Symbolic Boolean Manipulation
with
Ordered
Binary Decision Diagrams

Randal E. Bryant

Carnegie Mellon University

http://www.cs.cmu.edu/~bryant
Example Analysis Task

Logic Circuit Comparison

- Do circuits compute identical function?
 - Basic task of formal hardware verification
 - Compare new design to “known good” design
Solution by Combinatorial Search

Satisfiability Formulation
- Search for input assignment giving different outputs

Branch & Bound
- Assign input(s)
- Propagate forced values
- Backtrack when cannot succeed

Challenge
- Must prove all assignments fail
 - Co-NP complete problem
- Typically explore significant fraction of inputs
- Exponential time complexity
Alternate Approach

Generate Complete Representation of Circuit Function

- Compact, canonical form

![Circuit Diagram]

- Functions equal if and only if representations identical
- Never enumerate explicit function values
- Exploit structure & regularity of circuit functions
Decision Structures

Truth Table

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Decision Tree

- Vertex represents decision
- Follow green (dashed) line for value 0
- Follow red (solid) line for value 1
- Function value determined by leaf value.
Variable Ordering

- Assign arbitrary total ordering to variables
 - e.g., $x_1 < x_2 < x_3$
- Variables must appear in ascending order along all paths

Properties
- No conflicting variable assignments along path
- Simplifies manipulation
Reduction Rule #1

Merge equivalent leaves

\[a \quad a \rightarrow \quad a \]
Reduction Rule #2

Merge isomorphic nodes

- Diagram showing the process of merging isomorphic nodes.
- Red arrows indicate the transformation steps.
- Nodes labeled with variables such as \(x, y, z, x_1, x_2, x_3 \) are depicted.
Reduction Rule #3

Eliminate Redundant Tests
Example OBDD

Initial Graph

Reduced Graph

Canonical representation of Boolean function

- For given variable ordering
- Two functions equivalent if and only if graphs isomorphic
 - Can be tested in linear time
- Desirable property: *simplest form is canonical*.
Example Functions

Constants
- **0**: Unique unsatisfiable function
- **1**: Unique tautology

Variable
- Treat variable as function

Typical Function
- \((x_1 \lor x_2) \land x_4\)
- No vertex labeled \(x_3\)
- Independent of \(x_3\)
- Many subgraphs shared

Odd Parity
- Linear representation
Representing Circuit Functions

Functions
- All outputs of 4-bit adder
- Functions of data inputs

Shared Representation
- Graph with multiple roots
- 31 nodes for 4-bit adder
- 571 nodes for 64-bit adder
- Linear growth
Effect of Variable Ordering

\[(a_1 \land b_1) \lor (a_2 \land b_2) \lor (a_3 \land b_3)\]

Good Ordering

Bad Ordering

Linear Growth

Exponential Growth
Bit Serial Computer Analogy

Operation
- Read inputs in sequence; produce 0 or 1 as function value.
- Store information about previous inputs to correctly deduce function value from remaining inputs.

Relation to OBDD Size
- Processor requires K bits of memory at step i.
- OBDD has $\sim 2^K$ branches crossing level i.
Analysis of Ordering Examples

\[(a_1 \land b_1) \lor (a_2 \land b_2) \lor (a_3 \land b_3)\]
Selecting Good Variable Ordering

Intractable Problem

- Even when problem represented as OBDD
 - I.e., to find optimum improvement to current ordering

Application-Based Heuristics

- Exploit characteristics of application
- E.g., Ordering for functions of combinational circuit
 - Traverse circuit graph depth-first from outputs to inputs
 - Assign variables to primary inputs in order encountered
Dynamic Variable Reordering

- Richard Rudell, Synopsys

Periodically Attempt to Improve Ordering for All BDDs
- Part of garbage collection
- Move each variable through ordering to find its best location

Has Proved Very Successful
- Time consuming but effective
- Especially for sequential circuit analysis
Dynamic Reordering By Sifting

- Choose candidate variable
- Try all positions in variable ordering
 - Repeatedly swap with adjacent variable
- Move to best position found
Swapping Adjacent Variables

Localized Effect

- Add / delete / alter only nodes labeled by swapping variables
- Do not change any incoming pointers
Sample Function Classes

<table>
<thead>
<tr>
<th>Function Class</th>
<th>Best</th>
<th>Worst</th>
<th>Ordering Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALU (Add/Sub)</td>
<td>linear</td>
<td>exponential</td>
<td>High</td>
</tr>
<tr>
<td>Symmetric</td>
<td>linear</td>
<td>quadratic</td>
<td>None</td>
</tr>
<tr>
<td>Multiplication</td>
<td>exponential</td>
<td>exponential</td>
<td>Low</td>
</tr>
</tbody>
</table>

General Experience
- Many tasks have reasonable OBDD representations
- Algorithms remain practical for up to 100,000 node OBDDs
- Heuristic ordering methods generally satisfactory
Lower Bound for Multiplication

- Bryant, 1991

Integer Multiplier Circuit
- n-bit input words A and B
- $2n$-bit output word P

Boolean function
- Middle bit $(n-1)$ of product

Complexity
- Exponential OBDD for all possible variable orderings

Actual Numbers
- 40,563,945 BDD nodes to represent all outputs of 16-bit multiplier
- Grows 2.86x per bit of word size
Symbolic Manipulation with OBDDs

Strategy

- Represent data as set of OBDDs
 - Identical variable orderings
- Express solution method as sequence of symbolic operations
- Implement each operation by OBDD manipulation

Algorithmic Properties

- Arguments are OBDDs with identical variable orderings.
- Result is OBDD with same ordering.
- “Closure Property”

Contrast to Traditional Approaches

- Apply search algorithm directly to problem representation
 - E.g., search for satisfying truth assignment to Boolean expression.
If-Then-Else Operation

Concept
- Basic technique for building OBDD from logic network or formula.

Arguments I, T, E
- Functions over variables X
- Represented as OBDDs

Result
- OBDD representing composite function
- $(I \land T) \lor (\neg I \land E)$

Implementation
- Combination of depth-first traversal and dynamic programming.
- Worst case complexity product of argument graph sizes.
If-Then-Else Execution Example

Argument I

Argument T

Argument E

Recursive Calls

Optimizations

- Dynamic programming
- Early termination rules
If-Then-Else Result Generation

- Recursive calling structure implicitly defines unreduced BDD
- Apply reduction rules bottom-up as return from recursive calls
 - Generates reduced graph
Restriction Operation

Concept

- Effect of setting function argument x_i to constant k (0 or 1).
- Also called Cofactor operation (UCB)

$$F_X \text{ equivalent to } F \left[x = 1\right]$$
$$F_{\overline{X}} \text{ equivalent to } F \left[x = 0\right]$$

Implementation

- Depth-first traversal.
- Complexity near-linear in argument graph size
Derived Operations

- Express as combination of If-Then-Else and Restrict
- Preserve closure property
 - Result is an OBDD with the right variable ordering
- Polynomial complexity
 - Although can sometimes improve with special implementations
Derived Algebraic Operations

- Other operations can be expressed in terms of If-Then-Else

\[
\text{And}(F, G) = \text{If-Then-Else}(F, G, 0)
\]

\[
\text{Or}(F, G) = \text{If-Then-Else}(F, 1, G)
\]
Functional Composition

Create new function by composing functions F and G.

Useful for composing hierarchical modules.
Variable Quantification

- Eliminate dependency on some argument through quantification
- Combine with AND for universal quantification.
Digital Applications of BDDs

Verification
- Combinational equivalence (UCB, Fujitsu, Synopsys, ...)
- FSM equivalence (Bull, UCB, MCC, Siemens, Colorado, Torino, ...)
- Symbolic Simulation (CMU, Utah)
- Symbolic Model Checking (CMU, Bull, Motorola, ...)

Synthesis
- Don’t care set representation (UCB, Fujitsu, ...)
- State minimization (UCB)
- Sum-of-Products minimization (UCB, Synopsys, NTT)

Test
- False path identification (TI)
Generating OBDD from Network

Task: Represent output functions of gate network as OBDDs.

Network

A → T1
B → T2
C → Out

Evaluation

A ← new_var("a");
B ← new_var("b");
C ← new_var("c");
T1 ← And(A, 0, B);
T2 ← And(B, C);
Out ← Or(T1, T2);

Resulting Graphs
Checking Network Equivalence

Task: Do two networks compute the same Boolean function?

Method: Compute OBDDs for both networks and compare.

Alternate Network

```
A    T1
C    O2
B
```

Evaluation

```
T1 ← Or (A, C);  
O2 ← And (T1, B);  
if (O2 == Out)  
    then Equivalent  
    else Different
```

Resulting Graphs

- **A:**
 - Input: 0, 1
 - Output: 0, 1

- **B:**
 - Input: 1, 0
 - Output: 0, 1

- **C:**
 - Input: 1, 0
 - Output: 1, 0

- **T1:**
 - Input: 0, 1
 - Output: 0, 1

- **O2:**
 - Input: 0, 1
 - Output: 0, 1
Finite State System Analysis

Systems Represented as Finite State Machines
- Sequential circuits
- Communication protocols
- Synchronization programs

Analysis Tasks
- State reachability
- State machine comparison
- Temporal logic model checking

Traditional Methods Impractical for Large Machines
- Polynomial in number of states
- Number of states exponential in number of state variables.
- Example: single 32-bit register has 4,294,967,296 states!
Characteristic Functions

Concept

- $A \subseteq \{0,1\}^n$
 - Set of bit vectors of length n
- Represent set A as Boolean function A of n variables
 - $X \in A$ if and only if $A(X) = 1$

Set Operations

- Union
- Intersection
Symbolic FSM Representation

Nondeterministic FSM

Symbolic Representation

- **Represent set of transitions as function** \(\delta(Old, New) \)
 - Yields 1 if can have transition from state Old to state New

- **Represent as Boolean function**
 - Over variables encoding states
Reachability Analysis

Task
- Compute set of states reachable from initial state Q_0
- Represent as Boolean function $R(S)$
- Never enumerate states explicitly

Given
- Old state δ
- New state $0/1$

Compute
- State R
- Output $0/1$

Initial
- R_0
- Q_0
Breadth-First Reachability Analysis

- R_i – set of states that can be reached in i transitions
- Reach fixed point when $R_n = R_{n+1}$
 - Guaranteed since finite state
Iterative Computation

- \(R_{i+1} \) – set of states that can be reached \(i+1 \) transitions
 - Either in \(R_i \)
 - or single transition away from some element of \(R_i \)
Example: Computing R_1 from R_0

$\exists \text{Old} \left[R_0(\text{Old}) \land \delta(\text{Old}, \text{New}) \right]$
Symbolic FSM Analysis Example

- K. McMillan, E. Clarke (CMU) J. Schwalbe (Encore Computer)

Encore Gigamax Cache System
- Distributed memory multiprocessor
- Cache system to improve access time
- Complex hardware and synchronization protocol.

Verification
- Create “simplified” finite state model of system (10^9 states!)
- Verify properties about set of reachable states

Bug Detected
- Sequence of 13 bus events leading to deadlock
- With random simulations, would require ≈2 years to generate failing case.
- In real system, would yield MTBF < 1 day.
What’s Good about OBDDs

Powerful Operations
- Creating, manipulating, testing
- Each step polynomial complexity
 - Graceful degradation
- Maintain “closure” property
 - Each operation produces form suitable for further operations

Generally Stay Small Enough
- Especially for digital circuit applications
- Given good choice of variable ordering

Weak Competition
- No other method comes close in overall strength
- Especially with quantification operations
What’s Not Good about OBDDs

Doesn’t Solve All Problems

- Can’t do much with multipliers
- Some problems just too big
- Weak for search problems

Must be Careful

- Choose good variable ordering
 - Critical effect on efficiency
 - Must have insights into problem characteristics
 - Dynamic reordering most promising workaround
- Some operations too hard
 - Must work around limitations
Relaxing Ordering Requirement

Challenge

- Ordering is key to important properties of OBDDs
 - Canonical form
 - Efficient algorithms for operating on functions
- Some classes of functions have no good BDD orderings
 - Graphs grow exponentially in all cases
- Would like to relax requirement
 - but still preserve (most of) the algorithmic properties

Free Ordering

- Gergov & Meinel, Sieling & Wegener
- Slight relaxation of ordering requirement
Intractable OBDD Function Example

Rotator
- Circular shift of data
- Shift amount set by control

Difficult Function
- Rotate & compare
OBDDs for Specific Rotations

- Can choose good ordering for any fixed rotation
Forcing Single Ordering

- Good ordering for one rotation terrible for another
- For any ordering, some rotation will have exponential OBDD
Free BDDs

Rules

- Variables may appear in any order
- Only allowed to test variable once along any path
Rotation Function Example

Advantage
- Can select separate ordering for each rotation
- Good when different settings of control call for different orderings of data variables

Still Has Limitations
- Representing output functions of multiplier
 - Exponential for all possible Free BDDs
 - Ponzio, ‘95
Making Free BDDs Canonical

Modified Ordering Requirement
- For any given variable assignment, variables must occur in fixed order
- But can vary from one assignment to another

Algorithmic Properties Similar to OBDDs
- Reduce to canonical form
- Apply Boolean operation to functions
- Test for equivalence, satisfiability, etc.

Some Operations Harder
- Variable quantification and composition
- But can restrict relevant variables to be totally ordered
Representing Free Ordering

Ordering Graph
- Encodes assignment-dependent variable ordering

Similar to BDD
- Follow path according to assignment

OBDD is Special Case
- Linear chain

Ordering Requirement
- All functions must be compatible with single ordering graph
Practical Aspects of Free BDDs

Make Sense in Some Application Domain
- Usage of bits varies with context
- E.g., instruction set encodings

Must Determine Good Ordering Graph
- Some success with heuristic methods
- Ideally should be done dynamically
 - Overwhelming degrees of freedom

Need to Demonstrate Utility on Real-Life Examples