Trellises, Decision Diagrams and Factor Graphs

John Lafferty
School of Computer Science
Carnegie Mellon University

Joint work with:
Alexander Vardy

Acknowledgements: Randy Bryant and Ed Clarke
Outline

• Background

• BDD-Trellis correspondence

• Alternate representations

• Projection graphs
Remarkably Parallel Histories

- Decision diagrams: Idea recorded in early papers of Lee (1959) and Akers (1978)

- Code trellises: Used as conceptual device for convolutional codes (Forney, 1967) and block codes (Bahl, Cocke, Jelinek, and Raviv, 1974)

- Bryant’s 1986 paper initiated a great deal of research on decision diagram representations of Boolean functions.

- Papers by Forney (1988) and Muder (1988) led to resurgence of interest in code trellises and a thorough study of their properties.
BCJR Paper

- In 1971–1972 Bahl and Jelinek were working on various aspects of convolutional codes. BCJR was a natural outgrowth; introduction of the minimal trellis was incidental.

- Bitwise optimal decoding algorithm was “academic”

- A reviewer pointed out the related work by L. Baum on the convergence properties of forward-backward algorithm

- Closely related work on speech recognition came shortly after...
By 1974 the IBM group was pioneering a new approach to speech recognition using HMMs and the fundamental notions of information theory.

- Shannon: “The states will correspond to the “residue of influence” from preceding letters”
Training and Decoding

- The Baum-Welch algorithm for training HMMs became the centerpiece of statistical speech processing.

- Large state space and non-uniform prior on “codewords” make Viterbi decoding impractical for speech recognition systems.

- At IBM a version of Jelinek’s *stack decoding* method, conceived of for convolutional codes, was adapted to the decoding problem.

- Similar to A* and beam search methods — another instance of the striking parallels between AI and information theory.
Connecting Trellises and Decision Diagrams

- The coding and verification communities have been working independently on closely related problems.

- It’s natural to expect that binary decision diagrams and minimal trellises are closely related.

- We’ve established the correspondence rigorously and have begun to explore its consequences.
Terminology for OBDDs

- Each nonterminal vertex \(v \) is labeled by a function variable \(\text{var}(v) \) and has two outgoing edges, denoted \(\rightarrow_0(v) \) and \(\rightarrow_1(v) \).

![Diagram of OBDD with vertex labeled v and two outgoing edges labeled \(\rightarrow_0(v) \) and \(\rightarrow_1(v) \).]
Terminology for OBDDs (cont)

- A nonterminal v is said to be a *redundant test* if $\notrightarrow_0(v) = \notrightarrow_1(v)$.

- Redundant tests may be *removed*, without altering the function being represented, by deleting v and redirecting all incoming edges to $\notrightarrow_0(v)$.

- Two nonterminals u and v are said to be *duplicate* if $\notrightarrow_0(v) = \notrightarrow_0(u)$, $\notrightarrow_1(v) = \notrightarrow_1(u)$, and $\text{var}(v) = \text{var}(u)$.

- Duplicate nonterminals can be *merged* by deleting one of the two vertices and redirecting all incoming edges to the other vertex.
Terminology for OBDDs (cont)

- The positive cofactor f_x of a Boolean function f is the function obtained by replacing variable x by the value 1.

- The negative cofactor is the function $f_{\overline{x}}$ that replaces x by the value 0.

- The Shannon expansion is the identity $f = \overline{x} \cdot f_{\overline{x}} + x \cdot f_x$.

- Essential property of OBDDs: the cofactor operations distribute through the Boolean operations: $(f \oplus g)_x = f_x \oplus g_x$.

- OBDDs are essentially graphical representations of the Shannon expansion.
Terminology for Trellises

- A trellis T is *proper* if the edges beginning at a vertex of T are labeled distinctly.

- A trellis T_C is the *minimal proper trellis* for C if the number of vertices at each time i in T_C is less than or equal to the number of vertices at time i in any other proper trellis for C.
Construction A

Input: Boolean function $f(x_1, \ldots, x_n)$ and variable ordering $x_1 \prec \cdots \prec x_n$.

Output: Ordered binary decision diagram D_f for $f(x_1, \ldots, x_n)$.

Algorithm: Starting with the full binary decision tree for $f(x_1, \ldots, x_n)$:

1. **Step 1.** Merge duplicate terminals.
2. **Step 2.** Merge all duplicate nonterminals.
3. **Step 3.** Remove all redundant tests.

Iterate steps 2 and 3 until no duplicate nonterminals or redundant tests remain.
Working Example

We’ll use the $[5, 2, 3]$ linear code

$$C = \{00000, 11010, 01101, 10111\}$$

given by the parity check matrix

$$H = \begin{bmatrix}
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 \\
\end{bmatrix}$$

This will also be thought of as the Boolean function

$$f_C(x) \overset{\text{def}}{=} \begin{cases}
0 & \text{if } (x_1, \ldots, x_n) \in C \\
1 & \text{otherwise}
\end{cases}$$

$$f_C(x) = (x_1 \oplus x_2 \oplus x_3) + (x_1 \oplus x_4) + (x_1 \oplus x_2 \oplus x_5)$$
Node-Merging Construction of OBDDs
Single-Terminal Decision Diagrams

\[f_C = (x_1 \oplus x_2 \oplus x_3) + (x_1 \oplus x_4) + (x_1 \oplus x_2 \oplus x_5) \]
\[C = \{00000, 11010, 01101, 10111\} \]
Construction B

Input: Boolean function $f(x_1, \ldots, x_n)$ and variable ordering $x_1 \prec \cdots \prec x_n$.

Output: Ordered binary decision diagram D_f for $f(x_1, \ldots, x_n)$.

Algorithm: Starting with the full binary decision tree for $f(x_1, \ldots, x_n)$:

1. **Step 1.** Merge duplicate terminals.
2. **Step 2.** Merge all duplicate nonterminals.
3. **Step 3.** Remove all redundant tests.
4. **Iterate** steps 2 and 3 until no duplicate nonterminals or redundant tests remain.
Minimal Distance Restriction

In Construction B, redundant tests destroy trellis structure:

This cannot happen if minimum distance satisfies $d(C) > 1$.
OBDD-Trellis Connection

Theorem. Let \(\mathcal{C} \) be an arbitrary binary code with minimum distance \(d > 1 \). Then the single-terminal OBDD for the Boolean function \(f_{\mathcal{C}} \) is isomorphic to the unique minimal proper trellis for \(\mathcal{C} \).
\[T_C \cong D_{f_C} \]

We’ll prove that the minimal trellis \(T_C \) is isomorphic to the single-terminal OBDD \(D_{f_C} \) for the off-set function \(f_C \) built using Construction B.

The \textit{past at time} \(i \) is

\[
P_i(C) \overset{\text{def}}{=} \left\{ (c_1, c_2, \ldots, c_i) : (c_1, \ldots, c_i, c_{i+1}, \ldots, c_n) \in C \right\}
\]

for some \(c_{i+1}, \ldots, c_n \in \mathbb{F}_2 \).

The \textit{future of} \(c \in P_i(C) \) is

\[
F(c) = \left\{ x \in \mathbb{F}_2^{n-i} : (c, x) \in C \right\}
\]

We say that \(c_1, c_2 \in P_i(C) \) are \textit{future-equivalent} if \(F(c_1) = F(c_2) \).
\[T_C \approx D_{f_C} \]

Lemma (Muder, 1988). A proper trellis \(T \) for \(C \) is minimal if and only if for all \(i = 1, 2, \ldots, n-1 \), the number of vertices at time \(i \) in \(T \) is equal to the number of future-equivalence classes.

Equivalently, for \(v \in V_i \) define \(F_T(v) \subset \mathbb{F}_2^{n-i} \) by
\[
F_T(v) \overset{\text{def}}{=} \left\{ x : x \text{ is a sequence of edge labels along a path in } T \text{ starting at } v \right\}
\]

Then a proper trellis \(T \) is minimal if and only if for all \(i = 1, 2, \ldots, n-1 \) and for every pair of vertices \(v, v' \in V_i \), we have \(F_T(v) \neq F_T(v') \).
\[T_C \approx D_{f_C} \]

- If \(d(C) > 1 \), there can be no redundant tests, so the single-terminal OBDD for \(C \) is a proper trellis.

- Assume that \(T \) is not minimal. Then there is a pair of distinct vertices \(v, v' \in V_i \) with \(F_T(v) = F_T(v') \)

- By Construction B, at least one of \(\left\{ \rightarrow_0(v), \rightarrow_0(v') \right\} \) or \(\left\{ \rightarrow_1(v), \rightarrow_1(v') \right\} \) must be a pair of distinct vertices.

- We then obtain distinct vertices \(u, u' \in V_{i+1} \) with \(F_T(u) = F_T(u') \).

- Iterating, we arrive at a contradiction, since \(V_n \) is a single vertex.
We can view C as a regular set in \mathbb{F}_2^n. Its minimal deterministic finite-state accepting automaton is the same as the minimal proper trellis.

Mentioned in the "Multilingual Dictionary" of system theory, coding theory, symbolic dynamics, and automata theory (Forney et al. 1995).
Alternate Representations and Transfer of Ideas

- Multi-terminal and spectral decision diagrams
- Functional decision diagrams
- Lower bounds
- For further results and observations, see (Lafferty and Vardy, 1999 [DS #23]).
Multi-Terminal Decision Diagrams

- Represent functions \(f : \{0, 1\}^n \rightarrow S \) for finite set \(S \).

- May have many terminals. Can be used to efficiently represent matrices (Clarke et al., 1993)

- We can use them to design a new data structure for *standard array decoding*:

![Diagram](image-url)
Syndrome Decision Diagrams

- construct a multi-terminal BDD for the function
 \[h_C(x_1, \ldots, x_n) = Hx^t. \]

- Use a procedure analogous to the BCJR construction:
 \[
 V_i \overset{\text{def}}{=} \left\{ x_1 h_1 + \cdots + x_i h_i : (x_1, \ldots, x_i) \in \mathbb{F}_2^i \right\}
 \]

- Carry out dynamic programming during construction to calculate smallest weight path to a vertex.

- Similar constructions have been given (Kschischang, 1996; Ytrehus, 1997)
The syndrome decision diagram for $C = \{00000, 11010, 01101, 10111\}$
Gives linear time decoding algorithm.
Sectionalization

- Main results due to Lafourcade and Vardy (1996), using dynamic programming methods.

- Related techniques for decision diagrams?
MTBDDs and Spectral Decision Diagrams

Want to represent a function

$$f : G_1 \times G_2 \times \cdots \times G_n \rightarrow \mathbb{F}_2$$

- Usual case for Boolean functions is $G_i = \mathbb{F}_2$

- Idea: Consider different factorizations of the product and use Fourier transform to represent function.
Spectral Decision Diagrams

• A representation ρ of a group G is an assignment of an invertible matrix $\rho(s)$ to each group element $s \in G$ so that $\rho(st) = \rho(s)\rho(t)$

• The representation is irreducible if it has no nontrivial subrepresentations

• Degrees satisfy $\sum_{\rho} d_{\rho}^2 = |G|$.

• Fourier transform of f at a representation ρ is the matrix

$$\hat{f}(\rho) = \sum_{s \in G} f(s) \rho(s).$$
Spectral Decision Diagrams

• Represent a function $f : G_1 \times \cdots \times G_n \rightarrow \mathbb{F}_2$ in terms of a Fourier decision tree: each path from root to leaf specifies a representation $\rho_1 \otimes \cdots \otimes \rho_n$

• Leaf labeled by the matrix $\tilde{f}(\rho_1 \otimes \cdots \otimes \rho_n)$.

• Amount of data stored at the leaves is the same, since $|G| = \sum_{\rho} d_{\rho}^2$

• E.g., the group \mathbb{Z}_2^4 can be represented as $\mathbb{Z}_4 \times \mathbb{Z}_4$ or as $\mathbb{Z}_2 \times \mathbb{Q}_2$. Three-bit multiplier on \mathbb{Z}_2^6 represented using $\mathbb{Q}_2 \times \mathbb{Q}_2$ yields smaller decision diagram (Stanković, 1999)
Functional Decision Diagrams

- Change representation of nodes to use Reed-Muller or negative Davio expansion:

\[f = f_{\overline{x}} \oplus (x \cdot f_{\delta x}) \]

\[f_{\delta x} = f_{\overline{x}} \oplus f_x \]
The OFDD and OBDD for \(C = \{00000, 11010, 01101, 10111\} \)
Functional Decision Diagrams

- Many properties in common with OBDDs (Kebschull et al., 1992)
- Representation is canonical
- Can be exponentially smaller—or larger—than OBDDs
- Are they useful for representing error-correcting codes?
Can we carry out a forward-backward type of algorithm on an OFDD?

- Restrict to BSC:
 \[
 p_\theta(y|x) = \theta^{d(x,y)} (1 - \theta)^{n-d(x,y)}
 \]

- Need to compute
 \[
 S_0(x_i) \overset{\text{def}}{=} \sum_{x \in \{0\}} p_\theta(y|x) \quad \text{and} \quad S_1(x_i) \overset{\text{def}}{=} \sum_{x \in \{1\}} p_\theta(y|x)
 \]

- Algorithm must work for any \(\theta \in [0, 1] \).
Functional Decision Diagrams

This approach will not work:

- Suppose we can compute $S_0(x_i)$ and $S_1(x_i)$.

- Setting $\theta = 0.5$ we can then compute

$$S_0(x_i) + S_1(x_i) = \frac{|C|}{2^n}$$

- However, the problem of computing $|C_f|$ using OFDDs is #P-complete (Werchner, et al., 1996 – reduction from 3CNF).

Conclusion: FDDs are not well-suited to coding calculations
Lower Bounds – From Coding Theory

For a subset of indices \(\mathcal{J} = j_1, j_2, \ldots j_m \), define a random variable \(\mathcal{X}_\mathcal{J} \):

\[
\Pr\{\mathcal{X}_\mathcal{J} = (a_1, \ldots, a_m)\} \overset{\text{def}}{=} \frac{\mathbb{C}_f|x_{j_1}, \ldots, x_{j_m} = a_1, \ldots, a_m|}{|\mathbb{C}_f|}
\]

Now define the **entropy profile** \(H_1(f), H_2(f), \ldots H_n(f) \):

\[
H_i(f) \overset{\text{def}}{=} \min_{\mathcal{J}} H(\mathcal{X}_\mathcal{J})
\]

where the minimum is taken over all index subsets of size \(i \).
Lower Bounds – From Coding Theory

Theorem (Reuven and Be’ery, 1998). Let $f(x_1, \ldots, x_n)$ be a Boolean function such that $d(C_f) > 1$. Then the number of vertices at level i in the OBDD for $f(x_1, \ldots, x_n)$ is bounded from below by

$$2^{H_i(f)} \cdot 2^{H_{n-i}(f)} \frac{2^{H_i(f)} \cdot 2^{H_{n-i}(f)}}{|C_f|}$$

- Recent work at CMU attempts to find a good variable ordering by using machine learning techniques based on mutual information (decision tree induction) to find groups of variables that are highly “coupled.”
Lower Bounds – From Formal Verification

- (Thathachar, 1998) establishes lower bounds for many functions of practical interest, across a large class of decision diagram representations.

- Introduces a general graphical model called *binary linear diagrams* that includes OBDDs, OFDDs, MTBDDs, etc.

- Transforms decision diagram to an automaton on bitstrings, and uses *fooling set* arguments to lower bound rank of transition matrix.
Automata and Rank Bounds

- Let \(\pi \) denote an ordering \(x_{\pi(1)} \prec x_{\pi(2)} \cdots \prec x_{\pi(n)} \) of the variables.

- Let \(M^\pi_k \) denote the \(2^k \times 2^{n-k} \) matrix with rows and columns indexed by bit strings, whose \((s, t) \) entry given by \(f(s \cdot t) \).

Theorem. The number of vertices \(r \) in any decision diagram that computes \(f \) is bounded from below by

\[
 r \geq \min_{\pi} \max_k \; \text{rank} (M^\pi_k)
\]
Fooling Set Lower Bounds

Divide the variables $x_{\pi(1)} \prec x_{\pi(2)} \cdots \prec x_{\pi(n)}$ into two pieces, L and R.

A **fooling set** is a set of pairs $S = \{(s, t)\}$ satisfying

- $f(s \cdot t) = 0$ for each $(s, t) \in S$.

- For (s, t) and $(s', t') \in S$: $f(s \cdot t') \neq f(s' \cdot t)$.

Theorem. (Dietzfelbinger *et al.*, 1994) If S is a fooling set for f of size s then

$$\text{rank } (M^{L:R}) \geq \sqrt{s} - 1$$
(Thathachar, 1998) finds explicit fooling sets, and then uses this result to get lower bounds for a wide range of functions of practical interest.

- Bounds hold for broad class of decision diagram representations

- Extends a line of work initiated by Bryant (1991), who showed how to find fooling sets for the middle bit of the product of two n-bit numbers.
From Decision Diagrams to Factor Graphs

- OBDDs and trellises are powerful tools—but exponential blowup limits their usefulness.

- In LDPCCs, expander codes, and turbo codes, the graph comes from the definition of the code itself.

- How might we begin to apply iterative decoding techniques to more general classes of codes / Boolean functions?
Fighting Randomness with Randomness

- For many applications, the “code” is given to us—e.g. in formal verification and statistical inference

- Idea: randomize the decoder rather than the code

- Randomization is the dominant theme in recent work in the theoretical CS community on approximate NN search (Kleinberg 1997, Kushilevitz et al., 1998...)

Projection Decoding

\[G_{k \times n} = \begin{pmatrix}
1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0
\end{pmatrix} \]
How Many Projections are Required?

\[Prob \left(\dim \left(\bigcap_{i=1}^{m} C_i \right) > C \right) = \sum_{x \in \mathbb{F}_2^n / C} Prob \left(\bigcup_{x \in \mathbb{F}_2^n / C} \bigcap_{i=1}^{m} C_i \text{ contains } x \right) \]

\[\leq \sum_{x \in \mathbb{F}_2^n / C} \left(2^{n-k-1} \right) \left(\frac{2^{n-k-\epsilon} - 1}{2^{n-k} - 1} \right)^m \approx 2^{n-k-\epsilon m} \]

using the Gaussian binomial coefficients

\[V(n, l) \overset{\text{def}}{=} \frac{(2^n - 1)(2^n - 2) \cdots (2^n - 2^{l-1})}{(2^l - 1)(2^l - 2) \cdots (2^l - 2^{l-1})} \]
Complexity of Decoding

- $\text{Prob}\left(\text{dim}\left(\bigcap_{i=1}^{m} C_i\right) > k\right) \approx 2^{n-k-\epsilon m}$

- Each decoding iteration will have complexity $O(n^2)$

- Graph will have many short cycles and large degree

- But, will be a good expander

Related to (Dumer, 1991-96; Barg, Krouk and van Tilborg, 1999)
Ongoing work with Dan Rockmore
Summary

- Ordered binary decision diagrams \approx minimal trellises
- Minimum distance restriction is of little significance
- Coding theory has emphasized linear codes
- Decoding problems seem to restrict useful representations
- The two communities have much to learn from each other