveloping algebra maps onto the
space of all differential symmetries of ∆N .

• CHESHIRE CAT PHENOMENON: The second order terms in a sym-
metry operator for the Schrödinger equation

(∆N + V )Ψ = λΨ

29



on a flat space or space of constant curvature are expressible in terms of
the second order elements in the enveloping algebras of e(N) (flat space)
or so(N + 1) (non-zero constant curvature space). Thus even if the
potential V breaks the group symmetry, all separable solutions of the
Schrödinger equation can be classified in terms of N commuting second-
order elements in the enveloping algebras. The group symmetry is
broken but the smile lingers on: ^.

• Thus, group theoretic methods can be used to study all special func-
tions that arise via separation of variables for these equations, e.g.
Heun, Lame’, spheroidal, toroidal, etc., not just functions of hypergeo-
metric type.

4.1 Constuction of separable coordinate sys-

tems for spheres and Euclidean space

A complete construction of separable coordinate systems on the N -sphere
and on Euclidean N -space, and a graphical method for constructing these
systems is known. Here we mention some of the main ideas.

The basic elliptic coordinate system on the N -sphere is denoted

[e0|e1| · · · |eN ].

All separable coordinate systems on the N -sphere can be obtained by nesting
these basic coordinates for the k-spheres for k ≤ N . For example we can
obtain a separable coordinate system on the N -sphere by starting with a
basic elliptic coordinate system on the (N −k)-sphere and embedding in it a
k-sphere. The k-sphere Cartesian coordinates (V0, · · · , Vk) can be attached
to any one of the N − k + 1 Cartesian coordinates (U0, · · · , UN−k) of the
(N − k)-sphere. Let us attach it to the first coordinate. Then we have

(X0, · · · , XN) = (U0V0, · · · , U0Vk, U1, · · · , UN−k),
k∑
`=0

V 2
` = 1,

V 2
` =

∏k
i=1(vi − f`)∏
i 6=`(fi − f`)

, U2
0 =

∏N−k
t=1 (ut − e0)∏
i 6=0(ei − e0)

,
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ds2 = ds2
1 + U2

0ds
2
2, ds2

1 =
N−k∑
h=0

dU2
h , ds2

2 =
k∑
`=0

dV 2
` .

The resulting system is denoted graphically by[
e0 | e1 | · · · | eN−k

]
↓[

f0 | · · · | fk
]

Here is another possibility:[
e0 | e1 | · · · | eN−k−`−m

]
↓ ↘[

f0 | f1 | · · · | fk
] [

g0 | · · · |g`
]

↓[
h0 | · · · | hm

]
Each separable system can be obtained in this way via embeddings. The
graph is a tree whose nodes are basic elliptic coordinate systems.

For the special case of the 2-sphere there are just 2 separable systems,
ellipsoidal coordinates [

e0|e1|e2

]
and spherical coordinates [

e0| e1

]
↓[
f0| f1

]
For Euclidean space the results are a bit more complicated. The basic

ellipsoidal coordinate system on N -space is denoted

< e0|e1| · · · |eN−1 >,

and the parabolic coordinate system is

(e1| · · · |eN−1).

The graphs need no longer be trees; they can have several connected compo-
nents. Each connected component is a tree with a root node that is either
of the above forms. Just as above, spheres can be embedded in the root
coordinates or to each other. Here are two examples:

< e0 > < e′0 >,

31



1) Cartesian coordinates in two-space, and 2) oblate spheroidal coordinates〈
e0 | e1

〉
↓[

a1 | a2

]
in three-space.

4.2 Example of separation of variables: A

“magic” potential on the n-sphere

MOTIVATION:
The Lauricella functions

Φ = FA

[
M +G− 1; −m1, · · · , −mn

γ1, · · · , γn
;x1, · · · , xn

]
and

(1− x)MFA

[
−M − γn+1 + 1; −m1, · · · ,−mn

γ1, · · · , γn
;
−x1

1− x
, · · · , −xn

1− x

]
form a biorthogonal polynomial family wheremi = 0, 1, 2, · · · , M =

∑n
k=1mi,

G =
∑n+1

`=1 γ`, x =
∑n

k=1 xi and the γ` are positive real numbers. The inner
product is

(Φ1,Φ2) =

∫
· · ·
∫

xi>0,x<1

Φ1Φ2 dω̃,

dω̃ = xγ1−1
1 . . . xγn−1

n (1− x)γn+1−1dx1 . . . dxn.

The Lauricella function FA is defined by

FA

[
a; b1, · · · , bn

c1, · · · , cn
;x1, · · · , xn

]

=
∞∑

m1,··· ,mn=0

(a)m1+···+mn(b1)m1 · · · (bn)mnx
m1
1 · · ·xmn

n

(c1)m1 · · · (cn)mnm1! · · ·mn!
,

where

(a)m =

{
1 m = 0

a(a+ 1) . . . (a+m− 1) m ≥ 1.
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The standard partial differential equations for the FA are,

xj(1− xj)∂xjxjFA − xj
∑
k 6=j

xk∂xkxjFA + [cj − (a+ bj + 1)xj] ∂xjFA

−bj
∑
k 6=j

xk∂xkFA − abjFA = 0

for j = 1, 2, · · · , n. Adding these equations together, we see that the poly-
nomial functions Φ, satisfy the eigenvalue equation

HΦ = −M(M +G− 1)Φ

where

H =
n∑

i,j=1

(xiδij − xixj)∂xixj +
n∑
i=1

(γi −Gxi)∂xi .

PROPERTIES OF H:

1. H maps polynomials of maximum order mi in xi to polynomials of the
same type.

2. As the mi range over all nonnegative integers the functions form a basis
for the space of all polynomials in variables x1, · · · , xn.

3. The eigenvalues of H acting on this space are exactly

{−M(M +G− 1) : M = 0, 1, 2, · · · }.

RELATION TO N -SPHERE:
Equation is closely related to the Laplace-Beltrami eigenvalue equation

on the n-sphere. Consider the contravariant metric determined by the second
derivative terms in H:

gij = δijxi − xixj, 1 ≤ i, j ≤ n.

Then det(gij) = g−1 = x1x2 · · ·xn(1− x) and

gij =
1

1− x
+
δij
xi
.
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Thus

ds2 =
n∑

i,j=1

gijdxidxj

determines a metric with associated Laplace-Beltrami operator

∆n =
1
√
g

n∑
i,j=1

∂xi(g
ij√g ∂xj).

A straightforward computation yields

H = ∆n + Λn

where

Λn =
n∑
j=1

[γj −
1

2
+ (

n+ 1

2
−G)xj]∂xj .

If γ1 = · · · = γn+1 = 1/2 then H ≡ ∆n, but in general H differs
from ∆n by the first order differential operator Λn.

Introduce Cartesian coordinates z0, z1, · · · , zn in n + 1
dimensional Euclidean space and restrict these coordinates by the conditions

z2
0 = 1−

∑n
i=1 xi = 1− x,

z2
1 = x1

z2
2 = x2

...
z2
n = xn.

Note that z2
0 + z2

1 + · · ·+ z2
n = 1. Defining a metric ds2 by

ds2 =
n∑

m=0

(dzm)2

we find

ds2 =
1

4

n∑
i,j=1

(
1

1− x
+
δij
xi

)dxidxj.

Thus the space corresponds to a portion of the n-sphere Sn.
Set Φ(x) = ρ(x)Ψ(x) for a nonzero scalar function ρ:

(∆n + Λn)Φ = −M(M +G− 1)Φ
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⇐⇒
(∆n + Vn(x))Ψ = −M(M +G− 1)Ψ,

where
ρ−1 = x

γ1/2−1/4
1 · · ·xγn/2−1/4

n (1− x)γn+1/2−1/4.

and

Vn = −1

4

n∑
i=1

(γi − 1
2
)(γi − 3

2
)

xi
−

1

4

(γn+1 − 1
2
)(γn+1 − 3

2
)

1− x
+

1

4

[
(1−G)2 − 1− (n− 3)(n+ 1)

4

]
.

The equation H ′Ψ ≡ (∆n + Vn)Ψ = λΨ has a natural metric

dω = g1/2dx1 · · · dxn = x
−1/2
1 · · ·x−1/2

n (1− x)−1/2dx1 · · · dxn.

The operator H ′ = ρ−1Hρ = ∆n + Vn is formally self-adjoint with respect to
the inner product

< Ψ1,Ψ2 >=

∫
· · ·
∫

xi>0,x<1

Ψ1(x)Ψ2(x)dω,

< H ′Ψ1,Ψ2 >=< Ψ1, H
′Ψ2 > .

This induces an inner product on the space of polynomial functions Φ(x) =
ρΨ, with respect to which H is self-adjoint:

(Φ1,Φ2) ≡< Ψ1,Ψ2 >=

∫
· · ·
∫

xi>0,x<1

Φ1Φ2 dω̃,

dω̃ = xγ1−1
1 . . . xγn−1

n (1− x)γn+1−1dx1 . . . dxn,

(HΦ1,Φ2) = (Φ1, HΦ2).

A first order symmetry operator for the equation HΦ = λΦ is a differential
operator

K =
n∑
i=1

fi(x)∂xi + g(x)

such that
[H,K] ≡ HK −KH = 0.

REMARKS:
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1. The first order symmetry operators form a real Lie algebra.

2. If γ1 = γ2 = · · · = γn+1 = 1/2 then H = ∆n and that the Lie algebra of
real symmetry operators of ∆n is so(n+ 1), with dimension n(n+ 1)/2
and a basis of the form {L`k} where 0 ≤ ` < k ≤ n, and L`k = −Lk`.
Explicitly,

L`k = z`∂zk − zk∂z` ,
and

Lij = 2
√
xixj(∂xj − ∂xi), 1 ≤ i, j ≤ n

L0i = 2
√
xi(1− x)∂xi , 1 ≤ i ≤ n.

3. All real second-order differential operators S that commute with ∆n can
be expressed as linear combinations over R of
real constants, elements L`k and elements L`kL`′k′ .

4. For γ1, . . . , γn+1 arbitrary, the only first order symmetry is multiplica-
tion by a constant. However, there are second order symmetries:

Sij ≡ 4xixj(∂xi − ∂xj)2 + 4(γixj − γjxi)(∂xi − ∂xj)

= L2
ij + 4[(γi−

1

2
)xj − (γj −

1

2
)xi](∂xi − ∂xj) = Sji, 1 ≤ i < j ≤ n,

S0i ≡ 4xi(1− x)∂2
xi

+ 4[γi(1− x)− γn+1xi]∂xi

= L2
0i + 4[(γi −

1

2
)(1− x)− (γn+1 −

1

2
)xi]∂xi = Si0, 1 ≤ i ≤ n.

Also

8H ≡
n∑

i,j=1

Sij + 2
n∑
i=1

S0i.

4.2.1 Orthogonal bases of separable solutions

All separable coordinates on the n-sphere are known, i.e., all separable coor-
dinates for the Laplace-Beltrami eigenvalue equation ∆nΨ = λΨ. They can
be constructed by the graphical procedure given above. We know that:

• All separable coordinates are orthogonal.

• For each separable coordinate system the corresponding separated so-
lutions are characterized as simultaneous eigenfunctions of a set of n
second order, self-adjoint, commuting symmetry operators for ∆n.
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• These operators are real linear combinations of the
symmetries L2

ij, 1 ≤ i < j ≤ n + 1, where Lij is a rotational gen-
erator in so(n+ 1).

• For n = 2 there are two separable systems (ellipsoidal and spherical
coordinates), while for n = 3 there are 6 systems. The number of sepa-
rable systems grows rapidly with n, but all systems can be constructed
through a simple graphical procedure. (In general, the possible sepa-
rable systems are the various polyspherical coordinates, the basic el-
lipsoidal coordinates, and combinations of polyspherical and ellipsoidal
coordinates.)

• The equation (∆n + Vn)Ψ = λΨ where the scalar potential takes the
special form

Vn =
n∑
i=1

αi
z2
i

+
α0

z2
0

, α0, α1, . . . , αn constants.,

is separable in all the coordinate systems in which the
Laplace-Beltrami eigenvalue equation is separable. Indeed,
the equation with this potential is separable in general ellipsoidal co-
ordinates. Since all other coordinates are limiting cases of ellipsoidal
coordinates, the conclusion follows.

• The symmetry operators describing the variable separation
for the potential are given explicitly as linear combinations of the sym-
metries Sij. These operators are formally self-adjoint.

These results can now easily be extended to results for

(∆n + Λn)Φ = λΦ

through the mappings

∆n + Λn = ρ(∆n + Vn)ρ−1

Sij = ρS ′ijρ
−1

Φ = ρΨ.

CONCLUSIONS:
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• All separable solutions Ψ map to separable solutions Φ.

• The separable coordinates and solutions are determined by
sets of n commuting symmetry operators S of ∆n + Λn.

• The defining symmetry operators are all formally self-adjoint with re-
spect to the inner product (·, ·).

• Since each Sij maps polynomials of maximum order mk in xk to poly-
nomials of the same type, it follows that a basis of separated solutions
can be expressed as polynomials in the xi.

• Since the symmetry operators are self-adjoint, the basis of simultaneous
eigenfunctions can be chosen to be orthogonal.

We conclude from this argument that every separable coordinate sys-
tem for the Laplace-Beltrami eigenvalue equation on the n-sphere yields an
orthogonal basis of polynomial solutions, hence an orthogonal basis for all
n-variable polynomials with our inner product.

EXAMPLE: Spherical coordinates {ui} on Sn

z2
0 = 1− x = 1− un
z2

1 = x1 = u1u2 . . . un
z2

2 = x2 = (1− u1)u2 . . . un
...
z2
n−1 = xn−1 = (1− un−2)un−1un
z2
n = xn = (1− un−1)un.

(Note that in terms of angles {θi} one usually sets ui = sin2 θi.)
In terms of the {ui},

H =
n∑
i=1

1

ui+1 · · ·un

[
ui(1− ui)∂2

ui
+

(
i∑

j=1

γj − (
i+1∑
p=1

γp)ui

)
∂ui

]
.

Equation is separable in these coordinates with separation equations

u1(1− u1)∂2
u1

Θ1 + [γ1 − (γ1 + γ2)u1] ∂u1Θ1 = c1Θ1,[
ck−1

uk
+ uk(1− uk)∂2

uk

]
Θk +

[∑k
j=1 γj − (

∑k+1
p=1 γp)uk

]
∂ukΘk = ckΘk,

k = 2, 3, · · · , n.
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Here Θ =
∏n

k=1 Θk(uk) and the ci are the separation constants,
with cn = −M(M +G− 1). Separable solution:

Θ1(u1) = 2F1

(
−`1, `1 + γ1 + γ2 − 1

γ1
;u1

)
c1 = −`1(`1 + γ1 + γ2 − 1),

Θk(uk) = u
`1+`2+···+`k−1

k ×

2F1

(
−`k, 2(`1 + · · ·+ `k−1) + `k + γ1 + · · ·+ γk+1 − 1

2(`1 + · · ·+ `k−1) + γ1 + · · ·+ γk
;uk

)
,

ck = −(`1 + · · ·+ `k)(`1 + · · ·+ `k + γ1 + · · ·+ γk+1 − 1),
k = 2, 3, · · · , n,

where
∑n

i=1 `i = M and `i = 0, 1, 2 · · · .
We have the eigenvalue equations

S`Θ` = c`Θ`, ` = 1, · · · , n
where

S1 = u1(1− u1)∂2
u1

+ [γ1 − (γ1 + γ2)u1] ∂u1 ,

Sk =
1

uk
Sk−1 + uk(1− uk)∂2

uk
+ [γ1 + · · ·+ γk − (γ1 + · · ·+ γk+1)uk] ∂uk ,

k = 2, 3, · · · , n, and Sn = H. Furthermore, [Si, Sj] = 0 and the Si are
self-adjoint with respect to the inner product (·, ·).

It follows immediately that

(Θ`,Θm) = 0

unless `1 = m1, `2 = m2,. . . , `n = mn. The measure dω̃ becomes

dω̃ = uγ1−1
1 uγ1+γ2−1

2 . . . uγ1+···+γn−1
n (1− u1)γ2−1(1− u2)γ3−1 . . .

×(1− un)γn+1−1du1 . . . dun,

where 0 < ui < 1. In terms of the symmetries Sij, S0i we have:

Sk =
1

8

k+1∑
i,j=1

Sij, k = 1, . . . , n− 1,

Sn = H =
1

8
(

n∑
h,p=0

Shp),

where we set Shh = 0.

• The number of separable bases is 2 for n = 2, 6 for n = 3, and grows
very rapidly with n.
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4.2.2 Relations between bases on the sphere

Take case n = 2. Then

HΦ = −j(j +G− 1)Φ,

where

H =
2∑

i,k=1

(xiδik − xixk)
∂2

∂xi∂xk
+

2∑
i=1

(γi −Gxi)
∂

∂xi
.

Here G = γ1 + γ2 + γ3.
FACTS:

• H maps polynomials of maximum degree mi in xi to polynomials of
the same type.

• The polynomial eigenfunctions of H form a basis for the
space of all polynomials f(x1, x2).

• The spectrum of H acting on this space is exactly
{−j(j +G− 1) : j = 0, 1, . . . }.

• H = ∆2 + Λ2 where ∆2 is the Laplace Beltrami operator
on S2 and

Λ2 =
2∑
i=1

[γi −
1

2
+ (

3

2
−G)xi]

∂

∂xi
.

• H is self-adjoint with respect to the inner product

(f1, f2) =

∫
· · ·
∫

x1,x2>0,1−x1−x2>0

f1(x)f2(x)dω

where

dw = xγ1−1
1 xγ2−1

2 (1− x1 − x2)γ3−1dx1dx2, (Hf1, f2) = (f1, Hf2),

and γ1, γ2, γ3 are positive real numbers. Here f1, f2 are polynomials in
x = (x1,x2).

• There are exactly two separable coordinate systems for this equation:
spherical coordinates and ellipsoidal coordinates.
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Spherical coordinates:
For fixed j the polynomials

ψjm(x1, x2) = (x1 + x2)mP γ1+γ2+2m−1,γ3−1
j−m (2x1 + 2x2 − 1)

×P γ2−1, γ1−1
m

(
2x1

x1+x2
− 1
)
, m = 0, 1, . . . , j

form an orthogonal basis for the eigenspace corresponding to eigenvalue
−j(j +G− 1). In terms of spherical coordinates

z1 = sin θ cosφ, z2 = sin θ sinφ, z3 = cos θ,

and with ψjm(x1, x2) ≡ ψjm[θ, φ], this basis reads

ψjm[θ, φ] = (sin θ)2mP γ1+γ2+2m−1,γ3−1
j−m (cos 2θ)P γ2−1, γ1−1

m (cos 2φ).

Ellipsoidal coordinates:
For the case of ellipsoidal coordinates {x, y} we have

z2
i =

(x− ei)(y − ei)
(ej − ei)(ek − ei)

, i = 1, 2, 3, i, j, k pairwise distinct.

The metric on the 2-sphere is, in terms of these coordinates,

ds2 =
y − x

4

[
dx2

(x− e1)(x− e2)(x− e3)
− dy2

(y − e1)(y − e2)(y − e3)

]
.

The separation equations are

[−(λ− e1)(λ− e2)(λ− e3)
[
d2

dλ2
+
(

γ1
λ−e1 + γ2

λ−e2

+ γ3
λ−e3

)
d
dλ

]
+ j(j +G− 1)λ+ q]Φε

jq(λ) = 0

where λ = x, y according as ε = 1, 2, respectively. This is Heun’s equa-
tion, the Fuchsian equation of second order with four singularities.

The solutions for the functions Φε
jq(λ) are Heun polynomials which for

fixed j will form a complete set of basis functions once the eigenvalues q have
been calculated. To calculate the eigenvalues it is convenient to observe that
in the coordinate system x1, x2 the operator M whose eigenvalues u are

u = −4q − (e1 + e2 + e3)j(j +G− 1)
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is given by

M = (e1 + e2)S12 + (e2 + e3)S23 + (e1 + e3)S13

where the Sik are the symmetry operators. That is, M is the second or-
der symmetry operator for the Laplacian ([M,∆] = 0) which corresponds
to the separable coordinates x, y, and the Heun basis ψ = Φ1

jq(x)Φ2
jq(y) is

characterized as the set of eigenfunctions Mψ = uψ.

Now we consider the problem of expanding the Heun basis Φ1
jq(x)Φ2

jq(y)
in terms of the Jacobi polynomial basis:

ψ = Φ1
jq(x)Φ2

jq(y) =

j∑
m=0

ξmψjm[θ, φ].

Three term recurrence relations for the expansion coefficients ξm can be de-
duced by requiring that

Mψ = uψ.

To carry out the computation we need the action of the various
pieces Sik of M on the Jacobi bases ψjm[θ, φ]. We find

Mψjm[θ, φ] =
+1∑
r=−1

Xrψj,m+r[θ, φ]

where

X1(m, j) =
4(e1 − e2)(γ1 + γ2 + γ3 +m+ j − 1)(γ3 −m+ j − 1)(m+ 1)

(γ1 + γ2 + 2m− 1)(γ1 + γ2 + 2m)
(γ1+γ2+m−1),

X−1(m, j) =
4(e1 − e2)(γ1 + γ2 +m+ j − 1)(−m+ j + 1)(γ2 − 1)(γ1 − 1)

(γ1 + γ2 + 2m− 1)(γ1 + γ2 + 2m− 2)
,

X0(m, j)−u =
2(e1 − e2)[m2 +m(γ1 + γ2 − 1)− j2 − j(γ1 + γ2 + γ3 − 1)]

(γ1 + γ2 + 2m− 2)(γ1 + γ2 + 2m)
(γ1+γ2−2)(γ1−γ2)

+4
(e1 − e2)mγ3(γ1 − γ2)(m+ γ2)

(γ1 + γ2 + 2m− 2)(γ1 + γ2 + 2m)

+2(e1 + e2)[−m2 −m(γ1 + γ2 − 1) + j2 + j(γ1 + γ2 + γ3 − 1)]

+4e3[m2 +m(γ1 + γ2 − 1)] + 4q.
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Substituting this expansion into the eigenvalue equation
Mψ = uψ we find the three term recurrence relation

X1(m− 1, j)ξm−1 + (X0(m, j)− u) ξm +X−1(m+ 1, j)ξm+1 = 0

where m = 0, 1, . . . j. Consequently the j + 1 independent
eigenvalues q are calculated from the determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

X0(j, j)− u X1(j − 1, j)
X−1(j, j) X0(j − 1, j)− u X1(j − 2, j)

. . . . . . . . .

X−1(1, j) X0(0, j)− u

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.
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Chapter 5

Clebsch-Gordan coefficients
and orthogonal polynomials

I will briefly indicate some relations between Clebsch-Gordan series for the
decomposition of tensor products of group representations and special func-
tion theory. I will limit myself to a single example. The generalizations are
obvious.

Example 3 SU(2).

SU(2) =

{
A =

(
α β
−β̄ ᾱ

)
: α, β ∈ C, |α|2 + |β|2 = 1

}
.

L (SU(2)) = s`(2, R) =

{
A =

(
ix3 −x2 + ix1

x2 + ix1 −ix3

)
: xj ∈ R

}
.

Basis for complexification of Lie algebra: L+, L−, L3

[L3, L±] = ±L±, [L+, L−] = 2L3.

L+ =

(
0 −1
0 0

)
, L− =

(
0 0
−1 0

)
, L3 =

(
1
2

0
0 1

2

)
.

This algebra is isomorphic to so(3).

Finite-dimensional representations

Tu(A)f(z) = (βz + β̄)2uf(
αz − β̄
βz + ᾱ

), 2u = 0, 1, 2, · · · ,
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Orthonormal basis for representation space:

fm(z) =
(−z)u+m√

(u−m)!(u+m)!
, m = −u,−u+ 1, · · · , u− 1, u.

Action of Lie algebra:

L3fm = mfm, L±fm =
√

(u±m+ 1)(u∓m)fm±1.

Note that the Casimir operator C = L+L− + L3L3 − L3 is a multiple of the
identity on the representation space: C = u(u+ 1)I.

Matrix elements: Tu(A)fm(z) =
∑u

n=−u Unm(A)fn(z)
Addition theorem for unitary matrix elements:

Unm(AB) =
u∑

k=−u

Unk(A)Dkm(B), n,m = −u, · · · , u.

Decompose tensor product Tu ⊗ Tv (Clebsch-Gordan series):

Tu ⊗ Tv ≡
u+v∑

w=|u−v|

⊕Tw.

Here,

L3
1f

(u)
m = mf (u)

m , L±1 f
(u)
m =

√
(u±m+ 1)(u∓m)f

(u)
m±1.

L3
2f

(v)
m = mf (v)

m , L±2 f
(v)
m =

√
(v ±m+ 1)(v ∓m)f

(v)
m±1.

Orthonormal basis for left-hand side: f
(u)
m ⊗ f (v)

n .
Orthonormal basis for right-hand side:

h
(w)
k , w = |u− v|, · · · , u+ v, −w ≤ k ≤ w,

where

J3h
(w)
k = kh

(w)
k , J±h

(w)
k =

√
(w ± k + 1)(w ∓ k)h

(w)
k±1

and
J3 = L3

1, J+ = L+
1 + L+

2 , J− = L−1 + L−2 .
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The Clebsch-Gordan coefficients are the coefficients of the unitary matrix
relating these two bases:

h
(w)
k =

∑
m,n

C(u,m; v, n|w, k)f (u)
m ⊗ f (v)

n .

Relating the matrix elements of the group operators in the two bases, we find
the important identity

Uu
mm′(A)U v

nn′(A) =
∑
w,k,k′

C(u,m; v, n|w, k)C(u,m′; v, n′|w, k′)Uw
kk′(A).

The C-G coefficients can be computed directly from our models, and are ex-
pressible in terms of hypergeometric functions 3F2(1). They have important
symmetries that follow from the group theory. These symmetries lead to
transformation formulas for the 3F2(1).

To decompose this representation we compute the common eigenfunctions
of J3 and C = J+J− + J3J3 − J3. Clearly, eigenfunctions of J3 = L3

1 + L3
2

with eigenvalue s are just those linear combinations of the basis vectors
Fα
u+m = f

(u)
m ⊗ f (v)

n where n = α −m. To be definite, suppose u ≤ v, α ≥ 0.
Applying C to the ON set {Fα

k } we find a three term recurrence relation of
the form

CFα
k = akF

α
k+1 + bkF

α
k + ckFk−1

where ak, bk, ck are explicit. The operator C is self-adjoint with discrete
eigenvalues w(w+ 1). If we introduce the spectral transform of this operator
so that C corresponds to multiplication by the transform variable x, then this
expression takes the form of a three term recurrence relation for orthogonal
polynomials Fα

k (x) of order k in x. The functions Fα
k (x) are, essentially, the

Clebsch-Gordan coefficients for this decomposition; the orthogonality and
completeness relations for the polynomials are the unitarity conditions for
the C-G coefficients.

Insights along these lines lead to the Wilson polynomials, true generaliza-
tions of the classical orthogonal polynomials, and finally to the Askey-Wilson
polynomials. Indeed, the starting point for the Wilson polynomials is the
Racah coefficients. These coefficients relate the basis vectors h

(s)
k on the two

sides of the expression

(Tu ⊗ Tv)⊗ Tw ≡ Tu ⊗ (Tv ⊗ Tw).
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The irreducible representation Ts may appear more than once so the Racah
coefficients are by no means trivial. They can be expressed as sums of prod-
ucts of 4 C-G coefficients and then shown to be expressible in terms of hyper-
geometric functions 4F3(1). They satisfy unitarity, symmetry and recurrence
relations, and one of those recurrence relations can be reinterpreted as a three
term recurrence relation for a family of polynomials, the Racah polynomials.
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Chapter 6

Harmonic analysis and lattice
subgroups

We study two procedures for the analysis of time-dependent signals, locally
in both frequency and time. The first procedure, the “windowed Fourier
transform” is associated with the Heisenberg group while the second, the
“wavelet transform” is associated with the affine group.

6.1 Harmonic analysis: windowed Fourier trans-

forms

Let g ∈ L2(R) with ||g|| = 1 and define the time-frequency translation of g
by

g[x1,x2](t) = e2πitx2g(t+ x1) = T1[x1, x2, 0]g(t)

where T1 is the unitary irreducible representation

T1[x1, x2, x3]g(t) = e2πix3+2πitx2g(t+ x1)

of the Heisenberg group HR. Now suppose g is centered about the point
(t0, ω0) in phase (time-frequency) space, i.e., suppose∫ ∞

−∞
t|g(t)|2dt = t0,

∫ ∞
−∞

ω|ĝ(ω)|2dω = ω0

where ĝ(ω) =
∫∞
−∞ g(t)e−2πiωtdt is the Fourier transform of g(t). Then∫ ∞

−∞
t|g[x1,x2](t)|2dt = t0 − x1,

∫ ∞
−∞

ω|ĝ[x1,x2](t)|2dω = ω0 + x2
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so g[x1,x2] is centered about (t0 − x1, ω0 + x2) in phase space. To analyze an
arbitrary function f(t) in L2(R) we compute the inner product

F (x1, x2) = 〈f, g[x1,x2]〉 =

∫ ∞
−∞

f(t)ḡ[x1,x2](t)dt

with the idea that F (x1, x2) is sampling the behavior of f in a neighborhood
of the point (t0 − x1, ω0 + x2) in phase space. As x1, x2 range over all real
numbers the samples F (x1, x2) give us enough information to reconstruct
f(t).

However, the set of basis states g[x1,x2] is overcomplete: the coefficients
〈f, g[x1,x2]〉 are not independent of one another, i.e., in general there is no f ∈
L2(R) such that 〈f, g[x1,x2]〉 = F (x1, x2) for an arbitrary F ∈ L2(R2). The
g[x1,x2] are examples of coherent states, continuous overcomplete Hilbert
space bases which are of interest in quantum optics and quantum field theory,
as well as gropup representation theory. Thus it isn’t necessary to compute
the inner products 〈f, g[x1,x2]〉 = F (x1, x2) for every point in phase space.
In the windowed Fourier approach one typically samples F at the lattice
points (x1, x2) = (ma, nb) where a, b are fixed positive numbers and m,n
range over the integers. Here, a, b and g(t) must be chosen so that the map
f −→ {F (ma, nb)} is one-to-one; then f can be recovered from the lattice
point values F (ma, nb). The study of when this can happen is the study of
Weyl-Heisenberg frames. It is particularly useful when g can be chosen such
that g[ma,nb] is an ON basis for L2. This leads (in the case a = b) to the lattice
Hilbert space, the Weil-Brezin-Zak transform and important applications to
theta functions.

6.2 Harmonic analysis: continuous wavelets

Here we work out the analog for the affine group of the Weyl-Heisenberg
frame for the Heisenberg group. Let φ ∈ L2(R) with ||g|| = 1 and define the
affine translation of φ by

φ(a,b)(t) = a−1/2φ

(
t+ b

a

)
= L0[a, b]φ(t)

where a > 0 and L0 is the unitary representation

L0[a, b]φ(t) = a−1/2φ

(
t+ b

a

)
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of the affine group.
Can assume that

∫∞
−∞ t|φ(t)|2dt = 0. Let k =

∫∞
0
y|φ̂(y)|2dy. Then φ is

centered about the origin in position space and about k in momentum space.
It follows that∫ ∞

−∞
t|φ(a,b)(t)|2dt = −b,

∫ ∞
0

y|φ̂(a,b)(y)|2dy = a−1k.

To define a lattice in the affine group space we choose two nonzero real
numbers a0, b0 > 0 with a0 6= 1. Then the lattice points are a = am0 , b =
nb0a

m
0 , m,n = 0,±1, · · · , so

φmn(t) = φ(am0 ,nb0a
m
0 )(t) = a

−m/2
0 φ(a−m0 t+ nb0).

Thus φmn is centered about −nb0a
m
0 in position space and about a−m0 k in

momentum space. (Note that this behavior is very different from the behavior
of the Heisenberg translates g[ma,nb]. In the Heisenberg case the support of g
in either position or momentum space is the same as the support of g[ma,nb]. In
the affine case the sampling of position-momentum space is on a logarithmic
scale. There is the possibility, through the choice of m and n, of sampling in
smaller and smaller neighborhoods of a fixed point in position space.)

The affine translates φ(a,b) are called wavelets and the function φ is a
father wavelet. The map T : f −→

∫
f(t)φmn(t)dt is the continuous

wavelet transform
Again the continuous wavelet transform is overcomplete. The question

is whether we can find a subgroup lattice and a function φ for which the
functions

φmn(t) = φ(am0 ,nb0a
m
0 )(t) = a

−m/2
0 φ(a−m0 t+ nb0)

generate an ON basis. We will choose a0 = 1/2, b0 = 1 and find conditions
such that the functions

φmn = 2m/2φ(2mt+ n), m, n = 0,±1,±2, · · ·

span L2. In particular we will require that the set φ0n(t) = φ(t + n) be
orthonormal.
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6.3 Harmonic analysis: discrete wavelets and

the multiresolution structure

From the discussion of the last section, we want to find a scaling function
(or father wavelet) φ such that the functions φmn(t) = 2m/2φ(2mt + n) will
generate an ON basis for L2. In particular we require that the set φ0n(t) =
φ(t + n) be orthonormal. Then for each fixed m we will have that {φmn} is
ON in n.

EXAMPLE: The Haar scaling function

φ(t) =

{
1 0 ≤ t < 1.
0 otherwise

Here the set {φ(t + n) = φ0n : n = 0,±1, · · · } is ON. Let Vm be the space
of piecewise constant functions in L2(R) with possible discontinuities only at
the gridpoints tk = k

2mj , k = 0,±1,±2 · · · . Note that

1. {φmn(t) : n = 0,±1, · · · } is an ON basis for Vm.

2. Vm ⊂ Vm+1

3. ∪mVm = L2(R)

4. φ(t) = φ(2t) + φ(2t− 1).

This example leads naturally to the concept of a multiresolution structure
on L2.

Definition 9 Let {Vj : j = · · · ,−1, 0, 1, · · · } be a sequence of subspaces of
L2[−∞,∞] and φ ∈ V0. This is a multiresolution analysis for L2[−∞,∞]
provided the following conditions hold:

1. The subspaces are nested: Vj ⊂ Vj+1.

2. The union of the subspaces generates L2 : ∪∞j=−∞Vj = L2[−∞,∞].
(Thus, each f ∈ L2 can be obtained a a limit of a Cauchy sequence
{sn : n = 1, 2, · · · } such that each sn ∈ Vjn for some integer jn.)

3. Separation: ∩∞j=−∞Vj = {0}, the subspace containing only the zero
function. (Thus only the zero function is common to all subspaces Vj.)
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4. Scale invariance: f(t) ∈ Vj ⇐⇒ f(2t) ∈ Vj+1.

5. Shift invariance of V0: f(t) ∈ V0 ⇐⇒ f(t− k) ∈ V0 for all integers k.

6. ON basis: The set {φ(t− k) : k = 0,±1, · · · } is an ON basis for V0.

Here, the function φ(t) is called the scaling function (or the father wavelet).

Of special interest is a multiresolution analysis with a scaling function
φ(t) on the real line that has compact support. The functions φ(t + k) will
form an ON basis for V0 as k runs over the integers, and their integrals with
any polynomial in t will be finite.

• Can we find continuous scaling functions with compact sup-
port?

Given φ(t) we can define the functions

φjk(t) = 2
j
2φ(2jt− k), k = 0,±1,±2, · · ·

and for fixed integer j they will form an ON basis for Vj. Since V0 ⊂ V1 it
follows that φ ∈ V1 and φ can be expanded in terms of the ON basis {φ1k}
for V1. Thus we have the dilation equation

φ(t) =
√

2
∑
k

c(k)φ(2t− k),

or, equivalently,

φ(t) = 2
N∑
k=0

h(k)φ(2t− k)

where h(k) = 1√
2
c(k). Since the φjk form an ON set, the coefficient vector c

must be a unit vector in `2, ∑
k

|c(k)|2 = 1.

Since φ(t) ⊥ φ(t−m) for all nonzerom, the vector c satisfies the orthogonality
relation:

(φ00, φ0m) =
∑
k

c(k)c(k − 2m) = δ0m.
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Lemma 1 If the scaling function is normalised so that∫ ∞
−∞

φ(t)dt = 1,

then
∑N

k=0 c(k) =
√

2.

We can introduce the orthogonal complement Wj of Vj in Vj+1.

Vj+1 = Vj ⊕Wj.

We start by trying to find an ON basis for the wavelet space W0. Associated
with the father wavelet φ(t) there must be a mother wavelet w(t) ∈ W0, with
norm 1, and satisfying the wavelet equation

w(t) =
√

2
∑
k

d(k)φ(2t− k),

and such that w is orthogonal to all translations φ(t−k) of the father wavelet.
We further require that w is orthogonal to integer translations of itself. Since
the φjk form an ON set, the coefficient vector d must be a unit vector in `2,∑

k

|d(k)|2 = 1.

Moreover since w(t) ⊥ φ(t − m) for all m, the vector d satisfies so-called
double-shift orthogonality with c:

(w, φ0m) =
∑
k

c(k)d(k − 2m) = 0. (6.1)

The requirement that w(t) ⊥ w(t−m) for nonzero integer m leads to double-
shift orthogonality of d to itself:

(w(t), w(t−m)) =
∑
k

d(k)d(k − 2m) = δ0m. (6.2)

However, if the unit coefficient vector c is double-shift orthogonal then the
coefficient vector d defined by

d(n) = (−1)nc(N − n). (6.3)

automatically satisfies the conditions (6.1) and (6.2).
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Theorem 3

L2[−∞,∞] = Vj ⊕
∞∑
k=j

Wk = Vj ⊕Wj ⊕Wj+1 ⊕ · · · ,

so that each f(t) ∈ L2[−∞,∞] can be written uniquely in the form

f = fj +
∞∑
k=j

wk, wk ∈ Wk, fj ∈ Vj. (6.4)

To find compact support wavelets must find solutions c(k) of the orthogonal-
ity relations above, nonzero for a finite range k = 0, 1, · · · , N . Then given a
solution c(k) must solve the dilation equation

φ(t) =
√

2
∑
k

c(k)φ(2t− k). (6.5)

to get φ(t). Can show that the support of φ(t) must be contained in the
interval [0, N).

One way to try to determine a scaling function φ(t) from the impulse
response vector c is to iterate the dilation equation. That is, we start with
an initial guess φ(0)(t), the Haar scaling function on [0, 1), and then iterate

φ(i+1)(t) =
√

2
N∑
k=0

c(k)φ(i)(2t− k) (6.6)

This is called the cascade algorithm.
The frequency domain formulation of the dilation equation is :

φ̂(ω) =

(∑
k

h(k)e−iωk/2

)
φ̂(
ω

2
)

where c(k) =
√

2h(k). Thus

φ̂(ω) = H(
ω

2
)φ̂(

ω

2
).

where

H(ω) =
N∑
k=0

h(k)e−iωk
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Iteration yields the explicit infinite product formula: φ̂(ω):

φ̂(ω) = Π∞j=1H(
ω

2j
). (6.7)

φ(t) IS A SPECIAL FUNCTION

• Daubechies has found a solution c(k) and the associated scaling func-
tion for each N = 1, 3, 5, · · · . (There are no solutions for even N .)
Denote these solutions by DM = DN+1 = D2p. D2 is just the Haar
function. Daubechies finds the unique solutions for which the Fourier
transform of the impulse response vector C(ω) has a zero of order p at
ω = π, where 2p = N + 1. (At each N this is the maximal possible
value for p.)

• Can compute the values of φ(t) exactly at all dyadic points t =
∑

n
jn
2n

,
jn = ±1.

•
∑

k φ( k
2j

) = 2j for j = 0, 1, 2, · · · .

• Can find explicit expressions∑
k

y`kφ(t+ k) = t`, ` = 0, 1, · · · , p− 1,

so polynomials in t of order ≤ p − 1 can be expressed in V0 with no
error.

• The support of φ(t) is contained in [0, N), and φ(t) is orthogonal to all
integer translates of itself. The wavelets {wmn} form an ON basis for
L2.

• B-splines fit into this multiresolution framework, though more natu-
rally with biorthogonal wavelets.

• There are matrices

T = (↓ 2)2HH
tr

= MH
tr
.

associated with each of the Daubechies solutions whose eigenvalue stru-
ture determines the convergence properties of the wavelet expansions.
These matrices have beautiful eigenvalue structures.
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• There is a smoothness theory for Daubechies DM . Recall M = N+1 =
2p. The smoothness grows with p. For p = 1 (Haar) the scaling
function is piecewise continuous. For p = 2, (D4) the scaling function
is continuous but not differentiable. For p ≥ 3 we have s = 1 (one
derivative). For p = 5, 6, 7, 8 we have s = 2. For p = 9, 10 we have
s = 3. Asymptotically s grows as 0.2075p+ constant.

• The constants c are explicit for N = 1, 3. For N = 5, 7, · · · they must
be computed numerically.

Example 4 The nonzero Daubechies filter coefficients for D4 (N = 3) are
4
√

2c(k) = 1 +
√

3, 3 +
√

3, 3 −
√

3, 1 −
√

3. With the normalization φ(0) +
φ(1) + φ(2) = 1 we have, uniquely,

φ(0) = 0, φ(1) =
1

2
(1 +

√
3) φ(2) =

1

2
(1−

√
3).

From these three values the values of φ(t) at any dyadic point can be computed
explicitly.

Wavelets are extremely useful in signal analysis, data compression (in-
cluding image compression), edge detection, noise removal, etc.
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Chapter 7

Significant research
opportunities and challenges

• The study of many-variable hypergeometric functions via the canonical
equations/ Gel’fand approach. q-analogs.

• Study of the analogs of windowed Fourier transforms and wavelet trans-
forms in higher dimensions.

• Study of the relationship between Clebsch-Gordon coefficients for semi-
simple Lie algebras and multivariable orthogonal polynomials. q-analogs.

• The “magic” potentials discussed earlier are examples of superinte-
grable systems, Hamiltonian systems in N variables that admit 2N −1
independent second order constants of the motion. These are integrable
systems with the maximum possible symmetry and are intimately re-
lated to special function theory. The complete classification and anal-
ysis of these systems is an important task.

• In contrast to the theory of orthogonal variable separation for constant
curvature spaces, classification of nonorthogonal separable systems is
not well understood.

• Study of the special functions arising as solutions of the spin equations
of general relativity. Teukolsky functions.
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