Ghost Symmetries

Peter J. Olver†
School of Mathematics
University of Minnesota
Minneapolis, MN 55455
U.S.A.
olver@ima.umn.edu
http://www.math.umn.edu/~olver

Jan A. Sanders and Jing Ping Wang‡
Vrije Universiteit
Faculty of Sciences
Division of Mathematics
& Computer Science
De Boelelaan 1081a
1081 HV Amsterdam
The Netherlands
jansa@cs.vu.nl, wang@cs.vu.nl

Abstract. We introduce the notion of a ghost symmetry for nonlocal differential equations. Ghosts are essential for maintaining the validity of the Jacobi identity for nonlocal vector fields.

The local theory of symmetries of differential equations has been well-established since the days of Sophus Lie. Generalized, or higher order symmetries can be traced back to the original paper of Noether, [24], and received added importance after the discovery that they play a critical role in integrable (soliton) partial differential equations, cf. [25]. While the local theory is very well developed, the theory of nonlocal symmetries of nonlocal differential equations remains incomplete. Several groups, including Chen et. al., [5, 6, 7], Ibragimov et. al., [1], [16; Chapter 7], Fushchich et. al., [11], Guthrie and Hickman, [13, 14, 15], Kaptsov, [17], Bluman et. al., [2, 3, 4], and others, [8, 10, 12, 21, 27], have proposed a

† Supported in part by NSF Grant DMS 98-03154.
‡ Supported in part by Netherlands Organization for Scientific Research (NWO).

July 10, 2001
foundation for such a theory. Perhaps the most promising is the Krasilshchik–Vinogradov theory of coverings, [18, 19, 20, 28, 29], but this has the disadvantage that their construction relies on the a priori specification of the underlying differential equation, and so, unlike local jet space, does not form a universally valid foundation for the theory.

Recently, the second and third author made a surprising discovery that the Jacobi identity for nonlocal vector fields appears to fail! This observation arose during an attempt to systematically investigate the symmetry properties of the Kadomtsev–Petviashvili (KP) equation, previously studied in [6, 7, 9, 22, 23]. The observed violation of the naïve version of the Jacobi identity applies to all of the preceding nonlocal symmetry calculi, and, consequently, many statements about the “Lie algebra” of nonlocal symmetries of differential equations are, by in large, not valid as stated. This indicates the need for a comprehensive re-evaluation of all earlier results on nonlocal symmetry algebras.

In this announcement, we show how to resolve the Jacobi paradox through the introduction of what we name “ghost symmetries”. Ghost symmetries are genuinely nonlocal objects that have no counterpart in the local theory, but serve to provide missing terms that resolve apparent contradictions that have, albeit unnoticed, plagued the nonlocal theory. Details of the construction and proofs will appear in a forthcoming paper.

We shall assume that the reader is familiar with the basic theory of generalized symmetries in the local jet bundle framework. We adopt the notation and terminology of [25] without further comment. We specify \(p \) independent variables \(x = (x^1, \ldots, x^p) \) and \(q \) dependent variables \(u = (u_1, \ldots, u^q) \), with \(u^j = D^j(u^a) \) denoting the induced jet space coordinates. Here \(D^j = D^j_1 \cdots D^j_p \) denotes the corresponding total derivative operator. In the local version, multi-indices \(J = (j_1, \ldots, j_p) \) are assumed to be non-negative, \(J \geq 0 \), meaning \(j_\nu \geq 0 \) for \(\nu = 1, \ldots, p \).

We consider \textit{generalized vector fields} in \textit{evolutionary form}

\[
\mathbf{v} = \mathbf{v}_Q = \sum_{\alpha=1}^{q} \sum_{J \geq 0} D^j Q^\alpha \frac{\partial}{\partial u^j_\alpha},
\]

where \(Q = (Q^1, \ldots, Q^q) \) is the characteristic, and serves to uniquely specify \(\mathbf{v} \). Therefore, the space of evolutionary vector fields can be identified with the space of \(q \)-tuples of differential functions. We note the basic formula

\[
\mathbf{v}_Q(P) = D_P(Q)
\]

where \(D_P \) denotes the Fréchet derivative of the differential function \(P \).

The \textit{Lie bracket}

\[
[\mathbf{v}_P, \mathbf{v}_Q] = \mathbf{v}_{[P,Q]}, \quad \text{where} \quad [P, Q] = \mathbf{v}_P(Q) - \mathbf{v}_Q(P) = D_Q(P) - D_P(Q),
\]

satisfies the Jacobi identity, and hence endows the space of evolutionary vector fields with the structure of a Lie algebra.

Attempting to generalize the algebra of evolutionary vector fields to nonlocal variables runs into some immediate, unexpected difficulties. Intuitively, the nonlocal variables should be given by iterating the inverse total derivatives \(D^{-1}_i \), applied to either the jet coordinates,
or, more generally, to differential functions. In particular, we allow nonlocal variables
\[u_j^\alpha = D^J u^\alpha \] in which \(J \in \mathbb{Z}^p \) is an arbitrary multi-index. The rigorous
details of the construction will be deferred to a more complete exposition.

The following fairly simple computation appears to indicate that the Jacobi identity
does not hold between nonlocal vector fields.

Example 1. Let \(p = q = 1 \), with independent variable \(x \) and dependent variable \(u \).
Consider the vector fields \(v, w, \) and \(z \) with respective characteristics 1, \(u_x \) and \(D_x^{-1}u \). The
first two are local vector fields, and, in fact, correspond to the infinitesimal generators of
the translation group

\[(x, u) \mapsto (x + \delta, u + \varepsilon). \]

The Jacobi identity for these three vector fields has the form

\[[1, [u_x, D_x^{-1}u]] + [u_x, [D_x^{-1}u, 1]] + [D_x^{-1}u, [1, u_x]] = 0, \tag{4} \]

where we work on the level of the characteristics, using the induced commutator bracket
(3). Since

\[[1, u_x] = D_{u_x}(1) - D_1(u_x) = D_x(1) = 0, \tag{5} \]

reflecting the fact that the group of translations is abelian, we only need to compute the
first two terms in (4). First, using the definition of the Fréchet derivative, we compute

\[[u_x, D_x^{-1}u] = D_{D_x^{-1}u}(u_x) - D_{u_x}(D_x^{-1}u) = D_x^{-1}u_x - D_x(D_x^{-1}u) = u + c - u = c, \]

where \(c \) is an arbitrary constant representing the ambiguity in the antiderivative \(D_x^{-1} \).
Thus,

\[[1, [u_x, D_x^{-1}u]] = [1, c] = 0, \]

irrespective of the integration constant \(c \). On the other hand,

\[[D_x^{-1}u, 1] = -D_x^{-1}(1) = -x + d, \]

where \(d \) is another arbitrary constant, and so

\[[u_x, [D_x^{-1}u, 1]] = [u_x, -x + d] = -D_x(-x + d) = 1. \]

Therefore, no matter how we choose the integration “constants” \(c, d \), the left hand side of
(4) equals 1, not zero, and so the Jacobi identity appears to be invalid!

This example is, in fact, the simplest of a wide variety of apparent nonlocal counterex-
amples to the Jacobi identity. The main goal of this paper is to resolve these apparent
paradoxes in the establishment of a proper theory and calculus for nonlocal symmetries.

Let us begin by stating a general, abstract definition of an evolutionary vector field.

Definition 2. A *evolutionary vector field* \(v \) is a derivation that annihilates all the
independent variables and commutes with all total derivatives. Therefore,

\[
\begin{align*}
v(P + Q) &= v(P) + v(Q), \\
v(P \cdot Q) &= v(P) \cdot Q + P \cdot v(Q), \\
[v, D_i] &= 0,
\end{align*}
\]

(6)
The commutator bracket

\[[\mathbf{v}, \mathbf{w}](P) = \mathbf{v}(\mathbf{w}(P)) - \mathbf{w}(\mathbf{v}(P)) \]

between two evolutionary vector fields trivially satisfies the usual skew symmetry and Jacobi identities. So, why are we obtaining a paradox in our examples?

Each evolutionary vector field is uniquely specified by its action \(\mathbf{v}(u^\alpha) \) on the coordinate variables. Given an evolutionary vector field \(\mathbf{v} \), we define its characteristic \(Q = (Q^1, \ldots, Q^q) \) to have components \(\mathbf{v}(u^\alpha) = Q^\alpha \). Note that

\[\mathbf{v}(u^\alpha) = \mathbf{v}(D_Ju^\alpha) = D_J\mathbf{v}(u^\alpha) = D_JQ^\alpha \]

for all positive multi-indices \(J \geq 0 \). Thus, in the local situation, an evolutionary vector field is uniquely determined by its characteristic. This basic fact is not true in nonlocal differential algebras — there are nonzero evolutionary vector fields with zero characteristic! This crucial observation motivates the following key definition.

Definition 3. An evolutionary vector field \(\gamma \) is called a a \(K \)-ghost for some \(K \in \mathbb{Z}^p \) if \(\gamma(u^\alpha_L) = 0 \) for all \(L \geq K \) and \(\alpha = 1, \ldots, q \).

There are no ghost vector fields in a local differential algebra because each evolutionary vector field is uniquely determined by its characteristic \(Q \). There are, however, positive ghost vector fields; for example the vector field with characteristic \(Q = 1 \) is a \(K \)-ghost for any positive multi-index \(K > 0 \).

Example 4. Let us see how the existence of ghost vector fields serves to resolve the Jacobi identity paradox in (4). Surprisingly, the problem is not with the nonlocal vector field \(\mathbf{z} \) with characteristic \(D^{-1}_x u \), but rather the local commutator \([\mathbf{v}, \mathbf{w}] \) corresponding to the vector fields with characteristics 1 and \(u_x \), respectively. While \([\mathbf{v}, \mathbf{w}] = 0 \) on a local differential algebra, it is, in fact, a ghost vector field when extended to nonlocal differential algebras!

First, the action of the vector fields on the local variables does not uniquely specify their action on the nonlocal variables, due to the presence of possible integration constants. However, as we have seen, the integration constants do not play a significant role in the resolution of the Jacobi identity paradox. We shall fix all the integration constants to be zero by default. Therefore, we set

\[\mathbf{v}(u_k) = D^k_x(1) = \chi_k(x) \equiv \begin{cases} 0 & k > 0, \\ \frac{x^{-k}}{(-k)!} & k \leq 0, \end{cases} \quad \mathbf{w}(u_k) = D_x(u_k) = u_{k+1}, \quad (7) \]

where \(u_k = D^k_x u \) for any \(k \in \mathbb{Z} \). Since \(\mathbf{v}(u_k) \) only depends on \(x \), we have \(\mathbf{w}(\mathbf{v}(u_k)) = 0 \), and so

\[[\mathbf{v}, \mathbf{w}](u_k) = \mathbf{v}(u_{k+1}) = \chi_{k+1}(x). \]

Therefore, \([\mathbf{v}, \mathbf{w}] = \gamma \) is a ghost vector field that satisfies

\[\gamma(u_k) = \chi_{k+1}(x) = \begin{cases} 0 & k \geq 0, \\ \frac{x^{-k-1}}{(-k-1)!} & k < 0, \end{cases} \]
This ghost provides the missing term in the Jacobi identity (4). Indeed,

$$[z, \gamma](u) = -\gamma(z(u)) = -\gamma(D_x^{-1}u) = -1.$$

Thus, the fact that the local commutator is a nonlocal ghost resolves the preceding Jacobi paradox.

This and subsequent computations can simplified by introducing a “ghost calculus” for general nonlocal evolutionary vector fields. The first remark is that only evolutionary vector fields that depend on the independent variables can be ghosts.

Lemma 5. An evolutionary vector field γ is a K-ghost for some $K \in \mathbb{Z}^p$ if and only if $\gamma(u^j) = p^j_1(x)$ is a polynomial function of x^1, \ldots, x^p.

Definition 6. Given a multi-index $K \in \mathbb{Z}^p$, define

$$\chi_K(x) = D^K(1) = \begin{cases} x^{-K} & K \leq 0, \\ 0 & \text{otherwise.} \end{cases}$$

Definition 7. Define the basis ghost vector field γ_J for $J \in \mathbb{Z}^p$ to satisfy

$$\gamma_J(u_K) = \chi_{J+K}.$$

Note that γ_J is a K-ghost for any $K + J > 0$.

Theorem 8. Every ghost vector field is a linear combination of the basis ghosts,

$$\gamma = \sum_j c_j \gamma_J,$$

where the $c_j \in \mathbb{R}$ are constants.

Remark: The summation in (10) can be infinite. However, only certain “configurations” of the nonzero coefficients c_j are allowed in order that γ map (nonlocal) differential polynomials to differential polynomials.

Corollary 9. Any evolutionary vector field can be written a linear combination of basis ghosts and a u-dependent vector field:

$$v = v_Q + \sum_j c_j \gamma_J, \quad \text{whereby} \quad v(u_K) = D^K Q + \sum_j c_j \chi_{K+J}. \quad (11)$$

The characteristic $Q(x, u^{(n)})$ satisfies $Q(x, 0) \equiv 0$.

To implement a calculus of evolutionary vector fields, we identify a vector field with its “characteristic”. The characteristic of the evolutionary vector field v_Q is, as usual, Q. The characteristic of the ghost vector field γ_J will be formally written as χ_J. In this manner, every nonlocal vector field (11) has a unique characteristic

$$S = Q + \sum_j c_j \chi_J. \quad (12)$$
In particular, a local vector field with polynomial characteristic \(x^K \) becomes a ghost characteristic \(K! \chi_{-K} \), cf. (8).

Let us now concentrate on the one dependent variable case \(q = 1 \). Here we can unambiguously replace all polynomials

\[
x^K \quad \mapsto \quad K! \chi_{-K}, \quad K \geq 0,
\]

wherever they appear in the characteristic (12). In this calculus, the product rule \(x^J x^K = x^{J+K} \) becomes the ghost product rule

\[
\chi_K \chi_J = \left(\begin{array}{c} -K - J \\ -K \end{array} \right) \chi_{K+J}, \quad K \leq 0. \tag{13}
\]

The product makes sense as long as one of the multi-indices is negative, provided we adopt the Pochhammer definition

\[
\binom{L}{I} = \frac{1}{I!} \prod_{\nu=1}^{p} \prod_{k=0}^{i_{\nu}-1} (l_{\nu} - k), \quad I \geq 0, \tag{14}
\]

for the multinomial symbol. And, indeed, only such products will appear when we evaluate commutators and apply vector fields to nonlocal differential polynomials. Our replacement rules require that

\[
\chi_K u_J = 0 \quad \text{whenever} \quad K \leq 0, \quad \text{while} \quad \chi_0 u_J = u_J. \tag{15}
\]

The precise ghost calculus rules for computing the commutators of ghost characteristics will now be described. The commutators of ordinary characteristics \([Q, R]\) follow the same rules (3) as in the local case, where we replace the multiplication of monomials by the ghost multiplication rule (13). Secondly, since ghosts do not involve the dependent variables, they mutually commute:

\[
[\chi_J, \chi_K] = 0. \tag{16}
\]

Finally, the ghost characteristics \(\chi_J \) act as derivations on the ordinary characteristics:

\[
[\chi_K, QR] = Q \chi_K (R) + R \chi_K (Q).
\]

Thus, we only need to know how to commute ghosts and derivative coordinates,

\[
[\chi_J, u_K] = \chi_{J+K}, \tag{17}
\]

in order to compute in the ghost characteristic space.

Example 10. Let us revisit Example 4. The three ghost characteristics are

\[
1 = \chi_0, \quad u_x = u_1, \quad D^{-1}_x u = u_{-1}.
\]

Then the three terms are

\[
[\chi_0, [u_1, u_{-1}]] = 0,
\]
\[
[u_1, [u_{-1}, \chi_0]] = -[u_1, \chi_{-1}] = \chi_0,
\]
\[
[u_{-1}, [\chi_0, u_1]] = [u_{-1}, \chi_1] = -\chi_0.
\]

The sum of these three terms is 0, and so the Jacobi paradox is resolved.
Example 11. The first Jacobi identity paradox that was found while working on the symmetry algebra of the KP equation, and was more complicated than (4). Here \(p = 2 \), with independent variables \(x, y \), and \(q = 1 \), with dependent variable \(u \). Consider the vector fields with characteristics \(y, yu_x \) and \(u_x D_x^{-1} u_y \). A similar computation as in Example 1 shows that without the introduction of ghost terms, the Jacobi sum

\[
\left[u_x D_x^{-1} u_y, [yu_x, y] \right] + \left[y, [u_x D_x^{-1} u_y, yu_x] \right] + \left[yu_x, [y, u_x D_x^{-1} u_y] \right]
\]

equals \(-2yu_x\), not zero. In this case, the three ghost characteristics are

\[
y = \chi_{0,-1}, \quad yu_x = \chi_{0,-1} u_{1,0}, \quad u_x D_x^{-1} u_y = u_{1,0} u_{-1,1},
\]

where \(u_{ij} = D^i_x D^j_y u \). Then, using (13), (15), (17), the three terms are

\[
\left[\chi_{0,-1}, \chi_{0,-1} u_{1,0} \right] = \chi_{0,-1} \chi_{1,-2} = 2 \chi_{1,-2}, \\
\left[u_{1,0} u_{-1,1}, 2 \chi_{1,-2} \right] = -2 \chi_{0,-1} u_{1,0} = -2yu_x,
\]

and

\[
\left[\chi_{0,-1} u_{1,0}, u_{1,0} u_{-1,1} \right] = D_{u_{1,0} u_{-1,1}} (\chi_{0,-1} u_{1,0}) - \chi_{0,-1} D_x (u_{1,0} u_{-1,1}) = u_{0,0} u_{1,0}, \\
\left[\chi_{0,-1}, u_{0,0} u_{1,0} \right] = \chi_{0,-1} u_{1,0} = yu_x,
\]

and, finally,

\[
\left[u_{1,0} u_{-1,1}, \chi_{0,-1} \right] = -\chi_{-1,0} u_{1,0}, \\
\left[\chi_{0,-1} u_{1,0}, -\chi_{-1,0} u_{1,0} \right] = \chi_{0,-1} u_{1,0} = yu_x.
\]

The sum of these three terms is 0, and so the Jacobi identity is valid in the ghost framework.

In conclusion, we have seen that the Jacobi identity for nonlocal vector fields remains valid provided one pays proper attention to the ghost terms in the commutators. The appearance of such nonlocal vector fields is surprising at first, but, in hindsight, quite natural. These results indicate that a complete re-evaluation of earlier work on nonlocal symmetries of local and non-local partial differential equations is required. A complete understanding of the hitherto undetected ghost terms needs to be properly incorporated into earlier results, including the study of recursion operators and master symmetries, all of which typically involve nonlocal operations, cf. [26]. Implementation of the ghost calculus in standard computer algebra packages would help a lot in these investigations.
References

