Symbolic Dynamics and Finite Automata

Dominique Perrin
perrin@univ-mlv.fr
Length distributions

The length distribution of a set of words X is the sequence $u_X = (u_n)_{n \geq 0}$ with

$$u_n = \#\{\text{words of length } n \text{ in } X\}$$

with g.s.

$$u_X(z) = \sum_{n \geq 0} u_n z^n$$

General problem: Given a family \mathcal{F} of sets of words, characterize the length distributions of the elements of \mathcal{F}.

Example: The length distributions of prefix codes on k-symbols are the sequences satisfying Kraft’s inequality

$$\sum_{n \geq 0} u_n k^{-n} \leq 1$$

i.e. $u(1/k) \leq 1$.
N-rational sequences

A set of words X is rational (or regular) if it can be recognized by a finite automaton.

A sequence (u_n) of integers is \mathbb{N}-rational if there exists a finite graph G and two vertices i, t such that

$$u_n = \#\{\text{paths of length } n \text{ from } i \text{ to } t\}$$

Theorem: The length distributions of rational sets are the \mathbb{N}-rational sequences.

Example: If $X = a^*b$, then

$$u_X(z) = \frac{z}{1 - z}.$$
A finite-state version of the Kraft-McMillan theorem

Theorem (F. Bassino, M.P. Béal, D.P.) A sequence of integers is the length distribution of a rational prefix code iff

(i) it is \(\mathbb{N} \)-rational.

(ii) it satisfies Kraft’s inequality.

Examples: Let \(u(z) = 3z^2/(1 - z^2) \). Then \(u(1/2) = 1 \). Solution on \(A = \{a, b\} \):

\[
X = (aa)^*(ab + ba + bb)
\]

Much more difficult:

\[
u(z) = \frac{z^2}{1 - z^2} + \frac{z^2}{1 - 5z^3}.
\]

Solution:

\[
u(z) = z^2z^6*(2 + z^2 + 2z^3 + z^4 + 3z^5(1 + 3z^2)(5z^3)*)\].
Bifix codes

A *bifix code* is a set X of words which is both a prefix and a suffix code.

Open problem: what are the length distributions of bifix codes?

Example: $u = (1, 2)$ is not realizable on a binary alphabet although $u(1/2) = 1$.

Theorem (Ahlswede, Balkenhol, Khachatrian, 1997) *For any integer sequence u such that*

$$u(1/2) \leq 1/2,$$

there is a bifix code X s.t. $u = u_X$.

Proof: if $\sum_{n=1}^{N} u_n 2^{-n} < 1/2$, then

$$2 \sum_{n=1}^{N} u_n 2^{N-n} < 2^{N+1} \left(\sum u_n 2^{-n} \right) < 2^N$$

and there is still room for one more word of length N.

Conjecture: true if $u(1/2) \leq 3/4$?
Subshifts of finite type

A subshift of finite type is a set S of biinfinite words avoiding a finite set of words.

Example: words on $\{a, b\}$ without a block bb.

Let

$$s_n = \#\{\text{words of period } n \text{ in } S\}.$$

The *entropy* of S is

$$h(S) = \log 1/\rho$$

where ρ is the radius of convergence of $\sum_{n \geq 1} s_n z^n$.

The *zeta function* of S is the series

$$\zeta(S) = \exp \sum_{n \geq 1} s_n z^n$$

For S as above

$$\zeta(S) = \frac{1}{1 - z - z^2}.$$
Circular codes

A circular code is a set X of words such that the factorization of words written on a circle is unique.

Examples:

$a + aba$ is a circular code.

$ab + ba$ is not.

Strong connexion with subshifts of finite type:

- if X is a finite circular code, the infinite concatenations of words of X form a subshift of finite type.

- if S is a subshift of finite type, the set of first returns to a given vertex is a circular code.

If X is a circular code, let

$$\sum_{n \geq 1} \frac{s_n}{n} z^n = \log \frac{1}{1 - u_X}$$

Then s_n is the number of words of length n with a circular factorization in words of X.

Let $s_n = \sum_{d|n} l_d$. Then l_n is the number of nonperiodic words with a circular factorization.
Theorem (Schützenberger, 1965): The length distributions of circular codes on k symbols are the sequences u s.t.

$$l_n(u) \leq l_n(k) \quad (n \geq 1)$$

Sequence of inequalities:

\[
\begin{align*}
 u_1 & \leq k \\
 u_2 + \frac{1}{2}(u_1^2 - u_1) & \leq \frac{1}{2}(k^2 - k) \\
 u_3 + u_1u_2 + \frac{1}{3}(u_1^3 - u_1) & \leq \frac{1}{3}(k^3 - k) \\
 \cdots & \leq \frac{1}{4}(k^4 - k^2)
\end{align*}
\]

• can be deduced of Krieger’s embedding theorem

• Complements in Bassino (1999).
Idea of the proof

For $k = 3$ we consider the distribution

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_n</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>$l_n(u)$</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>$l_n(k)$</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>18</td>
</tr>
</tbody>
</table>

Lazard elimination algorithm:

$$a, b, c$$

Elimination of a:

$$b, c, ba, ca, baa, caa, baaa, caaa, \ldots$$

Elimination of b:

$$c, ba, ca, cb, baa, caa, cbb, bab, cab, \ldots$$

Elimination of c:

$$ba, ca, cb, baa, caa, cbb, bab, cab, bac, cac, cbc, \ldots$$

Elimination of ba:

$$ca, cb, baa, caa, cbb, bab, cab, bab, cac, cbc, \ldots$$
Link with Lie algebras

The free Lie algebra on \(A \) is formed by the linear combinations of elements generated from the symbols \(a \in A \) by the operation

\[
[x, y] = xy - yx
\]

One thus obtains:

\[
a, \ b
\]

\[
[ba]
\]

\[
[[ba]a], [[ba]b]
\]

\[
[[[ba]a]a], [[[ba]a]b], [[[ba]b]b]
\]

The dimension of the component of order \(n \) is \(l_n(k) \) (Witt’s formula).

Lazard’s algorithm gives a basis.
Fanaszek’s code

Start:

\[a, b, c \]

Elimination of \(b \):

\[a, c, ba \]

Elimination of \(c \):

\[a, ba, ca, cba \]

Elimination of \(a \):

\[ba, ca, aba, aca, cba, acba, aaca \]

Result: the Fanaszek code (constraint \([2, 7]\) with \(a = 00, b = 01, c = 10 \)).

<table>
<thead>
<tr>
<th>(X)</th>
<th>(Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ba)</td>
<td>10</td>
</tr>
<tr>
<td>(ca)</td>
<td>11</td>
</tr>
<tr>
<td>(aba)</td>
<td>000</td>
</tr>
<tr>
<td>(cba)</td>
<td>010</td>
</tr>
<tr>
<td>(aca)</td>
<td>011</td>
</tr>
<tr>
<td>(acba)</td>
<td>0010</td>
</tr>
<tr>
<td>(aaca)</td>
<td>0011</td>
</tr>
</tbody>
</table>
The Adler & al. coding theorem

Theorem If \(T \) is an sft s.t. \(h(T) \geq \log k \), there exists an sft \(S \subset T \) and a sliding block code \(f : S \to A^k \) from \(S \) onto the full shift on \(k \) symbols.

Proof using circular codes in the case of \(> \):
Let \(G = (V, E) \) be a graph representing the transitive sft \(T \).
Let \(X \) be the circular code formed by the set of first returns to some vertex of \(G \).
Since \(h(T) > \log k \), \(u_X(1/k) > 1 \). Let \(Y \) be a finite subset of \(X \) such that \(u_Y(1/k) = 1 \).
Let \(Z \) be a prefix code on \(k \) symbols s.t. \(u_Z = u_Y \).
A one-to-one length preserving correspondence between \(Y \) and \(Z \) solves the problem.
Open problem

If the sequence u is \mathbb{N}-rational and satisfies the inequalities

$$l_n(u) \leq l_n(k) \quad (n \geq 1)$$

does there exist a rational circular code such that $u = u_x$?

It is true if $u(1/k) < 1$ by Krieger’s embedding theorem.