FORMATION OF FINITE MULTIPLICATIVE GROUP FOR
\textit{n-LATERAL MULTIPLE HYPERGEOMETRIC FUNCTIONS}

By

Anand Singh

and

H.S. Dhami

IMA Preprint Series \# 1596
December 1998

INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS
UNIVERSITY OF MINNESOTA
514 Vincent Hall
206 Church Street S.E.
Minneapolis, Minnesota 55455–0436
Phone: 612/624-6066 Fax: 612/626-7370
URL: http://www.ima.umn.edu
FORMATION OF
FINITE MULTIPLICATIVE GROUP FOR n-LATERAL MULTIPLE
HYPERGEOMETRIC FUNCTIONS

Anand Singh and H.S. Dhami*
Department of mathematics,
University of Kumaun,
Almora Campus,
Almora (U.P)263601

Some properties of special functions from the point of view of group
theory, or more specifically, from the theory of group representations have
been discussed in research monographs. Here an attempt has been made
to generate finite multiplication group for multiple hypergeometric func-
tions involving two and three variables.

Key Words :- Lauricella function / multiplicative group / multiple
hypergeometric function / identity element.

1 :- INTRODUCTION

The fruitful nature of the theory of single hypergeometric functions
has led to generalizations, giving rise to multiple hypergeometric func-
tions compiled by Exton. Equivalent systems of partial differential equa-
tions associated with triple hypergeometric functions have been again con-
structed by Exton. A new function has been generated by authors in
their earlier studies to meet the requirements of statisticians, whose prod-
uct in the Lauricella function pattern has led to the generation of n-lateral
multiple hypergeometric function. This general function, whose particu-
lar cases include almost all known multiple hypergeometric functions, till
date, is being represented in a numeral form for the formation of a finite
multiplicative group.

* To whom all correspondence be mailed.
Let us express the B- function, defined as

\[
B = \begin{bmatrix}
 a_p & \gamma_r \\
 \beta_q & \delta_r
\end{bmatrix}
\begin{bmatrix}
 x_1, x_2, \ldots, x_n
\end{bmatrix}
\]

\[
= \sum_{m_1, m_2, \ldots, m_n = 0}^{\infty} \frac{\left(\frac{(a_p)^n (\gamma_r)^n}{(\beta_q)^n (\delta_r)^n}\right) x_1^{m_1} x_2^{m_2} \ldots x_n^{m_n}}{m_1! m_2! \ldots m_n!}
\]

\text{Where} \quad n = m_1 + m_2 + \ldots + m_n

in the following form

\[
\sum_{m_1, m_2, \ldots, m_n = 0}^{\infty} \left(\frac{(a_1^1 a_1 m_1 + a_2 m_2 + \ldots + (a_n^1 a_n m_n)}{a_1 m_1} \right) \frac{(\gamma_r)^n (\delta_r)^n}{m_1! m_2! \ldots m_n!}
\]

\text{When} \quad \sum_{i=0}^{\infty} a_i = 1 \quad \text{and} \quad a_i \text{ may be equal to 1 or 0.}

Supposing \((a_1, a_2, \ldots, a_n) = (1, 0, 0, \ldots, 0)\) the function given by (2.2) gets converted as

\[
B^0 = \sum_{m_1, m_2, \ldots, m_n = 0}^{\infty} \left(\frac{(a_1^1 a_1 m_1 + a_2 m_2 + \ldots + (a_n^1 a_n m_n)}{a_1 m_1} \right) \frac{(\gamma_r)^n (\delta_r)^n}{m_1! m_2! \ldots m_n!}
\]

\text{...........(2.3)}
Where \(a^1_p \) shall be obviously \(a_p \) and therefore shall be single hypergeometric function in \(n \) - variables.

In case if we take

\[
(a_1, a_2, \ldots, a_n) = (0,1,0,\ldots,0),
\]

We observe that the \(B \) - function is transmogrified into a Lauricella type function, in which the second parameter is repeated \((n-1) \) times, having the value

\[
\sum_{m_1,m_2,\ldots,m_n=0}^{\alpha} \left(\frac{\binom{a^1_p}{m_1} \binom{a^2_p}{m_2} \ldots \binom{a_n}{m_n}}{\binom{\beta_q}{m_1+m_2+\ldots+m_n} \binom{\delta_s}{m_1+m_2+\ldots+m_n}} \right) \frac{x_1^{m_1} x_2^{m_2} \ldots x_n^{m_n}}{m_1! m_2! \ldots m_n!} \](2.4)

Which represents trilateral hypergeometric function in \(n \) - variables.

This process of generalization, when prolonged further, can generate trilateral, quadrilateral, pentalateral and so on up to \(n \) - lateral hypergeometric functions in \(n \)-variables for corresponding values of \((a_1, a_2, \ldots, a_n) \) equal to \((1,0,0,\ldots,0), (0,1,0,\ldots,0), (0,0,1,0,\ldots,0), (0,0,0,1,\ldots,0) \) and \((0,0,0,\ldots,1) \).

3:- FORMATION OF MULTIPLICATIVE GROUP

For the \(B \) -function expressed by (2.2) we shall have

\[
\begin{bmatrix}
1 & 1 \\
1 & 1 \\
\end{bmatrix}
\begin{bmatrix}
a & c \\
b & d \\
\end{bmatrix} = \sum_{m,n=0}^{\alpha} \left(\frac{\binom{a}{m+n} \binom{C}{m+n}}{\binom{b}{m+n} \binom{d}{m+n}} \right) \frac{x^m y^n}{m! n!} \](3.1)

from which, according to the following explanation

{In
\[
\begin{bmatrix}
a \\
b \\
\end{bmatrix}
\] if upper parameter is changed, the notation shall be 1;
if both parameter are changed, the notation shall be 2;
if only lower parameter is changed, the notation shall be 3
and 0 shall correspond for the normal function.}

P.T.O. [3]
we can produce

\[
B^{10} = (a_1, a_2) = \left[\begin{array}{c}
(a_2, a_1) \\
(b_1, b_2)
\end{array} \right] = \left[\begin{array}{c}
(c_1, c_2) \\
(d_1, d_2)
\end{array} \right] = \left[\begin{array}{c}
(1,0) \\
(1,0)
\end{array} \right]
\]

\[
= \sum_{m, n=0}^{\infty} \left(\frac{\alpha_m (\alpha^1)_n (\gamma)_{(m+n)}}{(\beta)_m (\beta^1)_n (\delta)_{(m+n)}} \right) \frac{x^m y^n}{m! n!} \quad \ldots\ldots\ldots(3.2)
\]

\[
B^{20} = (a_1, a_2) (b_1, b_2) = \left[\begin{array}{c}
(a_2, a_1) \\
(b_2, b_1)
\end{array} \right] = \left[\begin{array}{c}
(c_1, c_2) \\
(d_1, d_2)
\end{array} \right]
\]

\[
= \sum_{m, n=0}^{\infty} \left(\frac{\alpha_m (\alpha^1)_n (\gamma)_{(m+n)}}{(\beta)_m (\beta^1)_n (\delta)_{(m+n)}} \right) \frac{x^m y^n}{m! n!} \quad \ldots\ldots\ldots(3.3)
\]

\[
B^{30} = (b_1, b_2) = \left[\begin{array}{c}
(a_1, a_2) \\
(b_2, b_1)
\end{array} \right] = \sum_{m, n=0}^{\infty} \left(\frac{\alpha_m (\alpha^1)_n (\gamma)_{(m+n)}}{(\beta)_m (\beta^1)_n (\delta)_{(m+n)}} \right) \frac{x^m y^n}{m! n!} \quad \ldots\ldots(3.4)
\]

\[
B^{01} = (c_1, c_2) = \left[\begin{array}{c}
(a_1, a_2) \\
(b_1, b_2)
\end{array} \right]
\]

\[
= \sum_{m, n=0}^{\infty} \left(\frac{\alpha_m (\alpha^1)_n (\gamma)_{(m+n)}}{(\beta)_m (\beta^1)_n (\delta)_{(m+n)}} \right) \frac{x^m y^n}{m! n!} \quad \ldots\ldots(3.5)
\]

\[
B^{23} = (a_1, a_2) (b_1, b_2) (d_1, d_2) = \sum_{m, n=0}^{\infty} \left(\frac{\alpha_m (\alpha^1)_n (\gamma)_{(m+n)}}{(\beta)_m (\beta^1)_n (\delta)_{(m+n)}} \right) \frac{x^m y^n}{m! n!} \quad \ldots\ldots(3.6)
\]

P.T.O. [4]
Which in total shall be fifteen.
They shall form the elements of the finite multiplicative group \((S, \cdot)\), for which

\[
S = \{ B^{10} = (a_1, a_2), \quad B^{20} = (a_1, a_2) (b_1, b_2), \quad B^{30} = (b_1, b_2), \quad B^{01} = (c_1, c_2), \quad B^{02} = (c_1, c_2) (d_1, d_2), \quad B^{03} = (d_1, d_2), \quad B^{11} = (a_1, a_2) (c_1, c_2), \quad B^{12} = (a_1, a_2) (c_1, c_2) (d_1, d_2), \quad B^{13} = (a_1, a_2) (d_1, d_2), \quad B^{21} = (a_1, a_2) (b_1, b_2) (c_1, c_2), \quad B^{22} = (a_1, a_2) (b_1, b_2) (d_1, d_2), \quad B^{23} = (a_1, a_2) (d_1, d_2), \quad B^{31} = (b_1, b_2) (c_1, c_2), \quad B^{32} = (b_1, b_2) (c_1, c_2) (d_1, d_2), \quad B^{33} = (b_1, b_2) (d_1, d_2) \}\quad (3.7)
\]

The order of the group shall be

\[2^{p+q+r+s} - 1\]

and \(B^{22}\) shall be identity multiplication element.

Similarly for three variables, we can generate, in order to generate a group

\[
B = \begin{bmatrix} 1 & 1 & a & c \\ 1 & 1 & b & d \\ x, y, z \end{bmatrix} = \sum_{m,n,p=0}^{\infty} \frac{(a)_{m+n+p} (c)_{(m+n+p)}}{(b)_{m+n+p} (d)_{(m+n+p)}} \frac{x^m y^n z^p}{m! \ n! \ p!}
\]

\[...............................(3.8)\]

So that the total element of the multiplicative group shall be 80.

Groups for functions involving more then three variables can be proliferated by the generalization of results obtained in this section.
REFERENCES

1- Anand Singh and H.S.Dhami, Generating function of hypergeometric functions from the view point of change in the nature of hypergeometric series, communi cated for publication.

2- Anand Singh and H.S.Dhami, n-lateral multiple hypergeometric functions, communi cated for publication.

3- Harold Exton (1976), Multiple hypergeometric functions and applications, Ellis Horwood Ltd., A division of John Wiley & Sons, Inc.

<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1517</td>
<td>Bernd Krauskopf and Hinke Osinga</td>
<td>Growing Unstable Manifolds of Planar Maps</td>
</tr>
<tr>
<td>1518</td>
<td>Kazufumi Ito and Fernando Reitich</td>
<td>A High-Order Perturbation Approach to Profile Reconstruction. I: Perfectly Conducting Gratings</td>
</tr>
<tr>
<td>1519</td>
<td>Brian J. Suchomel, Benito M. Chen and Myron B. Allen III</td>
<td>Network Model of Flow, Transport and Biofilm Effects in Porous Media</td>
</tr>
<tr>
<td>1520</td>
<td>Avner Friedman, Bei Hu and Juan J. L. Velazquez</td>
<td>Asymptotics for the Biharmonic Equation near the tip of a Crack</td>
</tr>
<tr>
<td>1521</td>
<td>Avner Friedman, Bei Hu, and Juan J.L. Velazquez</td>
<td>Propagation of cracks in elastic media</td>
</tr>
<tr>
<td>1522</td>
<td>M.J. Friedman and J.W. Demmel</td>
<td>An efficient algorithm for locating and continuing connecting orbits</td>
</tr>
<tr>
<td>1523</td>
<td>Matti Lassas, Margaret Cheney, and Gunther Uhlmann</td>
<td>Uniqueness for a wave propagation inverse problem in a half space</td>
</tr>
<tr>
<td>1524</td>
<td>Amadeu Delshams and Rafael Ramírez-Ros</td>
<td>Singular separatrix splitting and Melnikov method: an experimental study</td>
</tr>
<tr>
<td>1525</td>
<td>Miaohua Jiang and Yakov B. Pesin</td>
<td>Equilibrium measures for coupled map lattices: existence, uniqueness and finite-dimensional approximations</td>
</tr>
<tr>
<td>1526</td>
<td>Christopher K.R.T. Jones</td>
<td>A geometric approach to systems with multiple time scales</td>
</tr>
<tr>
<td>1527</td>
<td>Yi A. Li and Peter J. Olver</td>
<td>Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation</td>
</tr>
<tr>
<td>1528</td>
<td>Brian J. Suchomel, Benito M. Chen, and Myron B. Allen III</td>
<td>Macroscale properties of porous media from a network model of biofilm processes</td>
</tr>
<tr>
<td>1529</td>
<td>Àngel Jorba</td>
<td>A methodology for the numerical computation of normal forms, centre manifolds and first integrals of Hamiltonian systems</td>
</tr>
<tr>
<td>1530</td>
<td>Bennett Chow and Robert Gulliver</td>
<td>Aleksandrov reflection and nonlinear evolution equations, I: the n-sphere and n-ball</td>
</tr>
<tr>
<td>1531</td>
<td>A. Litman, D. Lesselier, and F. Santosa</td>
<td>Reconstruction of a 2-D binary obstacle by controlled evolution of a level-set</td>
</tr>
<tr>
<td>1532</td>
<td>George Avalos</td>
<td>Exact controllability of a thermoelastic system with control in the thermal component only</td>
</tr>
<tr>
<td>1533</td>
<td>Susanne C. Brenner</td>
<td>The condition number of the Schur complement in domain decomposition</td>
</tr>
<tr>
<td>1534</td>
<td>Avner Friedman and Bei Hu</td>
<td>A Stefan problem for a protocell model</td>
</tr>
<tr>
<td>1535</td>
<td>Laurent O. Jay and Thierry Braconnier</td>
<td>A parallelizable preconditioner for the iterative solution of implicit Runge-Kutta type methods</td>
</tr>
<tr>
<td>1536</td>
<td>Kurt Lust and Dirk Roose</td>
<td>Computation and bifurcation analysis of periodic solutions of large-scale systems</td>
</tr>
<tr>
<td>1537</td>
<td>Brian T. Nguyen</td>
<td>On comparisons of time-domain scattering schemes</td>
</tr>
<tr>
<td>1538</td>
<td>Yi A. Li, Brian Nguyen, and Peter J. Olver</td>
<td>Solitary waves in the critical surface tension model</td>
</tr>
<tr>
<td>1539</td>
<td>Matthias K. Gobbert and Andreas Prohl</td>
<td>A discontinuous finite element method for solving a multi-well problem</td>
</tr>
<tr>
<td>1540</td>
<td>Andreas Prohl</td>
<td>A first order projection-based time-splitting scheme for computing chemically reacting flows</td>
</tr>
<tr>
<td>1541</td>
<td>Andreas Prohl</td>
<td>A second order projection based time-splitting scheme for computing chemically reacting flows</td>
</tr>
<tr>
<td>1542</td>
<td>Andreas Prohl</td>
<td>An adaptive finite element method for solving a double well problem describing crystalline microstructure</td>
</tr>
<tr>
<td>1543</td>
<td>Stephen Schecter</td>
<td>Traveling-wave solutions of convection-diffusion systems by center manifold reduction</td>
</tr>
<tr>
<td>1544</td>
<td>Stefan Müller, Jeyabal Sivaloganathan, and Scott J. Spector</td>
<td>An isoperimetric estimate and $W^{1,p}$-quasiconvexity in nonlinear elasticity</td>
</tr>
<tr>
<td>1545</td>
<td>Dwight Barkley and Laurette S. Tuckerman</td>
<td>Stability analysis of perturbed plane couette flow</td>
</tr>
<tr>
<td>1546</td>
<td>Avner Friedman and Fernando Reitich</td>
<td>Analysis of a Mathematical Model for the Growth of Tumors</td>
</tr>
<tr>
<td>1547</td>
<td>Jordan M. Berg</td>
<td>On parameter estimation using level sets</td>
</tr>
<tr>
<td>1548</td>
<td>Tuncay Aktosun and Martin Klaus</td>
<td>Asymptotics of the scattering coefficients for a generalized schrödinger equation</td>
</tr>
<tr>
<td>1549</td>
<td>Yi-Ju Chao</td>
<td>Mathematical approaches to predictive health monitoring for heart failure patients</td>
</tr>
<tr>
<td>1550</td>
<td>Yi-Ju Chao</td>
<td>Limit non-stationary behavior of large closed queuing networks with bottlenecks</td>
</tr>
<tr>
<td>1551</td>
<td>Shangbin Cui</td>
<td>Global behavior of solutions to a reaction-diffusion system</td>
</tr>
<tr>
<td>1552</td>
<td>Shangbin Cui</td>
<td>Existence and nonexistence of positive solutions for singular semilinear elliptic boundary value problems</td>
</tr>
<tr>
<td>1553</td>
<td>Shangbin Cui</td>
<td>Local and global existence of solutions to semilinear parabolic initial value problems</td>
</tr>
<tr>
<td>1554</td>
<td>Xiaobing Feng and Talal Rahman</td>
<td>A non-overlapping additive Schwarz method for the biharmonic equation</td>
</tr>
<tr>
<td>1555</td>
<td>Wayne Schmaedeke and Keith Kastella</td>
<td>Sensor Management using discrimination gain and interacting multiple model Kalman filters</td>
</tr>
<tr>
<td>1556</td>
<td>Keith Kastella and Aleksandar Zatezalo</td>
<td>A nonlinear filter for real-time joint tracking and recognition</td>
</tr>
<tr>
<td>1557</td>
<td>Tomáš Roubíček and Martin Kružík</td>
<td>Numerical treatment of microstructure evolution modeling</td>
</tr>
</tbody>
</table>