**lap5pt**: ipynb, py, html Python code for the 5-point Laplacian on a square**lap5ptconv**: ipynb, py, html Convergence study for the 5-point Laplacian**sddemo1**: py: Geometric demonstration of the problem with steepest descents**iterative_demo1**: ipynb, py, html Demonstration of the convergence of steepest descents and conjugate gradients**bigmat.p**: bigmat.p a large and somewhat nasty finite element matrix, previously computed, which is imported by iterative_demo1**pcg_demo1**: ipynb, py, html Demonstration of the convergence of steepest descents, conjugate gradients, and preconditioned conjugate gradient**gs5ptdemo**: ipynb, py, html Graphical demonstration of convergence of Gauss-Seidel for the 5-point Laplacian**mg5ptdemo**: ipynb, py, html Graphical demonstration of convergence of multigrid for the 5-point Laplacian**mg5ptdemo2**: ipynb, py, html Compare errors in multigrid and CG preconditioned by multigrid

**A first program in FEniCS**: html, py, ipynb**Boundary conditions**: html, ipynb**poisson_convergence1.py**: Convergence study for finite elements**poisson_convergence2.py**: Convergence study for finite elements w/o requiring exact solution**adaptive_poisson1.py**: adaptive Poisson solver**adaptive_poisson2.py**: same set up for a different test problem**minimalsurf-picard.py**: Solution of the (nonlinear) minimal surface equation via Picard iteration**minimalsurf-newton.py**: Solution of the minimal surface equation via Newton iteration**minimalsurf-newton2.py**: Same as above but using the Newton solver supplied by FEniCS and automatic differentiation

Updated December 3, 2014