Math 231 - Spring 2006 - Course Outline


All section numbers refer to James Stewart's "Multivariable Calculus, Early Transcendentals", 5th edition.

WeekReading Topics
1   (1/18)       12.1
      12.2
Three-Dimensional Coordinate Systems
Vectors
2   (1/23 - 1/25)       12.3
      12.4
      12.5
The Dot Product
The Cross Product
Equations of Lines and Planes
3   (1/30 - 2/1)       12.6
      12.7
      13.1
Cylinders and Quadratic Surfaces
Cylindrical and Spherical Coordinates
Vector Functions and Space Curves
4   (2/6 - 2/8)       13.2
      13.3
      13.4
Derivatives and Integrals of Vector Functions
Arc Length and Curvature
Motion in Space: Velocity and Acceleration
5   (2/13 - 2/15)       14.1
      *
Functions of Several Variables
Prelim 1, February 15
6   (2/20 - 2/22)       14.2
      14.3
      14.4
Limits and Continuity
Partial Derivatives
Tangent Planes and Linear Approximations
7   (2/27 - 3/1)       14.5
      14.6
      14.7
The Chain Rule
Directional Derivatives and the Gradient Vector
Maximum and Minimum Values
8   (3/6 - 3/8)       4.2
      4.3
      4.4
Spring Break
Spring Break
9   (3/13 - 3/15)       14.8
      15.1
      15.3
Lagrange Multipliers
Double Integrals over Rectangles
Double Integrals over General Regions
10   (3/20 - 3/22)       15.4
      *
Double Integrals in Polar Coordinates
Prelim II, March 22
11   (3/27 - 3/29)       15.5
      15.6
      15.7
Applications of Double Integrals
Surface Area
Triple Integrals
12   (4/3 - 4/5)       15.8
      15.9
      16.1
Triple Integrals in Cylindrical and Spherical Coordinates
Change of Variables in Multiple Integrals
Vector Fields
13   (4/10 - 4/12)       16.2
      16.3
      16.4
Line Integrals
The Fundamental Theorem for Line Integrals
Green's Theorem
14   (4/17 - 4/19)       16.5
      *
Curl and Divergence
Prelim III, April 19
15   (4/24 - 4/26)       16.7
      16.8
      16.9
Surface Integrals
Stokes' Theorem
The Divergence Theorem
16   (5/1)       * Review