A Survey of Max-Type Recursive Distributional Equations

David J. Aldous*
University of California
Department of Statistics
367 Evans Hall # 3860
Berkeley CA 94720-3860

Antar Bandyopadhyay
Institute for Mathematics and Its Applications
University of Minnesota
400 Lind Hall
207 Church Street
Minneapolis, MN 55414
January 27, 2004

Abstract

In certain problems in a variety of applied probability settings (from probabilistic analysis of algorithms to statistical physics), the central requirement is to solve a recursive distributional equation of the form

\[X = g(\xi_i, X_i), \quad i \geq 1. \]

Here \((\xi_i)\) and \(g(\cdot)\) are given and the \(X_i\) are independent copies of the unknown distribution \(X\). We survey this area, emphasizing examples where the function \(g(\cdot)\) is essentially a “maximum” or “minimum” function. We draw attention to the theoretical question of endogeneity in the associated recursive tree process \(X_i\), are the \(X_i\) measurable functions of the innovations process \((\xi_i)\)?

AMS 1991 subject classification: 60E05, 62E10, 68Q25, 82B44.

Key words and phrases. Branching process, branching random walk, cavity method, coupling from the past, fixed point equation, frozen percolation, mean field model of distance, metric contraction, probabilistic analysis of algorithms, probability distribution, probability on trees, random matching.

* Research supported by N.S.F. Grant DMS02-03062