The Local Discontinuous Galerkin Method for Contaminant Transport

Vadym Aizingera,1 Clint Dawsona,1 Bernardo Cockburnb,2
Paul Castillob,2

aCenter for Subsurface Modeling - C0200, Texas Institute for Computational and Applied Mathematics, The University of Texas, Austin, TX 78712.
bSchool of Mathematics, University of Minnesota, Minneapolis, MN 55455

Abstract

We develop a discontinuous finite element method for advection-diffusion equations arising in contaminant transport problems, based on the Local Discontinuous Galerkin method of Cockburn and Shu [14]. This method is defined locally over each element, thus allowing for the use of different approximating polynomials in different elements, furthermore the elements do not have to conform, or “match-up” at interfaces. The method has a built-in upwinding mechanism for added stability. Moreover, it is conservative. We describe the method for multi-dimensional systems of equations with possibly nonlinear adsorption terms, and provide some numerical results in both one and two dimensions. These results examine the accuracy of the method, and its ability to approximate solutions to some linear and nonlinear problems arising in contaminant transport.

1 Introduction

The movement of contaminants through groundwater and surface water environments is modeled by transport equations, that is, equations which describe the advection, diffusion and interaction of contaminants within the environment. These equations are often advection-dominated, and thus require special care when solved numerically.

In recent years, there has been much interest in using upwind schemes for simulating such transport problems. These schemes are also referred to as high resolution or shock-capturing

1 Supported in part by National Science Foundation grants DMS-9873326 and DMS-9805491.
2 Supported in part by National Science Foundation grant DMS-9805491 and the University of Minnesota Supercomputing Institute.

Preprint submitted to Elsevier Preprint

15 November 1999
methods, an excellent survey of these types of methods in one space dimensions is contained in [26]. They have been applied to contaminant transport in groundwater (see, for example, [21,24,23,34,29,19,1]) and in surface water (see, for example, [8,33,28,22,35]). In this paper, we will consider one particular type of shock-capturing scheme called the Discontinuous Galerkin method.

When using a high resolution method to approximate advection in an advection-diffusion equation the question then becomes how to numerically incorporate the physical diffusion. When solving on structured grids, diffusion can easily be incorporated using central finite differences, as described in [19,20]. A more general approach, based on using the mixed finite element method for diffusion, has been proposed and analyzed in [7,20,16]. We refer to this approach as the upwind-mixed method. On structured grids, using special numerical integration rules, the upwind-mixed method reduces to a cell-centered finite difference method, as shown in [20]. In this paper, we will present a very different approach for incorporating diffusion based on an extension of the discontinuous Galerkin method, known as the Local Discontinuous Galerkin (LDG) method. Both the LDG and upwind-mixed methods have the favorable properties that they are based on conserving mass locally over each element and they approximate sharp fronts accurately and with minimal oscillation. Moreover, these methods are easily extendable to nonlinear systems. The LDG method has some additional nice properties. In particular, it can easily be extended to higher-order polynomials, can be defined on any grid including nonconforming grids, and easily allows one to vary the degree of the approximating space from one element to the next.

The application we will focus on is transport of one or more solutes through a homogeneous, saturated porous medium. To show how the method can handle nonlinearities, we will allow for nonlinear adsorption kinetics. A particular problem of interest is competitive adsorption between species. We assume the flow to be at steady-state, and the transport to be described by advection, molecular diffusion, mechanical dispersion and chemical reactions (adsorption) between a solute and the surrounding porous skeleton. Mathematically, this process is modeled by a possibly nonlinear partial differential equation, in the case of contamination by one solute, or a non-linear coupled system of PDEs if the fluid is contaminated by several substances.

Nonlinear adsorption in porous media has recently been investigated by a number of authors, both mathematically and numerically. Van Duijn and Knabner [31] proved the existence of traveling wave solutions for models with equilibrium and non-equilibrium adsorption. Dawson, van Duijn and Wheeler, and Barrett and Knabner developed Galerkin and characteristic-Galerkin methods for models with non-equilibrium adsorption, and analyzed them in [18,2,3]. Recently, the second author in collaboration with van Duijn and Grundy applied the upwind-mixed method mentioned above to the study of equilibrium adsorption. In [17,25,30], the long-time behavior of these equations was investigated both mathematically and numerically. The upwind-mixed method used in these papers was analyzed in [19]. All of this work has been for a single component. The literature is sparser for multi-component models; however, Rhee et al [27] studied the characteristic structure of one-dimensional, multi-component models, and provided some analytical solutions for certain initial and boundary conditions.
The paper is divided into the following sections. In Section 2, we present the mathematical model of transport we will consider including nonlinear adsorption. In Section 3, we describe the LDG method, present some of the theory behind the method and give some numerical results illustrating the convergence of the method on smooth test problems. In Section 4, we discuss implementation details of the methods, including time-stepping and stability post-processing needed to suppress oscillations. In Section 5, we present results for both methods applied to transport problems with nonlinear adsorption. Section 6 concludes the paper with a brief discussion of the numerical results.

2 Mathematical model of contaminant transport in porous medium

For one component, mass conservation of the contaminant gives the equation [27]

\[\phi c_t + (1 - \epsilon) \tilde{s}_t + \nabla \cdot (uc - D \nabla c) = f(c), \] (1)

where \(c \) is the concentration of solute in moles per unit volume in the fluid phase, \(\tilde{s}(x,t) \) is the concentration of contaminant adsorbed on the solid matrix in moles per unit volume of solid, \(\phi > 0 \) is the porosity, \(u \) is the Darcy velocity, \(D \) accounts for molecular diffusion and mechanical dispersion, and \(f \) models source/sink terms which could be dependent on concentration.

The chemical reactions describing adsorption may be fast (equilibrium) or slow (non-equilibrium) depending on the rate of reaction with respect to the rate of flow. In the case of equilibrium adsorption reactions, the contaminant adsorbed by the solid is generally assumed to be a function of the concentration in the fluid; that is,

\[\tilde{s} = a(c). \] (2)

In the case of non-equilibrium adsorption reactions, \(\tilde{s} \) is generally assumed to satisfy

\[\tilde{s}_t = k(a(c) - \tilde{s}), \] (3)

where \(k \) is a rate parameter. Thus (2) is obtained in the limit as \(k \to \infty \). Here we will concentrate only on the equilibrium case. The function \(a \) in (2) and (3) is called an adsorption isotherm. Common isotherms are the Langmuir isotherm

\[a(c) = \frac{NKc}{1 + Kc}, K > 0, \] (4)

where \(N \) is the saturation concentration of the adsorbed solute, and the Freundlich isotherm

\[a(c) = Kc^\beta, K > 0, \] (5)
see [32]. In (5), \(p \in (0, 1] \) is commonly chosen.

In this paper, we consider the case of equilibrium adsorption. Substituting (2) into (1), letting
\[
A(c) = (1 - \phi) a(c),
\]
we obtain
\[
\phi c_t + A(c) + \nabla \cdot (uc - D\nabla c) = f.
\]
We solve (7) on a domain \(\Omega \subset \mathbb{R}^d \) for \(t > 0 \). Letting \(\nu \) denote the unit outward normal to \(\Gamma = \partial \Omega \), we impose “inflow” and “outflow” boundary conditions:
\[
\begin{align*}
(uc - D\nabla c) \cdot \nu &= uc_I(t) \cdot \nu, & t > 0, \\
(\nabla c) \cdot \nu &= 0, & t > 0.
\end{align*}
\]
Here \(c_I(t) \) is a specified inflow concentration. The inflow condition (8) is imposed where \(u \cdot \nu < 0 \), and the outflow condition (9) is imposed otherwise. The inflow portion of the boundary we denote by \(\Gamma_I \), and the outflow/noflow part by \(\Gamma_O \).

We also assume the initial condition
\[
c(x, 0) = c^0(x), \quad x \in \Omega.
\]
We note that \(A \) is a strictly monotone increasing function of \(c \) in both the Langmuir and Freundlich isotherms, therefore (7) is uniformly parabolic if \(c > 0 \). If \(a(c) \) is of Freundlich type, however, then (7) is degenerate parabolic for \(p < 1 \) and \(c \geq 0 \), since \(a'(c) \) blows-up as \(c \downarrow 0 \).

We are also interested in the case of multicomponent contaminant transport with competitive adsorption between species. In this case, we assume a similar equation in each component holds:
\[
\begin{align*}
\phi c_t + A_i(c) + \nabla \cdot (uc - D\nabla c) &= f, \quad x \in \Omega, \quad t > 0, \\
A(c) &= (1 - \phi) a(c),
\end{align*}
\]
where \(\mathbf{c} = (c_1, c_2, ..., c_n)^T \) and \(n \) is the number of components.

The Langmuir isotherm in the multicomponent case is [27]
\[
a(c) = (a_1(c), a_2(c), ..., a_n(c))^T,
\]
where

\[a_i(c) = \frac{N_i K_i c_i}{1 + K_1 c_1 + K_2 c_2 + \ldots + K_n c_n}, K_i > 0, \ i = 1, \ldots, n. \]

(14)

\(N_i \) stands here for the maximum number of moles of solute \(i \) that can be adsorbed per unit volume of adsorbent.

We augment (11) with the initial and boundary conditions

\[c(x, 0) = c^0(x), \ x \in \Omega, \]

(15)

\[(uc(0, t) - D\nabla c) \cdot \nu = uc_I(t) \cdot \nu, \Gamma_I \times (0, T], \]

(16)

\[(D\nabla c) \cdot \nu = 0 \Gamma_O \times (0, T]. \]

(17)

3 The Local Discontinuous Galerkin Method

The LDG method [14] was developed as a modification for non-linear parabolic problems of the so-called Runge-Kutta Discontinuous Galerkin (RKDG) method designed originally for non-linear hyperbolic problems of the form:

\[c_t + \nabla \cdot g(c) = 0. \]

The main idea of the LDG method is to suitably rewrite the parabolic problem under consideration into a larger degenerate first-order system and then discretize it using the RKDG method. Similarly to the RKDG methods, the resulting scheme is a highly parallelizable method of potentially high-order accuracy.

3.1 Formulation of the method

We will describe the LDG method for the scalar equation (7). The extension to the system (11) is straightforward. We first introduce two new variables

\[\tilde{z} = -\nabla c, \]

and

\[z = D\tilde{z}. \]
We also define
\[s(x, t) = \phi c(x, t) + A(c(x, t)) \]
(18)

and rewrite the problem (7) as follows:

\[s_t + \nabla \cdot (uc + z) = f, \]
\[\tilde{z} + \nabla c = 0, \]
\[z = D\tilde{z}. \]
(19)
(20)
(21)

Before describing the LDG method for (19)-(21) we define some notation. On any spatial domain \(R \) let \(\langle \cdot, \cdot \rangle_R \) denote the \(L^2(R) \) inner product, where we omit \(R \) if \(R = \Omega \). To distinguish integration over domains \(R \in \mathbb{R}^{d-1} \) (e.g., surfaces or lines), we will use the notation \(\langle \cdot, \cdot \rangle_{\mathbb{R}^{d-1}} \). Let \(\{ \mathcal{T}_h \}_{h>0} \) denote a family of finite element partitions of \(\Omega \) such that no element \(\Omega_e \) crosses the boundaries of \(\Gamma_I \) or \(\Gamma_O \), where \(h \) is the maximal element diameter. Let

\[W_{h,e} = \{ w : w \text{ is a polynomial of degree } \leq k_e \text{ on each element } \Omega_e \text{ in } \mathcal{T}_h \}. \]
(22)

Note that the degree \(k_e \) could vary from one element to the next. Let \(n_e \) denote the unit outward normal to \(\partial \Omega_e \). Then, for \(x \in \partial \Omega_e \) we define

\[w^-(x) = \lim_{s \to 0^-} w(x + sn_e), \]

and

\[w^+(x) = \lim_{s \to 0^+} w(x + sn_e). \]

That is, \(w^- \) is the value of \(w \) to the “left” of the boundary, assuming the normal \(n_e \) points from “left” to “right.” We also define

\[\bar{w} = (w^+ + w^-)/2. \]
(23)

We seek approximations \(C, Z, \tilde{Z} \) to \(c, z, \tilde{z} \), where on \(\Omega_e \), \(C \in W_{h,e} \) and \(Z, \tilde{Z} \in (W_{h,e})^d \). We first note that, multiplying (19), (20) and (21) by arbitrary test functions \(w \in H^1(\Omega_e), v, \tilde{v} \in (H^1(\Omega_e))^d \), respectively, and integrating over any element \(\Omega_e \), we get, after integration by parts

\[\left(s_t, w \right)_{\Omega_e} - \left(uc + z, \nabla w \right)_{\Omega_e} + \langle (uc + z) \cdot n_e, w^- \rangle_{\partial \Omega_e} = (f, w)_{\Omega_e}, \]
(24)
\[\left(\tilde{z}, v \right)_{\Omega_e} - \left(c, \nabla \cdot v \right)_{\Omega_e} + \langle c, v^- \cdot n_e \rangle_{\partial \Omega_e} = 0, \]
\((z, \tilde{v})_{\Omega_e} = (D\tilde{z}, \tilde{v})_{\Omega_e}\). \hspace{1cm} (25)

Next, we replace \(c, z\), and \(\tilde{z}\) by approximations \(C\), \(Z\), and \(\tilde{Z}\), respectively, and restrict our test functions to lie in the approximating space. Since \(C\), \(Z\) and \(\tilde{Z}\) are allowed to be discontinuous across element boundaries, we must also define how the boundary integrals are approximated. These are computed by upwinding \(C\) in the advection term, and averaging \(C\) and \(Z\) in the other boundary integrals. Define the upwind value \(C^u\) on an element boundary as follows:

\[
C^u = \begin{cases} C^-, & \text{if } u \cdot n_e \geq 0, \\ C^+, & \text{if } u \cdot n_e < 0. \end{cases} \hspace{1cm} (26)
\]

Then, the approximate solution given by the LDG method is defined as the solution of the following weak formulation:

\[
\left(S_t, w \right)_{\Omega_e} - \left(uC + Z, \nabla w \right)_{\Omega_e} + \left(C^u u \cdot n_e, w^- \right)_{\partial\Omega_e} + \left(Z \cdot n_e, w^- \right)_{\partial\Omega_e} = (f, w)_{\Omega_e}, \quad w \in W_{h_e}^d, \hspace{1cm} (27)
\]

\[
\left(\tilde{Z}, v \right)_{\Omega_e} - \left(C, \nabla \cdot v \right)_{\Omega_e} + \left(\tilde{Z} \cdot n_e, v^- \right)_{\partial\Omega_e} = 0, \quad v \in (W_{h_e})^d, \hspace{1cm} (28)
\]

and

\[
\left(Z, \tilde{v} \right)_{\Omega_e} = \left(D\tilde{Z}, \tilde{v} \right)_{\Omega_e}, \quad \tilde{v} \in (W_{h_e})^d. \hspace{1cm} (29)
\]

Here \(S = \phi C + A(C)\).

The initial condition is enforced by

\[
\left(C(\cdot, 0), v_h \right)_{\Omega_e} = \left(c^0(\cdot), v_h \right)_{\Omega_e}. \hspace{1cm} (30)
\]

The boundary conditions are enforced by modifying the equations above as follows. On the inflow boundary \(\Gamma_I\), we set

\[
\left(C^u u \cdot n_e, w^- \right)_{\partial\Omega_e \cap \Gamma_I} + \left(Z \cdot n_e, w^- \right)_{\partial\Omega_e \cap \Gamma_I} = (c_{\Gamma} u \cdot n_e, w^-)_{\partial\Omega_e \cap \Gamma_I}, \hspace{1cm} (31)
\]

in (27). On \(\Gamma_O\), we set

\[
\left(Z \cdot n_e, w^- \right)_{\partial\Omega_e \cap \Gamma_O} = 0 \hspace{1cm} (32)
\]

7
in (27) and replace \overline{C} by C^- in (28).

Remark 1. The solution \tilde{Z} can be resolved element by element in terms of C by using (28). Furthermore, Z can be expressed in terms of \tilde{Z} on each element using (29). Substituting these relations into (27), one ends up solving for C unknowns only.

Remark 2. The element Ω_c can be very general. Theoretically the only requirement is that it have a Lipschitz boundary [4]. Furthermore, elements and their neighbors do not have to match up along the edges. Therefore, one can locally refine elements without worrying about hanging nodes. Also, as noted above, the degree of polynomial used to define C can vary from one element to the next without any difficulty.

To illustrate the method for a simple problem, consider the equation

$$c_t + c_x - c_{xx} = f,$$

(33)

on the unit interval $[0,1]$ with the boundary conditions

$$c - c_x = c_I, \quad x = 0,$$

(34)

$$c_x = 0, \quad x = 1.$$

(35)

In this case, $\tilde{Z} = z = -c_x$. Let $0 = x_{1/2} < x_{3/2} < \ldots < x_{N+1/2} = 1$ denote a partition of the interval into subintervals B_j with midpoint $x_j = (x_{j-1/2} + x_{j+1/2})/2$ and length Δx. Consider the LDG method with $k_c = 0$, that is, piecewise constant approximations. Let C_j, Z_j denote these constant approximations on subinterval B_j. Then from (28) we find

$$Z_j = -\frac{\overline{C}(x_{j+1/2}) - \overline{C}(x_{j-1/2})}{\Delta x}$$

$$= -\frac{C_{j+1} - C_{j-1}}{2\Delta x}.$$

(36)

From (24), we find for interior subintervals,

$$(C_j)_t + \frac{C_j - C_{j-1}}{\Delta x} + \frac{Z(x_{j+1/2}) - Z(x_{j-1/2})}{\Delta x} = \int_{B_j} f dx.$$

(37)

For $j = 1$, we have

$$(C_j)_t + \frac{C_j - C_I}{\Delta x} + \frac{Z(x_{j+1/2})}{\Delta x} = \int_{B_j} f dx,$$

and for $j = N$,
\[
(C_j)_t + \frac{C_j - C_{j-1}}{\Delta x} - \frac{\bar{Z}(x_{j-1/2})}{\Delta x} = \int_{B_j} f dx,
\]

where \(\bar{Z}(x_{j+1/2}) = (Z_j + Z_{j+1})/2\).

Substituting (36) into (37) we find that away from the boundaries,

\[
(C_j)_t + \frac{C_j - C_{j-1}}{\Delta x} + \frac{C_{j+2} - C_{j-2}}{4\Delta x} = \int_{B_j} f dx. \tag{38}
\]

This equation reveals a fairly wide stencil for the method. In [14], a slight modification to the LDG method is discussed which reduces the stencil to only involve \(C_j, C_{j-1}, C_{j+1}\) is presented. However, in general, for the LDG method the unknowns in any element \(\Omega_e\) depend on the neighbors of \(\Omega_e\) (elements which share all or part of an edge, excluding vertices), and the neighbors of the neighbors.

At this point, we have not discussed the time-discretization for the method. We postpone this discussion to Section 4.

While the boundary conditions (8)-(9) may be the most natural to use in applications, for the purpose of testing the algorithm we have implemented primarily Dirichlet boundary conditions. A Dirichlet condition

\[
c = \bar{c} \tag{39}
\]
on \(\partial \Omega\) can be enforced by setting \(\bar{Z} = Z^-\) in (27) and \(\bar{C} = \bar{c}\) in (28) when integrating over the boundary. Moreover, in the definition of \(C^u\) in (26) we set \(C^+ = \bar{c}\) on \(\partial \Omega\).

3.2 Stability results and error estimates

In this subsection, we state briefly some theoretical results for the method above. The LDG method was first analyzed by Cockburn and Shu [14]. Their results were obtained for the nonlinear parabolic equation

\[
c_t + f(c)_x - (d(c)c_x)_x = 0, 0 < x < L, t > 0,
\]

under the assumption of periodic boundary conditions on \(c\), and assuming \(f\) and \(d\) are Lipschitz.
Theorem 3.1 (L²-stability) : We have

$$\frac{1}{2} \int_0^L C^2(x, T) \, dx + \int_0^T \int_0^L Z^2(x, t) \, dx \, dt \leq \frac{1}{2} \int_0^L (c^0)^2(x) \, dx. \quad (40)$$

We denote the L²(0, L)-norm of the ℓ-th derivative of c by |c|ₗ. In the linear case \(f'(\cdot) \equiv p \) and \(d(\cdot) \equiv d \), from the above stability result and from the approximation properties of the finite element space \(W_h \), Cockburn and Shu proved the following error estimate:

Theorem 3.2 (L²-error estimate) Let \(e \) be the approximation error \(e = w - w_h \). Then we have,

$$\left\{ \int_0^L |(c - C)(x, T)|^2 \, dx + \int_0^T \int_0^L |(z - Z)(x, t)|^2 \, dx \, dt \right\}^{\frac{1}{2}} \leq K \Delta x^k, \quad (41)$$

where \(K = K(k, |c|_{k+1}, |c|_{k+2}) \). In the purely hyperbolic case \(d = 0 \), the constant \(K \) is of order \(\Delta x^\frac{1}{2} \) and in the purely parabolic case \(p = 0 \), the constant \(K \) is of order \(\Delta x \) for even values of \(k \) for uniform grids and for \(\bar{C} \) identically zero.

This result is somewhat pessimistic, in particular, for \(k = 0 \) it does not give any convergence rate when \(d > 0 \), \(p \neq 0 \) and the mesh is nonuniform. However, Castillo and Cockburn [6] have recently derived an improved result, which indicates that the method converges with rate \(\Delta x^{k+1} \), as we have observed numerically below.

For the model problem considered here given by (7) with boundary conditions (8)-(9), Cockburn and Dawson have recently derived the following stability and error estimates [9]. These results assume \(A(c) = 0 \) but would also extend to the case where \(A \) is linear in \(c \).

Theorem 3.3 (Stability) . The scheme (27)-(29) satisfies

$$\sum_c \left[\frac{1}{4} \max_{[0,T]} \||\phi|^{1/2} c||_{\Omega_c}^2 + \int_0^T (D\tilde{Z}, \tilde{Z})_{\Omega_c} \, dt \right] \leq \frac{1}{2} \||\phi|^{1/2} c^0||^2 + \sum_c \left\{ \int_0^T \||\phi|^{1/2} f||_{\Omega_c} \, dt \right\}^2 + \frac{1}{2} \int_0^T \||c\|_{H} u \cdot n \||^{1/2} ||_{\Gamma_I} \, dt. \quad (42)$$

In particular, the scheme satisfies (42) for \(D \geq 0 \). If \(f = 0 \), then the 1/4 on the left side of (42) is replaced by 1/2.

Theorem 3.4 (Error estimate) . The scheme (27)-(29) satisfies
\[\sum_{\epsilon} \left[\frac{1}{4} \max_{|t|} \left\| \phi^{1/2}(C - c) \right\|_{L^2}^2 + \int_0^T (D(\tilde{Z} - \tilde{\epsilon}), (\tilde{Z} - \tilde{\epsilon}))_{\Omega_r} dt \right] \leq Kh^k, \]

for \(c \) sufficiently smooth, where \(k = \min_{\epsilon} k_{\epsilon} \).

3.3 Implementation and numerical results

In this subsection, we present test runs on some smooth problems with known true solutions to obtain experimental rates of convergence. The results of numerical experiments demonstrating the performance of the LDG method on some contaminant transport problems will be presented in section 5.

Above we formulated a semi-discrete LDG scheme, which requires some procedure to be used for time-stepping. Some Runge-Kutta schemes suitable for this purpose will be discussed in section 4. In the following numerical examples, the order of the employed time-stepping scheme was high enough so that the error of the time-stepping procedure was negligible compared to the error of the LDG method.

Note that all time-stepping schemes used for examples in this section are of explicit type, therefore there is a restriction on the ratio between the length of the time step and the element size in the space domain. In most of these examples the time steps are chosen sufficiently small so that temporal errors are almost negligible.

First, we provide the results of some numerical experiments for the following scalar equation with constant coefficients \(u > 0, \, D \geq 0 \):

\[L(c) = c_t + A(c)_t + u \, c_x - D \, c_{xx} = L(\sin 2\pi (x - t) + 2), \quad 0 < x < 1, \, t > 0, \quad (43) \]

with the initial and Dirichlet boundary conditions

\[
\begin{align*}
 c(x, 0) &= \sin 2\pi x + 2, \quad 0 < x < 1, \\
 c(0, t) &= -\sin 2\pi t + 2, \quad t > 0, \\
 c(1, t) &= -\sin 2\pi t + 2, \quad t > 0,
\end{align*}
\]

(44) \quad (45) \quad (46)

where the right-hand side is obtained by plugging the function

\[c(x, t) = \sin 2\pi (x - t) + 2 \]

(47)

into equation (7). (47) is obviously the exact solution of (43)-(45). Here, the isotherm has the form

\[A(c) = \frac{c}{1 + c}. \]

(48)
We compute our numerical solution up to $T = 0.5$ using the LDG method with approximating spaces of uniform degree k, $k = 0, 1, 2$. Elements with equal size are used. Time discretization is by a third-order accurate Runge-Kutta method. We list the $L^\infty(0, T; L^2)$ and $L^2(0, T; L^2)$ norms of the error for the functions $s = \phi c + A(c)$ and z respectively.

Table 1
Advection dominated advection-diffusion equation $u = 1$, $D = 0.01$.

<table>
<thead>
<tr>
<th>k</th>
<th>Var</th>
<th>Norm</th>
<th>$N = 40$</th>
<th>$N = 80$</th>
<th>$N = 160$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>error</td>
<td>error</td>
<td>order</td>
<td>error</td>
</tr>
<tr>
<td>0</td>
<td>s</td>
<td>$L^\infty(0, T; L^2)$</td>
<td>$1.21e-01$</td>
<td>$6.32e-02$</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>z</td>
<td>$L^2(0, T; L^2)$</td>
<td>$4.76e-02$</td>
<td>$2.64e-02$</td>
<td>0.85</td>
</tr>
<tr>
<td>1</td>
<td>s</td>
<td>$L^\infty(0, T; L^2)$</td>
<td>$1.27e-03$</td>
<td>$3.26e-04$</td>
<td>1.96</td>
</tr>
<tr>
<td></td>
<td>z</td>
<td>$L^2(0, T; L^2)$</td>
<td>$1.35e-02$</td>
<td>$6.95e-03$</td>
<td>0.96</td>
</tr>
<tr>
<td>2</td>
<td>s</td>
<td>$L^\infty(0, T; L^2)$</td>
<td>$1.06e-05$</td>
<td>$1.25e-06$</td>
<td>3.08</td>
</tr>
<tr>
<td></td>
<td>z</td>
<td>$L^2(0, T; L^2)$</td>
<td>$6.48e-05$</td>
<td>$8.41e-06$</td>
<td>2.95</td>
</tr>
</tbody>
</table>

The results of the numerical experiment in Table 1 show that, though for even degrees of approximating polynomials we retrieve the optimal order of convergence of Δx^{k+1}, for $k = 1$ we lose one power of Δx in the convergence rate of the flux. This can be improved if one modifies the scheme slightly as described in [6].

In Table 2, we consider the purely hyperbolic advection equation obtained from (43) by setting $D = 0$. In this case, we obtain experimental orders of convergence around Δx^{k+1} for all $k = 0, 1, 2$.

Table 2
Advection (purely hyperbolic) equation $u = 1$, $D = 0$.

<table>
<thead>
<tr>
<th>k</th>
<th>Var</th>
<th>Norm</th>
<th>$N = 40$</th>
<th>$N = 80$</th>
<th>$N = 160$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>error</td>
<td>error</td>
<td>order</td>
<td>error</td>
</tr>
<tr>
<td>0</td>
<td>s</td>
<td>$L^\infty(0, T; L^2)$</td>
<td>$1.37e-01$</td>
<td>$7.30e-02$</td>
<td>0.91</td>
</tr>
<tr>
<td>1</td>
<td>s</td>
<td>$L^\infty(0, T; L^2)$</td>
<td>$1.21e-03$</td>
<td>$3.02e-04$</td>
<td>2.00</td>
</tr>
<tr>
<td>2</td>
<td>s</td>
<td>$L^\infty(0, T; L^2)$</td>
<td>$1.94e-05$</td>
<td>$2.11e-06$</td>
<td>3.20</td>
</tr>
</tbody>
</table>

We performed similar tests for the coupled system consisting of two equations

$$L(c) = c_t + A(c)_t + u c_x - D c_{xx} = L \left(\begin{array}{c} \sin 2 \pi (x - t) + 2 \\ \cos 2 \pi (x - t) + 2 \end{array} \right), \quad 0 < x < 1, t > 0, \quad (49)$$
with the initial and boundary conditions

\[\mathbf{c}(x, 0) = \begin{pmatrix} \sin 2 \pi x + 1 \\ \cos 2 \pi x + 2 \end{pmatrix} \quad \text{on } (0, 1), \]

(50)

\[\mathbf{c}(0, t) = \begin{pmatrix} -\sin 2 \pi t + 1 \\ \cos 2 \pi t + 2 \end{pmatrix} \quad \text{for } t > 0, \]

(51)

\[\mathbf{c}(1, t) = \begin{pmatrix} -\sin 2 \pi t + 1 \\ \cos 2 \pi t + 2 \end{pmatrix} \quad \text{for } t > 0. \]

(52)

The Langmuir isotherm in its two-component form is

\[\mathbf{A}(\mathbf{c}) = \begin{pmatrix} R_1 \frac{K_1 c_1}{1+K_1 c_1+K_2 c_2} \\ R_2 \frac{K_2 c_2}{1+K_1 c_1+K_2 c_2} \end{pmatrix}, \]

(53)

and we have chosen \(R_1 = R_2 = K_1 = 1, \ K_2 = 10. \) The right-hand side vector-function is obtained by plugging the vector-function

\[\mathbf{c}(x, t) = \begin{pmatrix} \sin 2 \pi (x - t) + 2 \\ \cos 2 \pi (x - t) + 2 \end{pmatrix} \]

(54)

into (49). Numerical rates of convergence for this case are given in Table 3.

Similarly to the scalar case we observe here the experimental order of convergence of about \(\Delta x^{k+1} \) for the even degrees of approximating polynomials and some suboptimal order of convergence for the diffusive flux \(z \) for the odd degrees.

Finally, we computed an approximate solution to the purely hyperbolic system, obtained from (49) by setting \(D = 0. \) Here again, the experimental orders of convergence are of order \(\Delta x^{k+1} \) for all \(k = 0, 1, 2. \) These results are given in Table 4.

4 Time-stepping schemes and stability postprocessing

We can rewrite formally the semi-discrete problem (27) for the LDG method as

\[\mathbf{y}'(t) = \mathbf{L}_h(\mathbf{y}(t), t). \]

(55)
Table 3
Advection dominated advection-diffusion system $u = 1, D = 0.01$.

<table>
<thead>
<tr>
<th>k</th>
<th>Var.</th>
<th>Norm</th>
<th>$N = 40$</th>
<th>$N = 80$</th>
<th>$N = 160$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>error</td>
<td>error</td>
<td>order</td>
</tr>
<tr>
<td>0</td>
<td>s</td>
<td>$L^\infty(0,T;L^2)$</td>
<td>1.69e − 01</td>
<td>8.99e − 02</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>z</td>
<td>$L^2(0,T;L^2)$</td>
<td>7.19e − 02</td>
<td>3.97e − 02</td>
<td>0.86</td>
</tr>
<tr>
<td>1</td>
<td>s</td>
<td>$L^\infty(0,T;L^2)$</td>
<td>1.68e − 03</td>
<td>4.32e − 04</td>
<td>1.96</td>
</tr>
<tr>
<td></td>
<td>z</td>
<td>$L^2(0,T;L^2)$</td>
<td>1.93e − 02</td>
<td>9.83e − 03</td>
<td>0.97</td>
</tr>
<tr>
<td>2</td>
<td>s</td>
<td>$L^\infty(0,T;L^2)$</td>
<td>1.37e − 05</td>
<td>1.68e − 06</td>
<td>3.03</td>
</tr>
<tr>
<td></td>
<td>z</td>
<td>$L^2(0,T;L^2)$</td>
<td>8.24e − 05</td>
<td>1.21e − 05</td>
<td>2.77</td>
</tr>
</tbody>
</table>

Table 4
Advection (purely hyperbolic) system $u = 1, D = 0$.

<table>
<thead>
<tr>
<th>k</th>
<th>Var.</th>
<th>Norm</th>
<th>$N = 40$</th>
<th>$N = 80$</th>
<th>$N = 160$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>error</td>
<td>error</td>
<td>order</td>
</tr>
<tr>
<td>0</td>
<td>s</td>
<td>$L^\infty(0,T;L^2)$</td>
<td>1.93e − 01</td>
<td>1.03e − 01</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>z</td>
<td>$L^2(0,T;L^2)$</td>
<td>1.61e − 03</td>
<td>4.00e − 04</td>
<td>2.01</td>
</tr>
<tr>
<td>1</td>
<td>s</td>
<td>$L^\infty(0,T;L^2)$</td>
<td>2.63e − 05</td>
<td>2.85e − 06</td>
<td>3.20</td>
</tr>
<tr>
<td></td>
<td>z</td>
<td>$L^2(0,T;L^2)$</td>
<td>2.63e − 05</td>
<td>2.85e − 06</td>
<td>3.20</td>
</tr>
</tbody>
</table>

Traditional Runge-Kutta schemes as described in [5] applied to problems with discontinuous or very rough true solutions may lead to oscillatory approximate solutions. In order to reduce oscillations but retain a higher order of approximation, a new class of Runge-Kutta methods called $RK\Pi P$ has been developed for these problems, see ([12,11,10,13,15]).

The main idea behind the $RK\Pi P$ method is, first, to reformulate the explicit Runge-Kutta scheme in some suitable form and, then, to perform where needed a limiting procedure on the degrees of freedom corresponding to the higher order (linear, quadratic, etc) basis functions after each sub-step of the Runge-Kutta procedure.

Let $\Delta t > 0$ denote a time step, and let $t^n = n\Delta t$, $n = 0,1,\ldots$. Let $y^n = y(t^n)$. Given y^{n-1}, the explicit Runge-Kutta scheme for solving (55) used in the $RK\Pi P$ method is formulated as follows:

$$
\begin{align*}
y^{(0)} &= y^{n-1}, \\
y^{(i)} &= \sum_{l=0}^{i-1} \alpha_{l} y^{(l)} + \beta_{l} \Delta t L_{l}(y^{(l)}, t^{n-1} + \delta_{l} \Delta t), \quad i = 1,\ldots, s,
\end{align*}
$$

14
\[y^n = y^{(s)}. \] (56)

We have considered second and third order schemes. In the second order scheme \((s=2)\), the coefficients are

\[
\begin{align*}
\alpha_{10} &= \beta_{10} = 1, \quad \alpha_{20} = \alpha_{21} = \beta_{21} = \frac{1}{2}, \quad \beta_{20} = 0, \\
\delta_0 &= 0, \quad \delta_1 = 1.
\end{align*}
\] (57)

In the third order scheme \((s=3)\), the coefficients are

\[
\begin{align*}
\alpha_{10} &= \beta_{10} = 1, \quad \alpha_{20} = \alpha_{21} = \beta_{21} = \frac{1}{4}, \quad \beta_{20} = 0, \\
\alpha_{30} &= \frac{1}{3}, \quad \beta_{30} = \alpha_{31} = \beta_{31} = 0, \quad \alpha_{32} = \beta_{32} = \frac{2}{3}, \\
\delta_0 &= 0, \quad \delta_1 = 1, \quad \delta_2 = \frac{1}{2}.
\end{align*}
\] (58)

Next, we define the local projection operator \(\Pi\), which is the second important component of the \(RK\Pi\Pi\Pi\) methods. This operator is used to limit the higher-order terms in the polynomial approximation, in order to prevent oscillations. We describe this limiting procedure in one space dimension. A description of the procedure in multiple dimensions is given in [?].

We will expand functions \(v \in W_h\) in terms of orthonormalized Legendre polynomials \(l_k(x)\) on each subinterval \(B_j\). These polynomials satisfy

\[
\int_{B_j} l_q(x) l_p(x) \, dx = \begin{cases}
1, & \text{if } q = p, \\
0, & \text{otherwise}.
\end{cases}
\] (59)

Consider the function

\[
\tilde{m}(a_1, a_2, \ldots, a_n) = \begin{cases}
a_1, & \text{if } |a_1| \leq M \Delta x^2, \\
m(a_1, a_2, \ldots, a_n), & \text{otherwise},
\end{cases}
\] (60)

where \(M\) is some positive number related to the second derivative of the true solution, and \(m\) is the minmod function

\[
m(a_1, a_2, \ldots, a_n) = \begin{cases}
s \cdot \min |a_i|, & \text{if } \text{sign}(a_1) = \text{sign}(a_2) = \ldots = \text{sign}(a_n) = s, \\
0, & \text{otherwise}.
\end{cases}
\] (61)
Let $v \in W_h$, in the Legendre polynomial basis v can be expressed as follows:

$$v|_{B_j} = \sum_{r=0}^{k} v^{(r)}_j l_r(x). \quad (62)$$

Then, the local projection operator $\Lambda \Pi$ is defined by $v^* = \Lambda \Pi(v)$, where

$$v_j^{0} = v_j^{(0)},$$

$$v_j^{(1)} = \bar{m}(v_j^{(1)}, v_{j+1}^{(0)} - v_{j}^{(0)}, v_{j}^{(0)} - v_{j-1}^{(0)}),$$

$$v_j^{(r)} = \begin{cases} v_j^{(r)}, & \text{if } v_j^{(1)} = v_j^{(1)}, \\ 0, & \text{otherwise}, \end{cases} \quad r = 2, \ldots, k. \quad (63)$$

Figure 1 illustrates effect of the local projection operator on a piecewise linear function (we assume here $M = 0$).

The *RK* $\Lambda \Pi P$ time-stepping method can be summarized as follows:
(i) Set $y_0 = \mathbf{P}_h(y(t_0))$, where \mathbf{P}_h is the projection operator into V_h;
(ii) for $n = 1, 2, \ldots$ compute

$$y^{(0)} = y^{n-1},$$

$$y^{(i)} = \Lambda \Pi \left(\sum_{l=0}^{i-1} \left[\alpha_{il} y^{(l)} + \beta_{il} \Delta t L_h(y^{(l)}, t^{n-1} + \delta_i \Delta t) \right] \right), \quad i = 1, \ldots, s,$$

$$y^{n} = y^{(s)}. \quad (64)$$
For pure advection problems, it can be shown that the scheme above is total variation diminishing (TVD), providing the time-step satisfies certain CFL time-step restrictions. For stability, convergence and error estimates of the method (64) we refer to [12,11,13,15].

5 Numerical results for contaminant transport problems

In this section, we present some numerical results obtained using the LDG method applied to some problems of contaminant transport.

5.1 One-component contaminant transport problems

Consider the equation:

$$c_t + \phi(c)u + uc_x - Dc_{xx} = 0, 0 < x < 1, \ t > 0,$$

where $\phi(c) = \frac{c}{1+c}, \ u = 1,$; with the initial and boundary conditions

$$c(x, 0) = 0, 0 < x < 1, \ (66)$$
$$c(0, t) = 1, \ t > 0, \ (67)$$
$$c(1, t) = 0, \ t > 0. \ (68)$$

First, we show some examples illustrating the effect of the local projection operator on oscillatory behavior. The time-stepping scheme (64) of third order is used. This problem has a discontinuous solution, as given in [27], and we obtain the results in Figure 2 for $T = 0.5$ for linear and quadratic approximating spaces. We see that the local projection operator removes the oscillatory behavior for both piecewise linear and piecewise quadratic approximating spaces.

Figure 3 illustrates the solutions with and without physical diffusion. Here we computed an approximate solution to the problem above at times $T \in \{0.2, 0.5, 0.8\}$ using the LDG method with piecewise constant approximating functions on 320 elements for $D = 0$ and $D = .01$. Since the piecewise constant approximations are not susceptible to oscillations, the local projection procedure is not needed in these computations.

5.2 Two-component contaminant transport problems

More interesting and challenging problems arise in multicomponent contaminant transport models. We repeated the above experiments for a two-component case. Consider the advection-diffusion system:
a) Piecewise linear approximating functions, 80 elements

b) Piecewise quadratic approximating functions, 80 elements

Fig. 2. Influence of the local projection operator on oscillatory behavior (scalar equation case)

a) Advection equation, $D = 0$

b) Advection dominated advection-diffusion equation, $D = 0.01$

Fig. 3. Effect of the diffusion term on the solution (scalar equation case)

$$c_t + \Phi(c)_t + uc_x - Dc_{xx} = 0, \quad 0 < x < 1, \quad t > 0,$$

where $u = 1$, the isotherm function is

$$A(c) = \begin{pmatrix}
\frac{c_1}{1 + c_1 + 10c_2} \\
\frac{10c_2}{1 + c_1 + 10c_2}
\end{pmatrix},$$

(69)
and the initial and boundary conditions are
\[
\mathbf{c}(x, 0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad 0 < x < 1, \quad (71)
\]
\[
\mathbf{c}(0, t) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad t > 0, \quad (72)
\]
\[
\mathbf{c}(1, t) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad t > 0. \quad (73)
\]

First, we examine the effect of the local projection operator on the numerical solutions for the case \(D = 0 \). From the results in Figure 4, we see that the local projection operator provides us with an effective post-processing algorithm, capable of suppressing oscillatory behavior.

In Figure 5, we show approximate solutions to the problem (69)-(73) at times \(T \in \{0.2, 0.5, 0.8\} \) using the LDG method with piecewise constant approximating functions on 320 elements for \(D = 0 \) and \(D = .01 \). For \(D = 0 \), the result is a moving shock wave, which agrees with the theoretical results presented in [27].

The next test further illustrates the impact of the diffusion term on the shape of the wave. Here we compute an approximate solution to the system (69) with the initial and boundary conditions (71)-(73) and the isotherm function (70) at time \(T = 0.5 \) for \(D \in \{0, 0.01, 0.05\} \), see Figure 6.
In the next numerical experiments we compare results of computations on the same test problem by the LDG method using approximating spaces of different order. First, we test the hyperbolic system obtained from (69) by setting \(D = 0 \) with the initial and boundary conditions (71)-(73) and isotherm (70) at the time \(T = 0.5 \), see Figure 7. Piecewise constant, linear and quadratic approximations were used. Use of piecewise linear approximating polynomials required the local projection procedure to be carried out after each sub time-step, however, as expected the piecewise linear approximation gives us clearly much sharper resolution of the shock wave than the piecewise constant approximation. The piecewise quadratic solution gives very similar results to the piecewise linear solution for this level of resolution. We next conduct a similar test for the parabolic system (69) with \(D = 0.01 \), the same initial and boundary conditions and the same isotherm as in the previous example. Constants, linear and quadratic approximations are used. In Figure 8, we see that all three approximate solutions lie very close together. In this example, we used different meshes and different time stepping schemes for the different approximations. For constants, we used forward Euler time-stepping, thus the degrees of freedom computed per time step for this solution is 640. For linear, we used a second-order Runge-Kutta procedure, thus the degrees of freedom computed per time step is also \(160 \times 2 = 640 \). Similarly, for quadratics a third-order Runge-Kutta procedure was used, requiring the computation of \(80 \times 3 = 720 \) degrees of freedom per time step. In this case, the use of the coarser meshes for linear and quadratics, allows for the use of larger time steps, due to the CFL constraint. Compared to the constant case, we were able to use a time step four times larger to compute the linear solution, and eight times larger to compute the quadratic solution. This example points out one of the benefits of using higher order polynomials, at least for problems with a sufficient amount of diffusion.
5.3 *Some preliminary two-dimensional results*

We are currently in the process of developing a two-dimensional transport code using the LDG method with adaptive triangular grids. Here we present a preliminary result on a standard advection problem. A more thorough study of multidimensional problems will be considered in a future paper.

We consider the “rotating hill” problem

\[c_t - (2\pi yc)_x + (2\pi xc)_y = 0 \]

with analytical solution
Fig. 7. Comparison of solutions obtained using different approximating spaces (hyperbolic system)

Fig. 8. Comparison of solutions, obtained using different approximating spaces (parabolic system)

\[c(x, y, t) = 5e^{-20((x \cos(2\pi t)+y \sin(2\pi t)-0.5)^2+(x \sin(2\pi t)+y \cos(2\pi t))^2).} \]

(75)

We began with an initial mesh of 76 elements, and refined this mesh three times, where each refinement was obtained by dividing each triangle into four smaller triangles. We refer to the coarsest mesh as mesh 1, and successive meshes as mesh 2, 3 and 4. In Figure 9, we compare the linear solution on mesh 4, the quadratic solution on mesh 3, the cubic solution on mesh 2 and the quartic solution on mesh 4. All solutions are at \(t=1 \), which represents one full rotation of the hill. Here we have taken the time step small and used the same temporal integration scheme for each method. As indicated in the figure, the solutions are very similar. The degrees of freedom/time step for each case are 14,592 for the linear solution, 7296 for the quadratic solution, 3040 for the cubic solution and 1140 for the quartic solution. The rate of convergence for each case is illustrated in Table 5. Here we have computed the rate of convergence by comparing the ratio of errors on successive meshes. That is
\[\text{Rate}_i = \log \left(\frac{E_{i+1}}{E_i} \right) / \log(5), \]

(76)

where \(E_i \) is the \(L^2 \) error on mesh \(i \). Note that for polynomial degrees 2, 3 and 4, the rate of convergence seems to be approaching \(k + 1 \), which agrees with our one-dimensional results. The rate of convergence in the linear case appears to be better than second order, but this is probably because we are not into the asymptotic range yet, as the errors are still somewhat oscillatory.

We conclude this section with an examination of “price versus performance” for the problem above. In Figure 10, we have plotted CPU/time step versus error on a log-log scale for the four different meshes described above, and for polynomials of degree up to six. Each line corresponds to a different mesh, with the symbols on each line representing the error for the six different approximating spaces. From the figure, we observe that in general the higher degree polynomials give a more accurate solution with smaller CPU time. Thus, the use of higher order approximations, at least in smooth parts of the solution, is worth further investigation.

Table 5
Rotating hill problem

<table>
<thead>
<tr>
<th>(k)</th>
<th>Rate(_1)</th>
<th>Rate(_2)</th>
<th>Rate(_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.2</td>
<td>2.27</td>
<td>2.87</td>
</tr>
<tr>
<td>2</td>
<td>2.87</td>
<td>3.58</td>
<td>3.17</td>
</tr>
<tr>
<td>3</td>
<td>4.57</td>
<td>4.78</td>
<td>4.21</td>
</tr>
<tr>
<td>4</td>
<td>5.48</td>
<td>4.90</td>
<td>4.76</td>
</tr>
</tbody>
</table>

6 Concluding remarks

In this paper, we have described a new discontinuous finite element method for contaminant transport equations. This scheme is applicable to nonlinear systems of equations and easily extends to multidimensions. The scheme performs well on solutions with sharp fronts as well as for smooth problems. It also allows for the use of higher degree polynomials while still preserving the stability of the solution.

We are currently in the process of implementing the method for multidimensional problems, with adaptive grid refinement/derefinement. The results of these investigations will be the subject of future work.
Fig. 9. Rotating hill problem. Comparison of different degree polynomials on different meshes.

Fig. 10. Comparison of CPU/time step vs. L^2 error for 4 successively refined meshes and polynomials of degree 1-6.
References

25

