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We give the first explicit construction of the quadratic algebra for a 3D quan-

tum superintegrable system with nondegenerate (4-parameter) potential together

with realizations of irreducible representations of the quadratic algebra in terms of

differential-differential or differential-difference and difference-difference operators in

two variables. The example is the singular isotropic oscillator. We point out that

the quantum models arise naturally from models of the Poisson algebras for the cor-

responding classical superintegrable system. These techniques extend to quadratic

algebras for superintegrable systems in n dimensions and are closely related to Hecke

algebras and multivariable orthogonal polynomials.
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I. INTRODUCTION

The distinct classical and quantum second order superintegrable systems on real or com-

plex 3D flat space and with nondegenerate (4-parameter) potentials have been classified [1].

(Recall that a second order superintegrable system in n dimensions is one that admits 2n−1

functionally independent constants of the motion quadratic in the momentum variables, the

maximum possible, [2–4].) Indeed, the classification for nondegenerate potentials on 3D

conformally flat spaces is virtually complete, [5–9]. Characteristic of these systems in all

dimensions is that the second order constants of the motion generate a finite dimensional

algebra, polynomially closed under commutation, the quadratic algebra. In several recent

papers [10, 11] for the 2D cases, the authors have launched a study of the irreducible rep-

resentations of these algebras and their applications via models of the representations, in

terms of differential and difference operators. (Some earlier work on this subject can be

found in [13–18].) For the 3D case where 2n-1=5, we have shown that in fact there are

always 6 linearly independent second order symmetries and that these generate a quadratic
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algebra closing at order 6 in the momenta. The second order generators are always func-

tionally dependent via a polynomial relation at order 8. In this paper we present, for the

first time, the details for a nontrivial quadratic algebra in 3D: the singular isotropic oscil-

lator. Two-variable models for irreducible representations of the quantum system follow

directly from models for the classical system. There are three possible models expressed in

differential or difference operators, corresponding to separation of the eigenvalue equation

for the Schrödinger operator in Cartesian, cylindrical or spherical coordinates. The models

have important connections with the theory of dual Hahn and Wilson polynomials. This is

a prototype for the general study of the representations of 3D quadratic algebras.

II. THE QUANTUM SUPERINTEGRABLE SYSTEM

The Hamiltonian operator is

H = ∂2
1 + ∂2

2 + ∂2
3 + a2(x2

1 + x2
2 + x2

3) +
b1
x2

1

+
b2
x2

2

+
b3
x2

3

∂i ≡ ∂xi
. (1)

A basis for the second order constants of the motion is (with H = M1 +M2 +M3.)

M` = ∂2
` + a2x2

` +
b`
x2

`

, ` = 1, 2, 3, Li = (xj∂k − xk∂j)
2 +

bjx
2
k

x2
j

+
bkx

2
j

x2
k

, (2)

where i, j, k are pairwise distinct and run from 1 to 3. There are 4 linearly independent

commutators of the second order symmetries:

S1 = [L1,M2] = [M3, L1], S2 = −[M3, L2] = [M1, L2], (3)

S3 = −[M1, L3] = [M2, L3], R = [L1, L2] = [L2, L3] = [L3, L1],

[Mi,Mj] = [Mi, Li] = 0, 1 ≤ i, j ≤ 3.

Here we define the commutator of linear operators F,G by [F,G] = FG − GF . (Thus a

second order constant of the motion is a second order partial differential operator K in the

variables xj such that [K,H] = 0, where 0 is the zero operator.)

The fourth order structure equations are [Mi, Si] = 0, 1 = 1, 2, 3, and

εijk[Mi, Sj] = 8MiMk − 16a2Lj + 8a2, εijk[Mi, R] = 8(MjLj −MkLk) + 4(Mk −Mj), (4)

εijk[Si, Lj] = 8MiLi − 8MkLk + 4(Mk −Mi),
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εijk[Li, Si] = 4{Li,Mk −Mj}+ 16bjMk − 16bkMj + 8(Mk −Mj),

εijk[Li, R] = 4{Li, Lk − Lj} − 16bjLj + 16bkLk + 8(Lk − Lj + bj − bk).

Here, {F,G} = FG+GF and εijk is the completely antisymmetric tensor.

The fifth order structure equations are obtainable directly from the fourth order equations

and the Jacobi identity. The sixth order structure equations are

S2
i −

8

3
{Lj,Mj,Mk}+ 16a2L2

i + (16bk + 12)M2
j + (16bj + 12)M2

k −
104

3
MjMk

−176

3
a2Li − 16

3
a2(2 + 9bj + 9bk + 12bjbk) = 0, (5)

1

2
{Si, Sj}+

4

3
{Li,Mk,Mi}+

4

3
{Lj,Mk,Mj} − 8LkM

2
k − 8a2{Li, Lj} − (16bk + 12)MiMj

+4M2
k − 4Mk(Mi +Mj) + a2(32bk + 24)Lk + 8a2(Li + Lj)− 16a2(bk + 1) = 0,

1

2
{Si, R} − 8L2

iMi +
4

3
{Lk, Li,Mk}+

4

3
{Li, Lj,Mj} − (8bk + 6){Lk,Mj}

−(8bj + 6){Lj,Mk} − 2{Li,Mk +Mj}+
88

3
LiMi +

52

3
(LkMk + LjMj)

+(32bkbj + 24bk + 24bj +
16

3
)Mi + (8bj − 8

3
)Mk + (8bk − 8

3
)Mj = 0,

R2 − 8

3
{L1, L2, L3}+ (16b1 + 12)L2

1 + (16b2 + 12)L2
2 + (16b3 + 12)L2

3 −
52

3
{L1, L2}

−52

3
{L1, L3} − 52

3
{L2, L3} − 16

3
(11b1 + 1)L1 − 16

3
(11b2 + 1)L2

−16

3
(11b3 + 1)L3 − 32

3

(
6b1b2b3 +

9

2
(b1b2 + b1b3 + b2b3) + b1 + b2 + b3

)
.

Here, {A,B,C} = ABC + ACB + BAC + BCA + CAB + CBA and i, j, k are pairwise

distinct.

The eighth order functional relation is

L2
1M

2
1 + L2

2M
2
2 + L2

3M
2
3 −

1

12
{L1, L2,M1,M2} − 1

12
{L1, L3,M1,M3} (6)

− 1

12
{L2, L3,M2,M3} − 7

3
L1M

2
1 −

7

3
L2M

2
2 −

7

3
L3M

2
3 +

2

3
a{L1, L2, L3}

− 1

18
{L1,M1,M2} − 1

18
{L1,M1,M3} − 1

18
{L2,M1,M2} − 1

18
{L2,M2,M3}

− 1

18
{L3,M1,M3} − 1

18
{L3,M2,M3}+

1

6
(4b1 + 3){L1,M2,M3}

+
1

6
(4b2+3){L2,M1,M3}+1

6
(4b3+3){L3,M1,M2}−a2(4b1+3)L2

1−a2(4b2+3)L2
2−a2(4b3+3)L2

3
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+
a2

3
({L1, L2}+ {L1, L3}+ {L2, L3})− (4b2b3 + 3b2 + 3b3 +

4

3
)M2

1

−(4b1b3 + 3b1 + 3b3 +
4

3
)M2

2 − (4b1b2 + 3b1 + 3b2 +
4

3
)M2

3 +
2

3
(b3 + 2)M1M2

+
2

3
(b2 + 2)M1M3 +

2

3
(b1 + 2)M2M3 +

4

3
a2(7b1 + 4)L1 +

4

3
a2(7b2 + 4)L2

+
4

3
a2(7b3 + 4)L3 +

4

3
a2(12b1b2b3 + 9b1b2 + 9b1b3 + 9b2b3 + 4b1 + 4b2 + 4b3) = 0.

Here, {A,B,C,D} is the 24 term symmetrizer of 4 operators.

A. Cartesian case: A quantum model with M1,M2 diagonal

For the model we choose variables u, v in which the eigenfunctions are polynomials, and

write the parameters as bj = 1/4− k2
j . Then we have

M1 = 2ia(2u∂u + k1 + 1), M2 = 2ia(2v∂v + k2 + 1), M1 +M2 +M3 = E (7)

L1 = 4v
(
u2∂2

u + 2uv∂u∂v + (v2 + 1)∂2
v − ( E

2ia
− k1 − k2 − 4)u∂u − ( E

2ia
− k1 − k2 − 4)∂v

)

+4(1 + k2)∂v + v
(
(− E

2ia
+ k1 + k2 + 3)2 − k2

3

)
+ 1

2a2M2M3 + 1
2

(8)

L2 = 4u
(
v2∂2

v + 2uv∂u∂v + (u2 + 1)∂2
u − ( E

2ia
− k1 − k2 − 4)v∂v − ( E

2ia
− k1 − k2 − 4)u∂u

)

+4(1 + k1)∂u + u
(
(− E

2ia
+ k1 + k2 + 3)2 − k2

3

)
+ 1

2a2M1M3 + 1
2

(9)

L3 = 4 (uv∂2
u + uv∂2

v + (k1 + 1)v∂u + (k2 + 1)u∂v) + 1
2a2M1M2 + 1

2
. (10)

In the model, the monomials fN,j = ujvN−j are simultaneous eigenfunctions of the oper-

ators Mj:

M1fN,j = 2ia(2j + k1 + 1)fN,j, M2fN,j = 2ia(2N − 2j + k2 + 1)fN,j (11)

Further, we have the expansion formulas

L1fN,j =
(
(2N + 3− E

2ia
+ k1 + k2)

2 − k2
3

)
fN+1,j + 4(N − j)(N − j + k2)fN−1,j

+
(
2( E

2ia
− 2N − 2k1 − 2k2 − 2)(2N − 2j + k2 + 1) + 1

2

)
fN,j

(12)
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L2fN,j =
(
(2N + 3− E

2ia
+ k1 + k2)

2 − k2
3

)
fN+1,j+1 + 4j(j + k1)fN−1,j−1

+
(
2( E

2ia
− 2N − 2k1 − 2k2 − 2)(2j + k1 + 1) + 1

2

)
fN,j

(13)

L3fN,j = 4(N − j)(N − j + k2)fN,j+1 + 4j(j + k2)fN,j−1

+
(
2(2j + k1 + 1)(2N − 2j + k2 + 1) + 1

2

)
fN,j

(14)

From the model we can find a family of finite dimensional irreducible representations,

labeled by the nonnegative integer M . A basis of eigenfunctions is given by {fN,j = ujvN−j},
such that the N and j are nonnegative integers satisfying 0 ≤ j ≤ N ≤ M .. The energy

satisfies

E = 2ia(2M + k1 + k2 + k3 + 3). (15)

The dimension of the representation is (M + 2)(M + 1)/2. Now we introduce an inner

product such that the operators Mj, Lj are formally self-adjoint for j = 1, 2, 3. This forces

a to be pure imaginary.

Normalization coefficients: Let f̂N,j = KN,ju
jvN−j such that ||f̂N,j|| = 1. If we assume

K0,0 = 1 then the coefficients become,

KN,j =
(−M)N(−M − k3)N

(N − j)!j!(k2 + 1)N−j(k1 + 1)j

B. Recurrence relations for Wilson polynomials

The spherical case is is intimately bound up with recurrence relations for Wilson polyno-

mials and the cylindrical case with the dual Hahn polynomials. To see this we modify some

of the results of [19]. The unnormalized Wilson polynomials are

wn(y2) ≡ wn(y2, α, β, γ, δ) = (α + β)n(α + γ)n(α + δ)n× (16)

4F3



−n, α + β + γ + δ + n− 1, α− y, α + y

α + β, α + γ, α + δ
; 1




= (α+ β)n(α+ γ)n(α+ δ)nΦ(α,β,γ,δ)
n (y2),

where (a)n is the Pochhammer symbol and 4F3(1) is a generalized hypergeometric function

of unit argument.
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For fixed α, β, γ, δ > 0 the Wilson polynomials are orthogonal with respect to the inner

product

< wn, wn′ >=
1

2π

∫ ∞

0
wn(−y2)wn′(−y2)

∣∣∣∣∣
Γ(α+ iy)Γ(β + iy)Γ(γ + iy)Γ(δ + iy)

Γ(2iy)

∣∣∣∣∣
2

dy (17)

= δnn′n!(α + β + γ + δ + n− 1)n×
Γ(α + β + n)Γ(α + γ + n)Γ(α+ δ + n)Γ(β + γ + n)Γ(β + δ + n)Γ(γ + δ + n)

Γ(α+ β + γ + δ + 2n)
.

The Wilson polynomials Φn(y2) ≡ Φ(α,β,γ,δ)
n (y2), satisfy the three term recurrence formula

y2Φn(y2) = K(n+ 1, n)Φn+1(y
2) +K(n, n)Φn(y2) +K(n− 1, n)Φn−1(y

2) (18)

where

K(n+ 1, n) =
α + β + γ + δ + n− 1

(α+ β + γ + δ + 2n− 1)(α + β + γ + δ + 2n)
× (19)

(α + β + n)(α+ γ + n)(α + δ + n),

K(n− 1, n) =
n(β + γ + n− 1)(β + δ + n− 1)(γ + δ + n− 1)

(α+ β + γ + δ + 2n− 2)(α + β + γ + δ + 2n− 1)
, (20)

K(n, n) = α2 −K(n+ 1, n)−K(n− 1, n). (21)

Moreover, they satisfy the following parameter-changing recurrence relations when acting

on the basis polynomials Φn ≡ Φ(α,β,γ,δ)
n . Here T τf(y) = f(y + τ).

1.

R =
1

2y
[T 1/2 − T−1/2], RΦn =

n(n+ α + β + γ + δ − 1)

(α + β)(α + γ)(α + δ)
Φ

(α+1/2,β+1/2,γ+1/2,δ+1/2)
n−1 .

2.

L =
1

2y

[
(α− 1

2
+ y)(β − 1

2
+ y)(γ − 1

2
+ y)(δ − 1

2
+ y)T 1/2

−(α− 1

2
− y)(β − 1

2
− y)(γ − 1

2
− y)(δ − 1

2
− y)T−1/2

]
.

LΦn = (α + β − 1)(α + γ − 1)(α + δ − 1)Φ
(α−1/2,β−1/2,γ−1/2,δ−1/2)
n+1 .

3.

Lαβ =
1

2y

[
−(α− 1

2
+ y)(β − 1

2
+ y)T 1/2 + (α− 1

2
− y)(β − 1

2
− y)T−1/2

]
.

LαβΦn = −(α + β − 1)Φ(α−1/2,β−1/2,γ+1/2,δ+1/2)
n .
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4.

Rαβ =
1

2y

[
−(γ − 1

2
+ y)(δ − 1

2
+ y)T 1/2 + (γ − 1

2
− y)(δ − 1

2
− y)T−1/2

]
.

RαβΦn = −(n+ γ + δ − 1)(n+ α+ β)

α + β
Φ(α+1/2,β+1/2,γ−1/2,δ−1/2)

n .

The operators Lαγ, Lαδ, Rαγ, Rαδ are obtained by obvious substitutions.

C. Recurrence relations for dual Hahn polynomials

The dual Hahn polynomials are given by the formula

hn(y2) ≡ hn(y2, α, β, γ) = (α+ β)n(α+ γ)n3F2



−n, α− y, α + y

α+ β, α + γ
; 1


 (22)

= (α+ β)n(α+ γ)nΩ(α,β,γ)
n (y2),

Note that the discrete dual Hahn polynomials [20] are pj(y
2) = Ω(−Q/2,(A+1)/2,(B+1)/2)(y2) in

this notation. The dual Hahn polynomials are obtained from the Wilson polynomials by

letting δ →∞. Indeed

hn(y2, α, β, γ) = lim
δ→∞

wn(y2, α, β, γ, δ)

(α+ δ)n

, Ω(α,β,γ)
n (y2) = lim

δ→∞
Φ(α,β,γ,δ)

n (y2). (23)

It follows immediately that hn(y2, α, β, γ) is symmetric in α, β, γ.

The recurrence relations for Wilson polynomials presented in the previous section go in

the limit to parameter changing recurrences for dual Hahn polynomials. The three term

recurrence relation for the dual Hahn polynomials is

(−α2 + y2)Ωn(y2) = K(n+ 1, n)Ωn+1(y
2) +K(n, n)Ωn(y2) +K(n− 1, n)Ωn−1(y

2) (24)

where K(n + 1, n) = (n + α + β)(n + α + γ), K(n − 1, n) = n(n + β + γ − 1), K(n, n) =

−K(n + 1, n) −K(n − 1, n). There are 8 basic raising and lowering operators for the dual

Hahn polynomials. We list them here and describe their actions on the basis polynomials

Ωn ≡ Ω(α,β,γ)
n .

1.

R =
1

2y
[T 1/2 − T−1/2], RΩn =

n

(α + β)(α+ γ)
Ω

(α+1/2,β+1/2,γ+1/2)
n−1 .
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2.

L =
1

2y

[
P (y − 1

2
)T 1/2 − P (−y − 1

2
)T−1/2

]
.

P (y) = (α + y)(β + y)(γ + y), LΩn = (α+ β − 1)(α + γ − 1)Ω
(α−1/2,β−1/2,γ−1/2)
n+1 .

3.

Rα =
1

2y

[
−(β + y − 1

2
)(γ + y − 1

2
)T 1/2 + (β − y − 1

2
)(γ − y − 1

2
)T−1/2

]

RαΩn = −(β + γ + n− 1)Ω(α+1/2,β−1/2,γ−1/2)
n ,

4.

Rβ =
1

2y

[
−(α + y − 1

2
)(γ + y − 1

2
)T 1/2 + (α− y − 1

2
)(γ − y − 1

2
)T−1/2

]

RβΩn = −(α + γ − 1)Ω(α−1/2,β+1/2,γ−1/2)
n ,

5.

Rγ =
1

2y

[
−(α+ y − 1

2
)(β + y − 1

2
)T 1/2 + (α− y − 1

2
)(β − y − 1

2
)T−1/2

]
.

RγΩn = −(α + β − 1)Ω(α−1/2,β−1/2,γ+1/2)
n ,

6.

Lα =
1

2y

[
−(α− 1

2
+ y)T 1/2 + (α− 1

2
− y)T−1/2

]
, LαΩn = −Ω(α−1/2,β+1/2,γ+1/2)

n

7.

Lβ =
1

2y

[
−(β − 1

2
+ y)T 1/2 + (β − 1

2
− y)T−1/2

]
,

LβΩn = −
(
n+ α+ γ

α+ γ

)
Ω(α+1/2,β−1/2,γ+1/2)

n

8.

Lγ =
1

2y

[
−(γ − 1

2
+ y)T 1/2 + (γ − 1

2
− y)T−1/2

]
,

LγΩn = −
(
n+ α+ β

α+ β

)
Ω(α+1/2,β+1/2,γ−1/2)

n
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D. Cylindrical case: A quantum model with L3,M3 diagonal

For the model of the finite dimensional irreducible representation (15) the basis eigen-

functions of M1 and M2 have the form ψN,j = dN,jt
Nδ(y− λj), λj = j+ k1+k2+1

2
. We use the

differential operator ∂t and the difference operator T τ (f(y, t)) = f(y+ τ, t) to construct our

model operators. Setting,

α = −N − k1 + k2 + 1

2
β =

k1 + k2 + 1

2
γ =

k1 − k2 + 1

2
,

we have the model

M1 = 2ia (2LR− 2t∂t + β − γ) (25)

M3 = 2ia(2t∂t − 2M − k3 + 1) (26)

M1 +M2 +M3 = E (27)

L1 =
1

2

(
1

t
RαR + 8t(M − t∂t)(M − t∂t − k3)LαL +

1

2α2
M2M3 +

1

2

)
(28)

L2 =
1

2

(
1

t
LβLγ + 8t(M − t∂t)(M − t∂t − k3)R

βRγ +
1

2α2
M1M3 +

1

2

)
(29)

L3 = −4y2 + k2
1 + k2

2 (30)

Here R,L,Rα, · · · are the difference operators for dual Hahn polynomials defined in Sec-

tion IIC. An operator in bold face, e.g., Rβ indicates that in the expression for the y-

difference operator the parameter α = −N − (k1 + k2 + 1)/2 is replaced by the differential

operator −t∂t − (k1 + k2 + 1)/2. Note that the dual Hahn polynomials Ω(α,β,γ)
n (y2)tN are

simultaneous eigenfunctions of operators M1 and M3 in this model.

E. Spherical case: A quantum model with L1 + L2 + L3, L3 diagonal

For the model of the finite dimensional irreducible representation (15) the basis eigen-

functions of L3 and L1 + L2 + L3 have the form φN,j = CN,jδ(y − λj)δ(z − λN) where the

support of the finite measure is λj = j + k1+k2+1
2

λN = N + 1 − k1+k2−k3

2
. We use the

difference operators T τ (f(y, z)) = f(y+ τ, z) and Zτ (f(y, z)) = f(y, z+ τ) to construct our

model operators. Setting

α = z +
k3 + 1

2
δ = −z +

k3 + 1

2
β =

k1 − k2 + 1

2
γ =

1− k1 − k2

2
,
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we find the model

L1 = 2LR + (α + δ)(β + γ) (31)

L3 = −4y2 + 2(γ2 − γ + β2 − β) + 1, (32)

L1 + L2 + L3 = 4z2 + k2
1 − k2

2 − k3 +
3

2
= −4(αδ − γβ) + 2(α + δ + γ + β)− 1

2
, (33)

M1

2iα
=

2(α + δ − 5− 2M + 2γ)

(α− δ − 1)(α− δ + 1)
(LR + 1 + 2γβ − β − γ(γ + β − 1)(α + δ) + 2αδ) (34)

+2Z
2− δ +M − γ

(α− δ)(α− δ − 1)
LαβLαγ + 2Z−1 2− δ − γ +M

(α− δ)(α− δ + 1)
RαβRαγ,

M3

2α
=
α3 + δ2 − 2(α2 + δ2)(M − γ + 2) + 3(α2δ + αδ2 − 2αδ) + (α + δ)(2M + 2γ + 7)− 2

(α− δ + 1)(α− δ − 1)
(35)

+2
(α− 1− y)(α− 1 + y)(2− δ − γ +M)

(α− δ)(α− δ − 1)
Z + 2

(δ − 1 + y)(δ − 1− y)(2− α− γ +M)

(α− δ)(α− δ + 1)
Z−1

M1 +M2 +M3 = E (36)

where the difference operators L,R, etc., are defined in section II B. Note that the

Wilson polynomials (actually Racah polynomials for finite dimensional representations)

Φ(α,β,γ,δ)
n (y2)δ(z − λN) are simultaneous eigenfunctions of operators L1 and L1 + L2 + L3

in this model.

III. DISCUSSION AND OUTLOOK

We exhibited, for the first time, three models of the quadratic algebra for the 3D singular

isotropic oscillator superintegrable system: a differential-differential, a differential-difference

and a difference-difference operator model. We have presented the final results in the simplest

form possible, to show the recurrence relation structure of Wilson (Racah) and dual Hahn

polynomials. The models are associated with diagonalization of the operators responsible

for separation of the Schrödinger eigenvalue problem in Cartesian, cylindrical and spherical

coordinates, respectively. The derivation of these results, particularly the spherical model, is

complicated; complete details will appear in [21]. First of all, although the general structure

of the quadratic algebra follows from general theorems, the exact structure equations (4)-

(6) are nontrivial to derive. A model must satisfy identically all of the quadratic algebra

structure equations up to 8th order. The possibility and general form of each model follows

from analysis of the Poisson algebra generated by the classical superintegrable system, just
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as in the 2D cases, [10],[11]. Then the classical model must be quantized. For example it is

possible to construct a classical two variable Cartesian model for which M1 = A,M2 = B

and M3 = E − A−B and

L1 =
1

4α2
[(4δα− C2) exp(4iαPB) + (4γα−B2) exp(−4iαPB) + 2BC],

L2 =
1

4α2
[(4δα− C2) exp(4iαPA) + (4βα− A2)] exp(−4iαPA) + 2AC],

L3 =
1

4α2
[(4βα− A2) exp(4iα(PA − PB)) + (4γα−B2)] exp(−4αi(PA − PB)) + 2AB]

with PA and PB the canonical momenta conjugate to A and B. Here, all terms except the

variables A,B, PA, PB are constants. This model then suggests the quantum Cartesian model

via the quantisation rules A → ∂A and B → ∂B. The deep connection between algebras

generated by recurrences of families of orthogonal polynomials and the hidden algebras of

quantum superintegrable systems may seem somewhat surprising, since the polynomials do

not appear as eigenfunctions of the original quantum Hamiltonian. Rather they appear as

connection coefficients between eigenfunctions of two different sets of commuting symmetry

operators.

Much remains to be done. First, there appear to be connections between our models and

Hecke algebras [22–24] and these relations have yet to be explored. Also, we have exhibited

only the finite dimensional irreducible representations (associated with Racah polynomials)

but there are also classes of infinite dimensional irreducible representations (associated with

general Wilson polynomials). Intertwining operators mapping the models to the original

quantum system remain to be constructed. Other nondegenerate 3D systems remain to be

studied, particularly the generic potential on the 3-sphere. In that case the model will be

expressible in terms of the recurrences for a family of two-variable Wilson polynomials. There

are also families of degenerate 3D superintegrable systems. These have yet to be completely

classified and their symmetry algebras studied. Then the study must be extended to nD

second order superintegrable systems on conformally flat spaces. The formulation of a q

version of superintegrable systems remains open.
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