WAVE FOCUSING ON THE LINE

Tuncay Aktosun
Department of Mathematics
North Dakota State University
Fargo, ND 58105, USA

James H. Rose
Department of Physics and Astronomy
and
Ames Laboratory
Iowa State University
Ames, IA 50011, USA

Abstract: Focusing of waves in one dimension is analyzed for the plasma-wave equation and the wave equation with variable speed. The existence of focusing causal solutions to these equations is established, and such wave solutions are constructed explicitly by deriving an orthogonality relation for the time-independent Schrödinger equation. The connection between wave focusing and inverse scattering is studied. The potential at any point is recovered from the incident wave that leads to focusing to that point. It is shown that focusing waves satisfy certain temporal-antisymmetry and support properties. Discontinuities in the spatial and temporal derivatives of the focusing waves are examined and related to the discontinuities in the potential of the Schrödinger equation. The theory is illustrated with some explicit examples.

Mathematics Subject Classification (2000): 34L25, 34L40, 35L05, 81U05, 81U40
Keywords: Wave focusing, Plasma-wave equation, Wave equation with variable speed, Schrödinger equation, Orthogonality relation, Inverse scattering
Short title: Wave focusing on the line
I. INTRODUCTION

Consider a (Dirac-delta) plane wave incident onto an inhomogeneous medium. As time progresses the plane wave is scattered by the inhomogeneity and consequently develops a `tail' that trails the wavefront. One of the questions considered in this paper concerns the opposite process. Namely, “Can one prepare an incident wave (consisting of a plane wave plus a tail) such that the tail vanishes at a specified instant due to the interaction with the inhomogeneity, i.e. the wave reduces to the plane wave at that instant?” If this happens, we say that the wave focuses to the point being crossed by the wavefront at the specified instant. We are also interested in determining remotely the value of the inhomogeneity at any specified point in space from the incident wave that is going to focus to that point, i.e. by performing a measurement on the incident wave at some arbitrarily chosen moment in time before the wavefront reaches that point.

Mathematically speaking, our aim is to analyze focusing of causal solutions to the plasma-wave equation

\[
\frac{\partial^2 u(x, t)}{\partial x^2} - \frac{\partial^2 u(x, t)}{\partial t^2} = V(x) u(x, t), \quad x, t \in \mathbb{R},
\]

where \(V\) is real valued and belongs to \(L^1_1(\mathbb{R})\), the class of measurable potentials such that \(\int_{-\infty}^{\infty} dx \ (1 + |x|) |V(x)| \) is finite. In order to do this, we derive the orthogonality relation (3.6) for the associated Schrödinger equation

\[
\frac{d^2 \psi(k, x)}{dx^2} + k^2 \psi(k, x) = V(x) \psi(k, x), \quad x \in \mathbb{R},
\]

and exploit the connection between (1.1) and (1.2) through the Fourier transformation

\[
u(x, t) := \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \, \psi(k, x) e^{-ikt}.
\]

We use the subscript ‘l’ to indicate waves incident from the left (i.e. coming from \(x = -\infty\)) and use ‘r’ for incidence from the right. Our focusing waves consist of a (Dirac-delta distribution) wavefront and a tail lying either to the left or right of the wavefront in such a way that the tail completely disappears at a certain moment in time and thus the whole wave reduces to the wavefront at the focusing point. There is no loss of generality in
choosing the focusing moment as \(t = 0 \), and we denote the focusing point by \(x_0 \). Hence, we are interested in constructing causal solutions to (1.1) incident either from the left or right such that \(u(x, 0) = \delta(x - x_0) \), where \(\delta(x) \) denotes the Dirac delta distribution. In Sec. VII we display \(\partial u(x, 0)/\partial t \) explicitly for our focusing waves and hence show that it is also possible to view them as some specific solutions to (1.1) satisfying certain initial conditions. Clearly, unless \(\partial u(x, 0)/\partial t \equiv 0 \) when \(x \in \mathbb{R} \setminus \{ x_0 \} \) for our focusing waves, their energy is not concentrated at \(x_0 \) when \(t = 0 \); hence, in general, focusing of waves is not the same as focusing of the wave energy.

Our analysis helps us to understand better the connection between (1.1) and (1.2). In our treatment we include bound states of \(V \), whereas such states are usually excluded in the analysis of (1.1) by imposing further restrictions on \(V \) such as positivity. Throughout our paper, unless otherwise stated, \(V \) is only assumed to be real valued and belonging to \(L^1_t(\mathbb{R}) \); any other assumptions on \(V \) will be explicitly stated.

In our paper we also investigate the connection between wave focusing and inverse scattering. The inverse scattering problem for (1.1) and (1.2) consists of the recovery of \(V \) from an appropriate set of scattering data. The recovery in the time domain is usually achieved by using some layer-stripping methods, see e.g. Burridge (1980), Bube (1983), Morawetz (1983), Bayliss (1989), Sacks (1993), in terms of the impulse response to a plane wave sent onto \(V(x) \) either from \(x = -\infty \) or from \(x = +\infty \). In these techniques one considers the solution to (1.1) satisfying \(u(x, t) = \delta(x - t) + o(1) \) and \(\partial u(x, t)/\partial t = \delta'(x - t) + o(1) \) when \(t \to -\infty \) as the wave incident from the left, or \(u(x, t) = \delta(x + t) + o(1) \) and \(\partial u(x, t)/\partial t = \delta'(x + t) + o(1) \) when \(t \to -\infty \) as the wave incident from the right. The contrast with our focusing waves can be visualized by considering waves incident from the left especially when \(V \equiv 0 \) for \(x < 0 \) : our focusing wave for \(x < 0 \) and \(t < -x_0 \) consists of the wavefront \(\delta(x - x_0 - t) \) followed by (cf. (5.21)) the nontrivial tail \(K_r(x_0, x - t) \), whereas the wave in the aforementioned references is \(\delta(x - t) \) for \(x < 0 \) and \(t < 0 \). We show in Sec. VII that the value of \(V(x_0) \) for any fixed \(x_0 > 0 \) is recovered from the incident wave that is going to focus to \(x_0 \) with a measurement performed at an arbitrary moment \(t < -x_0 \) (i.e. before the wavefront reaches the inhomogeneity); in contrast, in the layer-
stripping methods one lets the incident wave penetrate the inhomogeneity during the time interval $0 < t < 2x_0$ in order to recover $V(x)$ for $0 < x < x_0$. A heuristic discussion of the physics connecting focusing and inverse scattering appears in Rose (2001), which is a strictly time-domain analysis that avoids reference to scattering solutions to (1.2).

This paper is organized as follows. In Sec. II we introduce the Jost solutions, scattering coefficients, and normalized bound-state solutions of (1.2). In Sec. III we derive the orthogonality relation (3.6), a key result for obtaining the causal focusing wave solutions to (1.1) (incident either from the left or right) explicitly in terms of the Jost solutions, transmission coefficient, and normalized bound-state solutions of (1.2). In Sec. IV, we construct such causal waves that focus at $t = 0$, namely U_l incident from the left and U_r incident from the right, and we study some of their properties; we also indicate how the value of $V(x_0)$ can be recovered by using waves focusing to x_0 and its vicinity. In Sec. V we examine the connection between wave focusing and inverse scattering problem; in particular, we analyze the relationship between wave focusing and the Marchenko inversion method, construct our focusing waves in terms of the solutions to the Marchenko integral equations, and show that wave focusing can be viewed as a consequence of the Marchenko method. Sec. VI explores certain temporal antisymmetries satisfied by the tails of our focusing waves; in this section we also show that, for potentials vanishing on a half line, the tail of the focusing waves may vanish in some regions at certain times and that a gap may develop between the wavefront and the tail. In Sec. VII, under more restrictive conditions on V, we analyze the discontinuities in the spatial and temporal derivatives of our focusing waves and relate such discontinuities to jump discontinuities of V; we also show that $V(x_0)$ can be recovered solely from the incident wave leading to focusing to x_0, where the measurement can be performed at one arbitrarily chosen moment before the wavefront reaches x_0; as a corollary we obtain the interesting identities (7.25) and (7.28) for the solutions to the Marchenko equations when the corresponding potential vanishes on a half line. In Sec. VIII we present some explicit examples to illustrate various aspects of wave focusing and the recovery of $V(x_0)$ via focusing, and we also provide some snapshots of focusing waves as their tails disappear and reappear. Finally, in Sec. IX we analyze wave focusing for the variable-speed wave equation (9.14).
II. PRELIMINARIES

Let \mathbb{C}^+ denote the upper-half complex plane and $\overline{\mathbb{C}^+} := \mathbb{C}^+ \cup \mathbb{R}$. There are two types of solutions to (1.2). The scattering solutions consist of linear combinations of e^{ikx} and e^{-ikx} as $x \to \pm \infty$, and they occur for $k \in \mathbb{R} \setminus \{0\}$; on the other hand, the bound-state solutions decay exponentially as $x \to \pm \infty$, and they can occur only at certain k-values on the imaginary axis in \mathbb{C}^+. Let us use N to denote the number of bound states, which is known to be finite, and suppose that the bound states occur at $k = i\kappa_j$ with $0 < \kappa_1 < \cdots < \kappa_N$.

Among the scattering solutions to (1.2) are the Jost solution from the left, f_l, and the Jost solution from the right, f_r, satisfying the respective boundary conditions

$$e^{-ikx} f_l(x) = 1 + o(1), \quad e^{-ikx} f'_l(x) = ik + o(1), \quad x \to +\infty,$$

$$e^{ikx} f_r(x) = 1 + o(1), \quad e^{ikx} f'_r(x) = -ik + o(1), \quad x \to -\infty,$$

where the prime is used for the derivative with respect to the spatial coordinate x. From the spatial asymptotics

$$f_l(x) = \frac{e^{ikx}}{T(k)} + \frac{L(k)e^{-ikx}}{T(k)} + o(1), \quad x \to -\infty,$$

$$f_r(x) = \frac{e^{-ikx}}{T(k)} + \frac{R(k)e^{ikx}}{T(k)} + o(1), \quad x \to +\infty,$$

we obtain the scattering coefficients, namely, the transmission coefficient T, and the reflection coefficients L and R from the left and right, respectively.

Each bound state corresponds to a pole of T in \mathbb{C}^+ and vice versa. It is known that the bound states are simple and there exists only one linearly independent solution to (1.2) at each $k = i\kappa_j$ belonging to $L^2(\mathbb{R})$. The bound-state norming constants c_{lj} and c_{rj} are defined as

$$c_{lj} := \left[\int_{-\infty}^{\infty} dx \, f_l(i\kappa_j, x)^2 \right]^{-1/2}, \quad c_{rj} := \left[\int_{-\infty}^{\infty} dx \, f_r(i\kappa_j, x)^2 \right]^{-1/2},$$

and they are related to each other via the residues of T as

$$\text{Res} \ (T, i\kappa_j) = i c_{lj}^2 \gamma_j = i \frac{c_{rj}^2}{\gamma_j},$$
where γ_j is the dependency constant given by $\gamma_j := f_l(i\kappa_j, x) / f_r(i\kappa_j, x)$. The sign of γ_j is the same as that of $(-1)^{N-j}$ and hence $c_rj = (-1)^{N-j} c_lj$. The normalized bound-state solution $\varphi_j(x)$ at $k = i\kappa_j$ is defined as

$$
\varphi_j(x) := c_lj f_l(i\kappa_j, x) = (-1)^{N-j} c_rj f_r(i\kappa_j, x).
$$

(2.7)

III. AN ORTHOGONALITY IDENTITY

The scattering and bound-state solutions to (1.2) satisfy the completeness relation, see e.g. Newton (1983), Chadan (1989),

$$
\frac{1}{4\pi} \int_{-\infty}^{\infty} dk \left[\psi_1(k, x) \psi_1(-k, x_0) + \psi_r(k, x) \psi_r(-k, x_0) \right] + \sum_{j=1}^{N} \varphi_j(x) \varphi_j(x_0) = \delta(x - x_0),
$$

(3.1)

where ψ_1 and ψ_r are the physical solutions to (1.2) related to the Jost solutions as

$$
\psi_1(k, x) := T(k) f_1(k, x), \quad \psi_r(k, x) := T(k) f_r(k, x).
$$

(3.2)

In the Jost solutions, physical solutions, and scattering coefficients, for real k, replacing k by $-k$ has the same effect as using complex conjugation. Moreover, we have

$$
\begin{align*}
 f_l(-k, x) &= T(k) f_l(k, x) - R(k) f_1(k, x), \quad k \in \mathbb{R}, \\
 f_r(-k, x) &= -L(k) f_r(k, x) + T(k) f_1(k, x), \quad k \in \mathbb{R},
\end{align*}
$$

(3.3)

(3.4)

which is a consequence of the fact that either $\{f_l(k, \cdot), f_r(k, \cdot)\}$ or $\{f_l(-k, \cdot), f_r(-k, \cdot)\}$ is a linearly independent set of solutions to (1.2) when $k \in \mathbb{R} \setminus \{0\}$ and that the functions in one set can be expressed as a linear combination of those in the other. It is known that

$$
R(k) T(-k) = -L(-k) T(k), \quad k \in \mathbb{R}.
$$

(3.5)

Next we prove an orthogonality identity for (1.2) that will be useful in the analysis of wave focusing for (1.1).

Theorem 3.1 Assume V is real valued and belongs to $L^1_1(\mathbb{R})$. Then

$$
\frac{1}{2\pi} \int_{-\infty}^{\infty} dk T(k) f_l(k, x) f_r(k, x_0) + \sum_{j=1}^{N} \varphi_j(x) \varphi_j(x_0) = \delta(x - x_0).
$$

(3.6)
PROOF: The proof will be given by showing that the integral term in (3.6) is identical to the integral in (3.1). From (3.2)-(3.4) we get

\[\psi_{r}(k, x) = f_{1}(-k, x) + \mathcal{R}(k) \, f_{1}(k, x), \quad k \in \mathbb{R}, \]

\[\psi_{l}(-k, x_{0}) = f_{r}(k, x_{0}) + L(-k) \, f_{r}(-k, x_{0}), \quad k \in \mathbb{R}. \]

Thus, for \(k \in \mathbb{R} \) we have

\[\psi_{l}(k, x) \, \psi_{l}(-k, x_{0}) + \psi_{r}(k, x) \, \psi_{r}(-k, x_{0}) \]

\[= T(k) \, f_{1}(k, x) \, [f_{r}(k, x_{0}) + L(-k) \, f_{r}(-k, x_{0})] \]

\[+ [f_{l}(-k, x) + \mathcal{R}(k) \, f_{l}(k, x)] \, T(-k) \, f_{r}(-k, x_{0}) \]

\[= T(k) \, f_{1}(k, x) \, f_{r}(k, x_{0}) + T(-k) \, f_{l}(-k, x) \, f_{r}(-k, x_{0}), \]

where we have used (3.5) in the last step for simplification. Replacing the dummy integration variable \(k \) by \(-k\), we get

\[\int_{-\infty}^{\infty} dk \, T(-k) \, f_{1}(-k, x) \, f_{r}(-k, x_{0}) = \int_{-\infty}^{\infty} dk \, T(k) \, f_{1}(k, x) \, f_{r}(k, x_{0}), \]

and hence from (3.7) we obtain

\[\int_{-\infty}^{\infty} dk \, [\psi_{1}(k, x) \, \psi_{l}(-k, x_{0}) + \psi_{r}(k, x) \, \psi_{r}(-k, x_{0})] = 2 \int_{-\infty}^{\infty} dk \, T(k) \, f_{1}(k, x) \, f_{r}(k, x_{0}). \]

Thus, the integral on the left-hand side of (3.6) is the same as that on the left-hand side of (3.1). \(\blacksquare \)

IV. WAVE FOCUSING FOR THE PLASMA-WAVE EQUATION

In this section we construct focusing waves of (1.1) incident either from the left or right in terms of the Jost solutions, transmission coefficient, and bound states for (1.2). We also relate the discontinuities at the wavefront of such focusing waves to an integral of \(V \) and show how the value of \(V(x) \) at any specific point can be extracted from waves focusing to that point and its vicinity.

In terms of the Jost solutions of (1.2), let us define

\[K_{1}(x, t) := \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \, [f_{1}(k, x) - e^{ikx}] \, e^{-ikt}, \]

(4.1)
\[K_r(x, t) := \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \left[f_r(k, x) - e^{-ikt} \right] e^{ikt}. \] (4.2)

Using (2.7) and the inverse Fourier transforms on (4.1) and (4.2), we obtain

\[\varphi_j(x) = (-1)^{N-j} c_{ij} \left[e^{\kappa_j x} + \int_{-\infty}^{x} ds K_r(x, s) e^{\kappa_j s} \right] \]

\[= c_{ij} \left[e^{-\kappa_j x} + \int_{x}^{\infty} ds K_1(x, s) e^{-\kappa_j s} \right]. \] (4.3)

The properties of \(K_1 \) and \(K_r \) stated in the following theorem are already known, see e.g. Faddeev (1967), Marchenko (1986), Chadan (1989), Deift (1979), and they are used later in our analysis.

Theorem 4.1 Assume \(V \) is real valued and belongs to \(L^1_1(\mathbb{R}) \). Then:

(i) For each fixed \(x \in \mathbb{R} \), \(K_1(x, \cdot) \) and \(K_r(x, \cdot) \) belong to \(L^2(\mathbb{R}) \cap L^1(\mathbb{R}) \).

(ii) For any \(a \in \mathbb{R} \), \(K_1(x, t) \) is uniformly bounded in \((x, t) \) for \(x \geq a \); similarly, \(K_r(x, t) \) is uniformly bounded in \((x, t) \) for \(x \leq a \). Moreover, we have

\[K_1(x, t) = 0, \quad t < x; \quad K_r(x, t) = 0, \quad t > x. \] (4.4)

(iii) \(K_1 \) and \(K_r \) are continuous in \((x, t) \) except when \(t = x \), and the jumps there are related to \(V \) as

\[K_1(x, x^+) = \frac{1}{2} \int_{x}^{\infty} dz V(z), \quad K_r(x, x^-) = \frac{1}{2} \int_{-\infty}^{x} dz V(z). \] (4.5)

Define

\[\hat{L}(t) := \frac{1}{2\pi} \int_{-\infty}^{\infty} dk L(k) e^{ikt}, \quad \hat{R}(t) := \frac{1}{2\pi} \int_{-\infty}^{\infty} dk R(k) e^{ikt}. \] (4.6)

When \(V \) is real valued and belongs to \(L^1_1(\mathbb{R}) \), each of \(\hat{L} \) and \(\hat{R} \) is continuous and belongs to \(L^2(\mathbb{R}) \). In fact, they are absolutely continuous and differentiable, and for each fixed \(a \in \mathbb{R} \) their derivatives satisfy \(\hat{L}' \in L^1_1(-\infty, a) \) and \(\hat{R}' \in L^1_1(a, +\infty) \).

Let us define

\[P_1(x, t) := \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \left[T(k) - 1 \right] f_1(k, x) e^{-ikt}, \] (4.7)

\[P_r(x, t) := \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \left[T(k) - 1 \right] f_r(k, x) e^{ikt}. \] (4.8)
\[\Phi_1(x, t) := \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \left[\psi_1(k, x) - e^{ikx} \right] e^{-ikt}, \quad (4.9) \]

\[\Phi_r(x, t) := \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \left[\psi_r(k, x) - e^{-ikx} \right] e^{ikt}. \quad (4.10) \]

Proposition 4.2 Assume \(V \) is real valued and belongs to \(L_1^1(\mathbb{R}) \). Then, for any fixed \(x \in \mathbb{R} \), each of \(P_1(x, \cdot), P_r(x, \cdot), \Phi_1(x, \cdot) \), and \(\Phi_r(x, \cdot) \) belongs to \(L^2(\mathbb{R}) \). Moreover, we have

\[\Phi_1(x, t) = P_1(x, t) + K_1(x, t), \quad \Phi_r(x, t) = P_r(x, t) + K_r(x, t), \quad (4.11) \]

\[\Phi_1(x, t) = P_1(x, t) = -\sum_{j=1}^{N} (-1)^{N-j} c_{rj} \varphi_j(x) e^{\kappa_j t}, \quad t < x, \quad (4.12) \]

\[\Phi_r(x, t) = P_r(x, t) = -\sum_{j=1}^{N} c_{rj} \varphi_j(x) e^{-\kappa_j t}, \quad t > x, \quad (4.13) \]

\[\Phi_1(x, t) = K_1(x, t) + \hat{L}(-x - t) + \int_{-\infty}^{x} ds \hat{L}(-t - s) K_r(x, s), \quad t \neq x, \quad (4.14) \]

\[\Phi_r(x, t) = K_1(x, t) + \hat{R}(x + t) + \int_{x}^{\infty} ds \hat{R}(t + s) K_1(x, s), \quad t \neq x, \quad (4.15) \]

\[P_1(x, x_0 + t) + \int_{-\infty}^{x_0} ds P_1(x, s + t) K_r(x_0, s) + \sum_{j=1}^{N} \varphi_j(x) \varphi_j(x_0) e^{\kappa_j t} = 0, \quad x > x_0 + t, \quad (4.16) \]

\[P_r(x, x_0 - t) + \int_{x_0}^{\infty} ds P_r(x, s - t) K_1(x_0, s) + \sum_{j=1}^{N} \varphi_j(x) \varphi_j(x_0) e^{-\kappa_j t} = 0, \quad x < x_0 - t. \quad (4.17) \]

PROOF: We obtain (4.11) by using (3.2), (4.1), (4.2), (4.7)-(4.10). With the help of (2.6), (2.7), (4.4), (4.7), (4.8), and (4.11), by using a contour integration along the infinite semicircle enclosing \(C^+ \), we obtain (4.12) and (4.13). Using (4.2), (4.6), and a Fourier transform on (3.4) we get (4.14). Similarly, by using (3.3), (4.1), and (4.6) we get (4.15). With the help of (4.3) and (4.12) we establish (4.16). In the same manner, using (4.3) and (4.13) we get (4.17). □

Define

\[U_1(x, t; x_0) := \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \psi_1(k, x) f_r(k, x_0) e^{-ikt} + \sum_{j=1}^{N} \varphi_j(x) \varphi_j(x_0) e^{\kappa_j t}, \quad (4.18) \]
\[
U_r(x, t; x_0) := \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \psi_r(k, x) f_1(k, x_0) e^{-ikt} + \sum_{j=1}^{N} \varphi_j(x) \varphi_j(x_0) e^{\kappa_j t}, \quad (4.19)
\]

\[
\Upsilon_1(x, t; x_0) := U_1(x, t; x_0) - \delta(x - x_0 - t), \quad (4.20)
\]

\[
\Upsilon_r(x, t; x_0) := U_r(x, t; x_0) - \delta(x - x_0 + t). \quad (4.21)
\]

Theorem 4.3 Assume \(V \) is real valued and belongs to \(L_1^1(\mathbb{R}) \). Then \(U_1 \) is a causal solution to (1.1) incident from the left and focusing to \(x = x_0 \) when \(t = 0 \). Similarly, \(U_r \) is a causal solution to (1.1) that is incident from the right and that focuses to \(x = x_0 \) when \(t = 0 \).

PROOF: First, \(\psi_1, \psi_r, f_1, \) and \(f_r \) are solutions to (1.2) and they are transformed from the \(k \)-domain to the \(t \)-domain as in (1.3). Thus, with the help of (2.7), we see that each of \(U_1 \) and \(U_r \) is a solution to (1.1). Using (4.2), (4.9), (4.11), (4.18), and (4.20) we get

\[
\Upsilon_1(x, t; x_0) = K_r(x_0, x - t) + K_1(x, x_0 + t)
+ \int_{x-t}^{x_0} ds K_1(x, s + t) K_r(x_0, s) + P_1(x, x_0 + t)
+ \int_{-\infty}^{x_0} ds P_1(x, s + t) K_r(x_0, s) + \sum_{j=1}^{N} \varphi_j(x) \varphi_j(x_0) e^{\kappa_j t}. \quad (4.22)
\]

Similarly, using (4.1), (4.10), (4.11), (4.19), and (4.21) we obtain

\[
\Upsilon_r(x, t; x_0) = K_1(x_0, x + t) + K_r(x, x_0 - t)
+ \int_{x_0}^{x+t} ds K_r(x, s - t) K_1(x_0, s) + P_r(x, x_0 - t)
+ \int_{x_0}^{\infty} ds P_r(x, s - t) K_1(x_0, s) + \sum_{j=1}^{N} \varphi_j(x) \varphi_j(x_0) e^{\kappa_j t}. \quad (4.23)
\]

With the help of (4.4) it follows that at any fixed moment \(t \) each of the first three terms on the right-hand side of (4.22) vanishes when \(x > x_0 + t \); moreover, using (4.16) it follows that the last three terms add to zero when \(x > x_0 + t \). Thus, \(U_1 \) is a wave consisting of the wavefront \(\delta(x - x_0 - t) \) followed by the tail \(\Upsilon_1 \) on the left and the wave is incident from the left. Similarly, at any fixed moment \(t \) each of the first three terms on the right-hand side of (4.23) vanishes when \(x < x_0 - t \); moreover from (4.17) it follows that the last three terms add to zero when \(x < x_0 - t \). Hence, \(U_r \) is a wave consisting of the wavefront \(\delta(x - x_0 + t) \) followed by the tail \(\Upsilon_r \) on the right and the wave is incident from the right.
Each of the waves \(U_1 \) and \(U_r \) focuses to \(x = x_0 \) at \(t = 0 \) because \(U_1(x, 0; x_0) = \delta(x - x_0) \) and \(U_r(x, 0; x_0) = \delta(x - x_0) \), as readily seen by comparing (4.18) and (4.19) with (3.6).

Since (1.1) is linear and homogeneous, any linear combination of \(U_1 \) and \(U_r \) also focuses at \(t = 0 \). In fact, for the special choice \(U_1 - U_r \) even the wavefronts cancel each other and the wave vanishes on the entire \(x \)-axis at \(t = 0 \). On the other hand, for the special choice \(U_1 + U_r \) the wavefronts superimpose on top of each other at \(t = 0 \).

Proposition 4.4 Assume \(V \) is real valued and belongs to \(L^1_\infty(\mathbb{R}) \). Then the only discontinuities of \(P_1 \) and \(P_r \) can occur when \(x = t \). Such discontinuities are given by

\[
P_1(x, x^-) = \Phi_1(x, x^-) = -\sum_{j=1}^{N} (-1)^{N-j} c_{rj} \varphi_j(x) e^{\kappa_j x},
\]

\[
P_r(x, x^+) = \Phi_r(x, x^+) = \sum_{j=1}^{N} c_{lj} \varphi_j(x) e^{-\kappa_j x},
\]

\[
P_1(x, x^+) = -\frac{1}{2} \int_{-\infty}^{\infty} ds \, V(s) - \sum_{j=1}^{N} (-1)^{N-j} c_{rj} \varphi_j(x) e^{\kappa_j x},
\]

\[
P_r(x, x^-) = -\frac{1}{2} \int_{-\infty}^{\infty} ds \, V(s) - \sum_{j=1}^{N} c_{lj} \varphi_j(x) e^{-\kappa_j x}.
\]

PROOF: Note that (4.24) and (4.25) are equivalent to (4.12) and (4.13), respectively. Since \(\hat{L} \) and \(K_r(x, \cdot) \) are square integrable, their product is integrable; hence the integral term in (4.14) is continuous in \((x, t)\) as a result of the Lebesgue dominated convergence theorem. Similarly, from the square-integrability of \(\hat{R} \) and of \(K_1(x, \cdot) \) it follows that the integral term in (4.15) is continuous in \((x, t)\). Using the fact that \(\hat{L} \) and \(\hat{R} \) are continuous, from (4.11), (4.14), and (4.15) we see that the discontinuities of \(P_1 \) and \(P_r \) coincide with those of \(K_1 \) and \(K_r \); hence, such discontinuities can occur only when \(x = t \). In fact, with the help of (4.4) we get

\[
P_1(x, x^+) - P_1(x, x^-) = -K_r(x, x^-) - K_1(x, x^+),
\]

\[
P_r(x, x^+) - P_r(x, x^-) = K_1(x, x^+) + K_r(x, x^-).
\]

Thus, using (4.5), (4.24), (4.25), (4.28), and (4.29), we get (4.26) and (4.27).
Theorem 4.5 Assume V is real valued and belongs to $L^1_1(\mathbb{R})$. Then the only discontinuities of U_1 and U_r occur at the wavefront, and the jumps in the tails at the wavefront are related to V as

$$
\gamma_1(x_0^- + t, t; x_0) = -\frac{1}{2} \int_{x_0}^{x_0 + t} dz V(z), \quad (4.30)
$$

$$
\gamma_r(x_0^+ - t, t; x_0) = -\frac{1}{2} \int_{x_0 - t}^{x_0} dz V(z). \quad (4.31)
$$

PROOF: From (4.22) and (4.23) we see that the discontinuities in γ_1 and γ_r can come only from the first, second, and fourth terms on the right-hand sides of (4.22) and (4.23), respectively; the third and fifth terms are continuous in (x, t) because the integrands there, being products of L^2-functions, are integrable in s. Thus, with the help of Proposition 4.4 and the fact that K_r and K_1 can have discontinuities only when $x = t$, we conclude that the discontinuities in γ_1 and γ_r can only occur at the wavefront, and we have

$$
\gamma_1(x_0^- + t, t; x_0) - \gamma_1(x_0^+ + t, t; x_0)
= K_r(x_0, x_0^-) - K_r(x_0, x_0^+) \quad (4.32)
+ K_1(x_0 + t, x_0^+ + t) - K_1(x_0 + t, x_0^- + t)
+ P_1(x_0 + t, x_0^+ + t) - P_1(x_0 + t, x_0^- + t),
$$

$$
\gamma_r(x_0^+ - t, t; x_0) - \gamma_r(x_0^- - t, t; x_0)
= K_1(x_0, x_0^+) - K_1(x_0, x_0^-) \quad (4.33)
+ K_r(x_0 - t, x_0^-- t) - K_r(x_0 - t, x_0^- - t)
+ P_r(x_0 - t, x_0^- - t) - P_r(x_0 - t, x_0^-- t).
$$

Now using (4.4), (4.5), (4.28), and (4.29) in (4.32) and (4.33) and the fact that U_1 and U_r are causal, we establish (4.30) and (4.31). □

As an application of Theorem 4.5, let us show how one can recover the value of $V(x_0)$ by using waves focusing to x_0 and its vicinity. Consider the left-hand side of (4.30) at some fixed time t in the interval $(-\infty, -x_0)$; in fact, one can even consider it when $t \to -\infty$. Let

$$
\Gamma_1(x_0, t) := \gamma_1(x_0^- + t, t; x_0). \quad (4.34)
$$
Thus, $\Gamma_1(x_0, t)$ indicates the height of the tail of U_1 at the wavefront at some fixed time $t < -x_0$. From (4.30), if V is continuous at x_0 and $x_0 + t$, we see that
\[V(x_0) - V(x_0 + t) = 2 \frac{\partial \Gamma_1(x_0, t)}{\partial x_0}. \] (4.35)

Note that $V(x_0 + t)$ can be made as small as we want by choosing t so that either $x_0 + t$ lies to the left of the support of V (if V is supported in a right-half line) or by letting $t \to -\infty$ (if the support of V extends to $x = -\infty$). Clearly, $\partial \Gamma_1(x_0, t)/\partial x_0$ can be obtained by using waves focusing to x_0 and its vicinity. An explicit example in Sec. VIII illustrates the recovery of $V(x_0)$ by using the technique described here.

Note that in the recovery technique outlined above, we have not made any other assumptions on V besides $V \in L^1_1(\mathbb{R})$, its realness, and its continuity at x_0 and $x_0 + t$ for some fixed $t < -x_0$. In fact, even when V is not continuous but only sectionally continuous, this technique still holds provided we replace (4.35) by
\[V(x_0^-) - V(x_0^+ + t) = 2 \frac{\partial \Gamma_1(x_0, t)}{\partial x_0}, \quad t < -x_0. \]

Under some stronger assumptions on V in Sec. VII, we will see that we can recover $V(x_0)$ by only using the wave that focuses to x_0 without needing any waves focusing near x_0.

V. CONNECTION WITH THE MARCHENKO METHOD

In this section we explore the connection between wave focusing for (1.1) and the Marchenko method to solve the inverse scattering problem for (1.2). By presenting certain representations for U_1 and U_r, we show that their focusing is a direct consequence of the Marchenko method.

Let us define
\[M_r(t) := \hat{L}(-t) + \sum_{j=1}^{N} c_{rj}^2 e^{\kappa_j t}, \quad M_1(t) := \hat{R}(t) + \sum_{j=1}^{N} c_{1j}^2 e^{-\kappa_j t}, \] (5.1)

where \hat{L} and \hat{R} are as in (4.6), and c_{rj} and c_{1j} are as in (2.5). Using (4.3), (4.4), (4.12)-(4.15), and (5.1) we get the two Marchenko equations
\[K_r(x, t) + M_r(x + t) + \int_{-\infty}^{x} ds M_r(t + s) K_r(x, s) = 0, \quad t < x, \] (5.2)
\[K_1(x, t) + M_1(x + t) + \int_x^\infty ds \ M_1(t + s) \ K_1(x, s) = 0, \quad t > x, \quad (5.3) \]

and using (4.4), (4.14), and (4.15) we obtain the two complementary equations

\[\Phi_1(x, t) = \hat{L}(-x - t) + \int_{-\infty}^x ds \ \hat{L}(-t - s) \ K_r(x, s), \quad t > x, \quad (5.4) \]

\[\Phi_r(x, t) = \hat{R}(x + t) + \int_x^\infty ds \ \hat{R}(t + s) \ K_1(x, s), \quad t < x. \quad (5.5) \]

Let

\[F_1(x, t) := K_1(x, t) + M_1(x + t) + \int_x^\infty ds \ M_1(t + s) \ K_1(x, s), \quad (5.6) \]

\[F_r(x, t) := K_r(x, t) + M_r(x + t) + \int_{-\infty}^x ds \ M_r(t + s) \ K_r(x, s), \quad (5.7) \]

\[Z_1(x, t) := \Phi_1(x, t) - \hat{L}(-x - t) - \int_{-\infty}^x ds \ \hat{L}(-t - s) \ K_r(x, s), \quad (5.8) \]

\[Z_r(x, t) := \Phi_r(x, t) - \hat{R}(x + t) - \int_x^\infty ds \ \hat{R}(t + s) \ K_1(x, s). \quad (5.9) \]

Using (4.4) we can write the Marchenko equations (5.2) and (5.3) as

\[F_r(x, t) = 0, \quad t < x; \quad K_r(x, t) = 0, \quad t > x, \quad (5.10) \]

\[F_1(x, t) = 0, \quad t > x; \quad K_1(x, t) = 0, \quad t < x, \quad (5.11) \]

and the complementary equations (5.4) and (5.5) as

\[Z_1(x, t) = 0, \quad t > x; \quad Z_r(x, t) = 0, \quad t < x. \quad (5.12) \]

Proposition 5.1 The waves \(U_1 \) and \(U_r \) defined in (4.18) and (4.19) can be expressed in terms of the quantities defined in (4.1), (4.2), (5.6), and (5.7) as

\[U_1(x, t; x_0) = \delta(x - x_0 - t) + K_r(x_0, x - t) + F_r(x, x_0 + t) + \int_{x_0}^x ds \ F_r(x, t + s) K_r(x_0, s), \quad (5.13) \]

\[U_r(x, t; x_0) = \delta(x - x_0 + t) + K_1(x_0, x + t) + F_1(x, x_0 - t) + \int_{x_0}^x ds \ F_1(x, s - t) K_1(x_0, s). \quad (5.14) \]
PROOF: From (4.3) we get
\[
\varphi_j(x) \varphi_j(x_0) = c_{ij}^2 \left[e^{\kappa_j(x-x_0)} + \int_{-\infty}^{x_0} ds \, K_r(x_0, s) e^{\kappa_j(x+s)} + \int_{-\infty}^{x} ds \, K_r(x, s) e^{\kappa_j(x_0+s)} \right. \\
\left. + \int_{-\infty}^{x} dw \int_{-\infty}^{x_0} ds \, K_r(x_0, s) K_r(x, w) e^{\kappa_j(s+w)} \right],
\]
(5.15)
\[
\varphi_j(x) \varphi_j(x_0) = c_{ij}^2 \left[e^{-\kappa_j(x-x_0)} + \int_{x_0}^{\infty} ds \, K_1(x_0, s) e^{-\kappa_j(x+s)} + \int_{x}^{\infty} ds \, K_1(x, s) e^{-\kappa_j(x_0+s)} \right. \\
\left. + \int_{x}^{\infty} dw \int_{x_0}^{\infty} ds \, K_1(x_0, s) K_1(x, w) e^{-\kappa_j(s+w)} \right].
\]
(5.16)

Using (4.14), (5.1), (5.7), and (5.15) in (4.22) we obtain (5.13). Similarly, using (4.15), (5.1), (5.6), and (5.16) in (4.23) we obtain (5.14).

Recall that in the Marchenko method, the ‘right’ scattering data set \(\{L, \{\kappa_j\}, \{c_{ij}\}\}\) is used as the input to the Marchenko integral equation (5.2); once \(K_r\) is obtained by solving (5.2), the potential \(V\) is recovered as \(V(x) = 2 \frac{dK_r(x, x^-)}{dx}\). Similarly, the ‘left’ scattering data set \(\{R, \{\kappa_j\}, \{c_{ij}\}\}\) is used as the input to the Marchenko equation (5.3), and once \(K_1\) is obtained by solving (5.3), \(V\) is recovered as \(V(x) = -2 \frac{dK_1(x, x^+)}{dx}\). Note that by using (5.13) one can construct our focusing wave \(U_1\) directly from the scattering data \(\{L, \{\kappa_j\}, \{c_{ij}\}\}\) via the solution \(K_r\) of the Marchenko equation (5.2). Similarly, (5.14) shows that we can construct \(U_r\) from the data \(\{R, \{\kappa_j\}, \{c_{ij}\}\}\) via the solution \(K_1\) of the Marchenko equation (5.3).

Let us define
\[
A_r(x, t; x_0) := K_r(x_0, x - t) - K_r(x_0, x + t) - F_r(x_0, x - t) + F_r(x_0, x + t) \\
- \int_{-\infty}^{x} ds \, K_r(x, s) \left(F_r(x_0, s - t) - F_r(x_0, s + t) \right) \\
+ \int_{-\infty}^{\max\{x, x_0\}} ds \, \left[K_r(x_0, s) K_r(x, s + t) - K_r(x_0, s + t) K_r(x, s) \right],
\]
(5.17)
\[
A_1(x, t; x_0) := K_1(x_0, x + t) - K_1(x_0, x - t) + F_1(x_0, x - t) - F_1(x_0, x + t) \\
- \int_{x}^{\infty} ds \, K_1(x, s) \left(F_1(x_0, s + t) - F_1(x_0, s - t) \right) \\
+ \int_{\min\{x, x_0\}}^{\infty} ds \, \left[K_1(x_0, s) K_1(x, s - t) - K_1(x_0, s - t) K_1(x, s) \right].
\]
(5.18)
Note that at $t = 0$ both $A_r(x, t; x_0)$ and $A_l(x, t; x_0)$ vanish.

Proposition 5.2 The waves U_1 and U_r defined in (4.18) and (4.19) can be expressed in terms of the quantities defined in (4.1), (4.2), (5.6)-(5.9), (5.17), and (5.18) as

$$U_1(x, t; x_0) = \delta(x - x_0 - t) + Z_1(x, x_0 + t) + F_r(x_0, x - t) + \int_{x_0+t}^{x} ds F_r(x_0, s - t) K_r(x, s) + A_r(x, t; x_0),$$

(5.19)

$$U_r(x, t; x_0) = \delta(x - x_0 + t) + Z_r(x, x_0 - t) + F_l(x_0, x + t) + \int_{x}^{x_0-t} ds F_l(x_0, s + t) K_l(x, s) + A_l(x, t; x_0).$$

(5.20)

PROOF: We obtain (5.19) by using (4.11), (4.14), (5.1), (5.7), (5.8), and (5.15) in (4.22). Similarly, (5.20) is obtained by using (4.11), (4.15), (5.6), (5.9), and (5.16) in (4.23).

Theorem 5.3 Assume that V is real valued and belongs to $L^1_t(R)$. Then:

(i) The causality of U_1 is a consequence of the Marchenko equation (5.2).

(ii) The causality of U_r is a consequence of the Marchenko equation (5.3).

(iii) The focusing of U_1 to x_0 at $t = 0$ is a consequence of (5.2) and (5.4).

(iv) The focusing of U_r to x_0 at $t = 0$ is a consequence of (5.3) and (5.5).

PROOF: Recall that (5.2) and (5.3) are equivalent to (5.10) and (5.11), respectively; similarly, (5.4) and (5.5) are equivalent to the first and second equations in (5.12), respectively. Note that if (5.10) holds, then the right-hand side of (5.13) vanishes when $x > x_0 + t$ and hence (i) is proved. Similarly, if (5.11) holds then the right-hand side of (5.14) vanishes for $x < x_0 - t$ and hence (ii) is proved. If (5.10) and the first equation in (5.12) hold, then each of the first four terms on the right-hand side of (5.19) vanishes when $x < x_0 + t$; moreover, the last term $A_r(x, t; x_0)$ vanishes at $t = 0$ and hence (iii) is proved. In the same manner, if (5.11) and the second equation in (5.12) hold, then each of the first four terms on the right-hand side of (5.20) vanishes when $x > x_0 - t$; moreover, the last term $A_l(x, t; x_0)$ vanishes at $t = 0$ and hence (iv) is also proved.

Let us comment on the roles that the complementary equations (5.4) and (5.5) play in the Marchenko method. For the recovery of V by solving (5.2), one uses the ‘right’ scattering data $\{L, \{\kappa_j\}, \{c_{ij}\}\}$ as the input and obtains the ‘right’ quantity K_r, from
which the ‘right’ Jost solution f_r is obtained with the help of (4.1). The complementary equation (5.4) is a means to construct the ‘left’ quantity Φ_1, from which the ‘left’ physical solution ψ_1 can be obtained via the inverse Fourier transform on (4.9). In a similar manner, the complementary equation (5.5) is a means to construct the ‘right’ quantities such as ψ_r by using only the ‘left’ scattering data $\{R, \{\kappa_j\}, \{c_{ij}\}\}$ as the input to the Marchenko procedure. Hence, Theorem 5.3(iii) is equivalent to the statement that the focusing of U_l is a consequence of the Marchenko method using the ‘right’ scattering data as the input. Similarly, Theorem 5.3(iv) is equivalent to saying that focusing of U_r is a consequence of the Marchenko method using the ‘left’ scattering data as the input.

The following result and its proof are used in the proof of Theorems 6.4 and 6.5. Even though this result is already known, we include a brief proof for convenience because we later refer to the facts stated in it.

Proposition 5.4 Assume V is real valued and belongs to $L^1_1(\mathbb{R})$. If $V \equiv 0$ for $x > 0$ then $M_1(t) = 0$ for $t > 0$, and if $V \equiv 0$ for $x < 0$ then $M_r(t) = 0$ for $t < 0$, where M_1 and M_r are the quantities defined in (5.1).

PROOF: If $V \equiv 0$ for $x > 0$, then R is meromorphic in \mathbb{C}^+ with simple poles at the bound states $k = i\kappa_j$ having the residues $\text{Res} (R, i\kappa_j) = i\kappa_j^2$, and $R(k)e^{2i\kappa x} = o(1/k)$ as $k \to \infty$ in \mathbb{C}^+ for each $x \geq 0$. Similarly, if $V \equiv 0$ for $x < 0$, then L is meromorphic in \mathbb{C}^+ with simple poles at the bound states $k = i\kappa_j$ having the residues $\text{Res} (L, i\kappa_j) = i\kappa_j^2$, and $L(k)e^{-2i\kappa x} = o(1/k)$ as $k \to \infty$ in \mathbb{C}^+ for each $x \leq 0$. Thus, from (5.1) with the help of a contour integration, we directly get the conclusion of our proposition.

Let us make a contrast between an incident focusing wave and an incident plane wave; the latter is often used to probe an inhomogeneous medium. For simplicity, consider the special case $V \equiv 0$ for $x < 0$. In this case, from (4.2) it follows that $K_r(x, t) = 0$ for $x < 0$. Thus, using (5.7) and Proposition 5.4 we get $F_r(x, x_0 + t) = 0$ for $x < 0$ and $t < -x_0$. Hence, from (5.13) it follows that our focusing wave incident from the left is given by

$$U_l(x, t; x_0) = \delta(x - x_0 - t) + K_r(x_0, x - t), \quad x < 0, \quad t < -x_0. \quad (5.21)$$

From (5.21) we see that, if $x_0 > 0$, U_l contains some information about V even before the incident wave first encounters the potential at $x = 0$ and $t = -x_0$. Using $x_0 + t < 0$ and
$V(z) = 0$ for $z < 0$, from (4.30) we get $\Upsilon_1(x_0^{-} + t, t; x_0) = (1/2) \int_{x_0^0}^{x_0} dz V(z)$. This is in contrast to the case where a pure plane wave is sent onto V from $x = -\infty$, in which case the incident wave consists solely of the Dirac-delta wavefront alone and a tail is nonexistent until the wave encounters the potential at $x = 0$.

VI. TEMPORAL ANTISYMMETRIES AND SUPPORT PROPERTIES

In this section we are interested in showing that the focusing waves U_1 and U_r satisfy certain temporal antisymmetries and support properties that are useful in understanding their focusing. We also show that for potentials vanishing on a half line, a gap may develop between the wavefront and the tail of these focusing waves. We present our results only for U_1 because the corresponding results for U_r are obtained in a similar manner.

In terms of the Jost solutions of (1.2), let us define the Faddeev functions m_1 and m_r as follows:

$$m_1(k, x) := e^{-ikx} f_1(k, x), \quad m_r(k, x) := e^{-ikx} f_r(k, x).$$

Then, we can write Υ_1 and Υ_r defined in (4.20) and (4.21), respectively, as

$$\Upsilon_1(x, t; x_0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \left| T(k) m_1(k, x) m_r(k, x_0) - 1 \right| e^{ik(x-x_0-t)} + \sum_{j=1}^{N} \varphi_j(x) \varphi_j(x_0) e^{\kappa_j t},$$

$$\Upsilon_r(x, t; x_0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \left| T(k) m_r(k, x) m_1(k, x_0) - 1 \right| e^{-ik(x-x_0+t)} + \sum_{j=1}^{N} \varphi_j(x) \varphi_j(x_0) e^{\kappa_j t}. \quad (6.1)$$

From Theorem 4.3 we know that U_1 and U_r are causal. Hence, from (6.1) and (6.2) we conclude the following.

Corollary 6.1 Assume V is real valued and belongs to $L_1^1(\mathbb{R})$. Then for $x > x_0 + t$ we have

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} dk \left| T(k) m_1(k, x) m_r(k, x_0) - 1 \right| e^{ik(x-x_0-t)} = - \sum_{j=1}^{N} \varphi_j(x) \varphi_j(x_0) e^{\kappa_j t}, \quad (6.3)$$

and for $x < x_0 - t$ we have

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} dk \left| T(k) m_r(k, x) m_1(k, x_0) - 1 \right| e^{-ik(x-x_0+t)} = - \sum_{j=1}^{N} \varphi_j(x) \varphi_j(x_0) e^{\kappa_j t}. \quad (6.4)$$
Theorem 6.2 Assume \(V \) is real valued and belongs to \(L_1^1(\mathbb{R}) \). Then, for \(t < x_0 - x \), the tail \(\Upsilon_1 \) defined in (4.20) satisfies

\[
\Upsilon_1(x, t; x_0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \left[m_1(k, x) m_1(-k, x_0) - 1 \right] \left[e^{ik(x-x_0-t)} - e^{ik(x-x_0+t)} \right].
\]

(6.5)

Similarly, for \(t < x - x_0 \), the tail \(\Upsilon_r \) defined in (4.21) satisfies

\[
\Upsilon_r(x, t; x_0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \left[m_r(k, x) m_r(-k, x_0) - 1 \right] \left[e^{-ik(x-x_0+t)} - e^{-ik(x-x_0-t)} \right].
\]

(6.6)

PROOF: From (3.3) we get

\[
T(k) m_r(k, x_0) = m_1(-k, x_0) + R(k) e^{2ikx_0} m_1(k, x_0), \quad k \in \mathbb{R},
\]

and hence, for real \(k \), we have

\[
T(k) m_1(k, x) m_r(k, x_0) = m_1(k, x) m_1(-k, x_0) + R(k) m_1(k, x) e^{2ikx_0} m_1(k, x_0).
\]

(6.7)

From (3.3) we see that

\[
R(k) m_1(k, x) = e^{-2ikx} [T(k) m_r(k, x) - m_1(-k, x)], \quad k \in \mathbb{R}.
\]

(6.8)

Thus, using (6.8) in the second term on the right-hand side of (6.7) we obtain

\[
T(k) m_1(k, x) m_r(k, x_0) = [T(k) m_r(k, x) - m_1(-k, x)] m_1(k, x_0) e^{2ik(x_0-x)}
\]

\[
+ m_1(k, x) m_1(-k, x_0), \quad k \in \mathbb{R}.
\]

(6.9)

Using (6.9) in (6.1) we get

\[
\Upsilon_1(x, t; x_0) = I_1 - I_2 + I_3 - I_4 + I_5 + I_6,
\]

where we have defined

\[
I_1 := \frac{1}{2\pi} \int_{-\infty}^{\infty} dk m_1(k, x) m_1(-k, x_0) e^{ik(x-x_0-t)},
\]

\[
I_2 := \frac{1}{2\pi} \int_{-\infty}^{\infty} dk m_1(-k, x) m_1(k, x_0) e^{-ik(x-x_0+t)},
\]

\[
I_3 := \frac{1}{2\pi} \int_{-\infty}^{\infty} dk m_1(k, x) m_r(-k, x_0) e^{ik(x-x_0-t)},
\]

\[
I_4 := \frac{1}{2\pi} \int_{-\infty}^{\infty} dk m_1(-k, x) m_r(k, x_0) e^{-ik(x-x_0+t)},
\]

\[
I_5 := \frac{1}{2\pi} \int_{-\infty}^{\infty} dk m_r(k, x) m_r(-k, x_0) e^{2ikx_0} m_1(k, x_0),
\]

\[
I_6 := \frac{1}{2\pi} \int_{-\infty}^{\infty} dk m_r(-k, x) m_r(k, x_0) e^{-2ikx_0} m_1(k, x_0).
\]
$$I_3 := \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \, e^{-ik(x-x_0+t)}, \quad I_4 := \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \, e^{ik(x-x_0-t)},$$

$$I_5 := \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \, [T(k) \, m_1^{-1}(k, x) \, m_1(k, x_0) - 1] \, e^{-ik(x-x_0+t)},$$

$$I_6 := \sum_{j=1}^{N} \varphi_j(x) \varphi_j(x_0) e^{\kappa_j t}.$$

Because of (6.4) we have $I_5 + I_6 = 0$ when $x_0 - t - x > 0$. Changing the dummy integration variable k to $-k$ in I_2 and I_3 we obtain (6.5). The proof of (6.6) is similar to that of (6.5) and is obtained with the help of (3.4) and (6.3).

From (6.5) and (6.6) we get the following antisymmetry properties for Υ_{1} and Υ_{r}.

Corollary 6.3 Assume V is real valued and belongs to $L_1^1(\mathbb{R})$. Then

$$\Upsilon_{1}(x, -t; x_0) = -\Upsilon_{1}(x, t; x_0), \quad t \in (x - x_0, x_0 - x),$$

$$\Upsilon_{r}(x, -t; x_0) = -\Upsilon_{r}(x, t; x_0), \quad t \in (x_0 - x, x - x_0).$$

We remark that the temporal antisymmetry is a key part of the physics underlying wave focusing. It is immediate from Corollary 6.3 that both Υ_{1} and Υ_{r} vanish at $t = 0$.

Next, we present some results related to the support properties of Υ_{1} when the potential vanishes on a half line. Similar results hold for Υ_{r} although they are not listed here. In the next theorem, we show that, if the incident wave focuses to a point lying behind the support of the potential, a gap develops between the wavefront and the tail of the wave.

![Fig. 6.1](image.png)

Fig. 6.1 The support of Υ_{1} with $x_0 = 1$ in Theorem 6.4 is shaded in the tx-plane.
Theorem 6.4 Assume V is real valued, belongs to $L^1_\mathbb{R}$, and vanishes for $x > 0$; let $x_0 \geq 0$. Then:

(i) When $t \geq 0$, we have $\Upsilon_1(x, t; x_0) = 0$ for $x \geq -x_0 + t$.

(ii) When $t \in [-x_0, 0]$, we have $\Upsilon_1(x, t; x_0) = 0$ for $x \geq -x_0 - t$.

(iii) Consequently, the wavefront $\delta(x - x_0 - t)$ is in distance $2x_0$ ahead of the tail Υ_1 for $t \geq 0$.

(iv) Similarly, the wavefront $\delta(x - x_0 - t)$ is in distance $2(x_0 + t)$ ahead of the tail Υ_1 for $t \in [-x_0, 0]$.

PROOF: The proof will be given by showing that Υ_1 vanishes on the closure of the rectangular region lying below the wavefront and above the shaded region exemplified in Fig. 6.1. If $V \equiv 0$ for $x > 0$, then $m_1(k, x) = 1$ for $x \geq 0$ and $T(k) m_r(k, x_0) = 1 + R(k) e^{2 ik x_0}$. Thus, from (6.1), with the help of (2.7), we get

$$\Upsilon_1(x, t; x_0) = \hat{R}(x + x_0 - t) + \sum_{j=1}^{N} c_j^2 e^{-\kappa_j (x + x_0 - t)}, \quad x \geq 0. \quad (6.10)$$

Comparing (6.10) with (5.1), we see that $\Upsilon_1(x, t; x_0) = M_1(x + x_0 - t)$; hence, with the help of Proposition 5.4, we conclude that $\Upsilon_1(x, t; x_0) = 0$ for $x > -x_0 + t$ and $x \geq 0$. By the continuity of Υ_1 on the line $x = -x_0 + t$, as indicated in Theorem 4.5, we get $\Upsilon_1(x, t; x_0) = 0$ for $x \geq -x_0 + t$.

On the other hand, when $x \leq 0$, using $T(k) m_r(k, x_0) = 1 + R(k) e^{2 ik x_0}$, from (6.1) we get $\Upsilon_1(x, t; x_0) = I_7 + I_8$, where we have defined

$$I_7 := \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \left[m_1(k, x) - 1 \right] e^{ik(x-x_0-t)}, \quad (6.11)$$

$$I_8 := \frac{1}{2\pi} \int_{-\infty}^{\infty} dk R(k) m_1(k, x) e^{ik(x+x_0-t)} + \sum_{j=1}^{N} \varphi_j(x) \varphi_j(x_0) e^{\kappa_j t}. \quad (6.12)$$

For $x > -x_0 + t$, from (6.12) we obtain

$$I_8 = i \sum_{j=1}^{N} \text{Res} \left(R, i\kappa_j \right) m_1(i\kappa_j, x) e^{-\kappa_j (x + x_0 - t)} + \sum_{j=1}^{N} c_j^2 m_1(i\kappa_j, x) e^{-\kappa_j (x + x_0 - t)}. \quad (6.13)$$
As mentioned in the proof of Proposition 5.4, we have \(\text{Res} (R, i\nu_j) = i\nu_j^2 \), and hence \(I_8 = 0 \) for \(x \leq 0 \) and \(x > -x_0 + t \). Thus, from (4.1) and (6.11), we see that \(\Upsilon_1(x, t; x_0) = K_1(x, x_0 + t) \) for \(x \leq 0 \) and \(x > -x_0 + t \). From the Marchenko equation (5.3), we get

\[
K_1(x, x_0 + t) + M_1(x + x_0 + t) + \int_x^{\infty} ds M_1(x_0 + t + s) K_1(x, s) = 0, \quad x_0 + t > x. \tag{6.13}
\]

Note that in our region of interest, we have \(x + x_0 + t > 0 \), and hence by Proposition 5.4 each of the second and third terms on the left-hand side of (6.13) vanishes. Thus, from (6.13) we conclude \(K_1(x, x_0 + t) = 0 \), which in turn gives us \(\Upsilon_1(x, t; x_0) = 0 \) for \(x \leq 0 \) and \(x > \max\{-x_0 - t, -x_0 + t\} \). Again by the continuity of \(\Upsilon_1 \) everywhere except at the wavefront of \(U_1 \), we get \(\Upsilon_1(x, t; x_0) = 0 \) also on the line segment \(x = -x_0 + t \) for \(t \in [0, x_0] \) and on the segment \(x = -x_0 - t \) for \(t \in [-x_0, 0] \). Therefore, we have proved (i) and (ii). Note that (iii) and (iv) directly follow from (i) and (ii).

In the next theorem, when \(x_0 \leq 0 \) and the potential vanishes for \(x < 0 \), we show that the support of the tail \(\Upsilon_1 \) is confined to the interior of the region in the \(tx \)-plane exemplified in Fig. 6.2, bounded by the semi-infinite lines \(x = \pm x_0 \pm t \) for \(t \geq -x_0 \). In most layer-stripping methods, this is usually the wave used with \(x_0 = 0 \) in order to probe a potential that vanishes when \(x < 0 \).

\[
\begin{array}{c}
\text{Fig. 6.2} \text{ The support of } \Upsilon_1 \text{ with } x_0 = -1 \text{ in Theorem 6.5 is shaded in the } tx \text{-plane.}
\end{array}
\]

Theorem 6.5 Assume \(V \) is real valued, belongs to \(L^1_1(\mathbb{R}) \), and vanishes for \(x < 0 \); let \(x_0 \leq 0 \). Then:

(i) At each time \(t \leq -x_0 \) we have \(\Upsilon_1(x, t; x_0) = 0 \).
(ii) At each time \(t \geq -x_0 \), we have \(Y_1(x, t; x_0) = 0 \) for \(x \leq -x_0 - t \).

(iii) Consequently, at each fixed time \(t > -x_0 \), the support of \(Y_1(\cdot, t; x_0) \) is the finite interval interval \((-x_0 - t, x_0 + t)\).

PROOF: The proof will be given by showing that the support of \(Y_1 \) is confined to the interior of the region exemplified in Fig. 6.2. Because \(U_1 \) is a causal wave, in the region \(x \leq \pm x_0 \pm t \) we have \(x \leq 0 \); hence \(T(k)m_1(k, x) = 1 + L(k)e^{-2\pi k x} \), and \(m_r(k, x_0) = 1 \).

Thus, from (6.3), with the help of (2.7), we get

\[
Y_1(x, t; x_0) = \hat{L}(-x - x_0 - t) + \sum_{j=1}^{N} c_{ij}^{2} e^{i\xi_j(x+x_0+t)}, \quad x \leq 0. \tag{6.14}
\]

From (5.1) and (6.14) we see that \(Y_1(x, t; x_0) = M_r(x + x_0 + t) \), and by Proposition 5.4 we conclude \(Y_1(x, t; x_0) = 0 \) for \(x < -x_0 - t \). Because of the continuity of \(Y_1 \) in the \(tx \)-plane off the wavefront, we also get \(Y_1(x, t; x_0) = 0 \) on the line segment \(x = -x_0 - t \) for \(t \geq -x_0 \).

![Fig. 6.3](image)

Fig. 6.3 The support of \(Y_1 \) with \(x_0 = 1 \) in Theorem 6.6 is shaded in the \(tx \)-plane.

Theorem 6.6 Assume \(V \) is real valued, belongs to \(L^1_1(\mathbb{R}) \), and vanishes for \(x < 0 \); let \(x_0 \geq 0 \). Then:

(i) At each time \(t \leq 0 \) we have \(Y_1(x, t; x_0) = 0 \) for \(x \leq -x_0 + t \).

(ii) At each time \(t \geq 0 \), we have \(Y_1(x, t; x_0) = 0 \) for \(x \leq -x_0 - t \).

(iii) Consequently, at each fixed \(t \leq 0 \), the support of \(Y_1(\cdot, t; x_0) \) is the finite interval interval \((-x_0 + t, x_0 + t)\). Similarly, at each fixed \(t \geq 0 \), the support of \(Y_1(\cdot, t; x_0) \) is the finite interval interval \((-x_0 - t, x_0 + t)\).
PROOF: The proof will be given by showing that the support of \(\Upsilon_1 \) is confined to the interior of the region exemplified in Fig. 6.3. For any fixed \(t \in \mathbb{R} \), notice that \(x \leq \min\{-x_0 - t, -x_0 + t\} \) implies that \(x \leq 0 \). Hence, \(T(k) m_t(k, x) = 1 + L(k) e^{-2ikx} \). Thus, from (6.1) we get \(\Upsilon_1(x, t; x_0) = K_r(x_0, x - t) + I_g \), where we have defined

\[
I_g := \frac{1}{2\pi} \int_{-\infty}^{\infty} dk L(k) m_t(k, x_0) e^{-ik(x+x_0+t)} + \sum_{j=1}^{N} \varphi_j(x) \varphi_j(x_0) e^{\kappa_j t}.
\]

As mentioned in the proof of Proposition 5.4, \(L(k) \) is meromorphic in \(\mathbb{C}^+ \). Thus, for \(x > -x_0 - t \), a contour integration gives us

\[
I_g = i \sum_{j=1}^{N} \text{Res} \left(L, i \kappa_j \right) m_t(i \kappa_j, x_0) e^{\kappa_j(x+x_0-t)} + \sum_{j=1}^{N} c_{ij}^2 m_t(i \kappa_j, x_0) e^{\kappa_j(x+x_0-t)}. \tag{6.15}
\]

Using \(\text{Res} \left(L, i \kappa_j \right) = i c_{ij}^2 \), from (6.15) we get \(I_g = 0 \) for \(x > -x_0 - t \). Hence, in order to prove our theorem, we need to show that \(K_r(x_0, x - t) = 0 \) for \(x \leq \min\{-x_0 - t, -x_0 + t\} \).

From the Marchenko equation (5.2), we have

\[
K_r(x_0, x \pm t) + M_r(x_0 + x \pm t) + \int_{-\infty}^{x} ds M_r(x \pm t + s) K_r(x_0, s) = 0, \quad x \pm t < x_0. \tag{6.16}
\]

As indicated in Proposition 5.4, \(M_r(x_0 + x \pm t) = 0 \) whenever \(x_0 + x \pm t < 0 \). Hence, each of the second and third terms in (6.16) vanishes, leaving us with \(K_r(x_0, x \pm t) = 0 \) for \(x \pm t < x_0 \). By the continuity of \(\Upsilon_1 \) everywhere except at the wavefront of \(U_1 \) in the \(t \xi \)-plane, this implies that \(\Upsilon_1(x, t; x_0) = 0 \) also on the half line \(x = -x_0 + t \) for \(t \leq 0 \) and on the half line \(x = -x_0 - t \) for \(t \geq 0 \). Thus, our proof is complete.

VII. DISCONTINUITIES IN DERIVATIVES OF FOCUSING WAVES

In this section, under more restrictions on \(V \), we analyze the discontinuities in the spatial and temporal derivatives of our focusing waves, and we present some corollaries of our analysis. First, we show that we can recover \(V(x_0) \) remotely by using only the wave that focuses to \(x_0 \) with a measurement taken at any fixed specified time \(t < -x_0 \); this complements our result in Sec. IV on the recovery of \(V(x_0) \) from measurements on waves focusing to \(x_0 \) and its vicinity. Secondly, we examine the \(t \)-derivative of our focusing waves at \(t = 0 \). Next, as \(t \to -\infty \), we study the asymptotics of our focusing waves and
their temporal derivatives. Finally, for potentials vanishing on a half line, we derive an identity involving the temporal and spatial derivatives of the solutions to the Marchenko equations. We present the results mainly for the focusing wave incident from the left because the results for the incidence from the right can be obtained analogously.

In our analysis in the section, we put some or all of the following restrictions on V:

(H1) V is real valued and belongs to $L^1_1(\mathbb{R})$.

(H2) V is sectionally continuous with jump discontinuities at $x = a_j$ for $j = 1, \ldots, n$.

(H3) V is piecewise continuously differentiable in each of the intervals $(-\infty, a_1), (a_n, +\infty)$, and (a_j, a_{j+1}) with $j = 1, \ldots, n - 1$.

(H4) V' is integrable in each interval of its continuity.

(H5) V' is piecewise differentiable, and V'' is integrable in each interval it exists.

Paraphrasing, hypothesis (H2) states that V is continuous on \mathbb{R} except perhaps at a finite number of points, and V has finite left and right limits at those points; (H3) is a similar statement for V'. Hypotheses (H4) and (H5) state that V' and V'' exist everywhere except perhaps at a finite number of points; moreover, if we remove those points from \mathbb{R}, V' and V'' are integrable on the resulting set.

Define

$$
\alpha_l(x) := \int_x^\infty dy \, V(y), \quad \alpha_r(x) := \int_{-\infty}^x dy \, V(y), \quad \beta := \int_{-\infty}^\infty dy \, V(y),$$

$$q_l(k, x) := V(x) + \sum_{a_j > x} [V(a_j^+) - V(a_j^-)] e^{2ik(a_j - x)},$$

$$q_r(k, x) := -V(x) + \sum_{a_j < x} [V(a_j^+) - V(a_j^-)] e^{2ik(x - a_j)}.$$

In the next proposition we list the large-k asymptotics of the transmission coefficient and the Faddeev functions and their x-derivatives up to the orders needed in (7.15) and (7.16) (cf. p. 163 of Deift (1979) where some expansions are given up to $o(1/k^2)$ as $k \to \infty$ in \mathbb{C}^+).
Proposition 7.1 (i) Assume \(V \) satisfies hypotheses (H1)-(H4). Then, as \(k \to \infty \) in \(\mathbb{C}^+ \) we have

\[
T(k) = 1 + \frac{\beta}{2ik} - \frac{\beta^2}{8k^2} + O(1/k^3),
\]

(7.4)

\[
m_1(k, x) = 1 - \frac{\alpha_1(x)}{2ik} - \frac{1}{8k^2} \left[\alpha_1(x)^2 - 2q_1(k, x) \right] + O(1/k^3),
\]

(7.5)

\[
m_\tau(k, x) = 1 - \frac{\alpha_\tau(x)}{2ik} - \frac{1}{8k^2} \left[\alpha_\tau(x)^2 + 2q_\tau(k, x) \right] + O(1/k^3).
\]

(7.6)

(ii) In addition, if \(V \) satisfies also hypothesis (H5), then as \(k \to \infty \) in \(\mathbb{C}^+ \) we have

\[
m_1'(k, x) = \frac{q_1(k, x)}{2ik} + O(1/k^2), \quad m_\tau'(k, x) = \frac{q_\tau(k, x)}{2ik} + O(1/k^2).
\]

(7.7)

PROOF: The proof is straightforward. For example, (7.5) is obtained by iterating the integral representation for \(m_1 \), see e.g. Deift (1979),

\[
m_1(k, x) = 1 + \frac{1}{2ik} \int_x^\infty dy \left[e^{2ik(y-x)} - 1 \right] V(y) m_1(k, y),
\]

(7.8)

and using integration by parts on \(\int_x^\infty dy e^{2ik(y-x)} V(y) \). Differentiating (7.8) with respect to \(x \) and using iteration and integration by parts, we obtain the asymptotics for \(m_1' \). Similarly, with the help of the integral representations

\[
m_\tau(k, x) = 1 + \frac{1}{2ik} \int_{-\infty}^x dy \left[e^{2ik(x-y)} - 1 \right] V(y) m_\tau(k, y),
\]

(7.9)

\[
\frac{1}{T(k)} = 1 - \frac{1}{2ik} \int_{-\infty}^\infty dy V(y) m_1(k, y),
\]

we obtain the large-\(k \) asymptotics for \(m_\tau, m_\tau', \) and \(T \). \(\blacksquare \)

Let \(\theta(x) \) denote the Heaviside function, and with the help of (7.1)-(7.3) let us define

\[
D(x, x_0) := \beta[\alpha_1(x) + \alpha_\tau(x_0)] - \alpha_1(x) \alpha_\tau(x_0) - \frac{1}{2} \left[\beta^2 + \alpha_1(x)^2 + \alpha_\tau(x_0)^2 \right].
\]

(7.10)

Using (7.1) we simplify the right-hand side in (7.9) to obtain

\[
D(x, x_0) = -\frac{1}{2} \left[\int_{x_0}^{x_0} dy V(y) \right]^2.
\]

(7.11)
Theorem 7.2 Assume that V satisfies hypotheses (H1)-(H5). Then, the discontinuous part of $\partial Y_1(x, t; x_0)/\partial x$ is given by

$$
\frac{1}{4} \left[V(x_0) - V(x) + D(x, x_0) \right] \theta(x_0 + t - x) - \frac{1}{4} \theta(x_0 + t - x) \sum_{a_j > x} \left[V(a_j^+) - V(a_j^-) \right] \theta(x - 2a_j + x_0 + t) \\
- \frac{1}{4} \theta(x_0 + t - x) \sum_{a_j < x_0} \left[V(a_j^+) - V(a_j^-) \right] \theta(-x + 2a_j - x_0 + t),
$$

(7.11)

where $D(x, x_0)$ is the quantity in (7.10).

PROOF: Consider the representation of Y_1 given in (6.1), from which we get

$$
\frac{\partial Y_1(x, t; x_0)}{\partial x} = \theta(x_0 + t - x) \left[I_{10} + I_{11} + \sum_{j=1}^{N} \varphi_j'(x) \varphi_j(x_0) e^{k_j t} \right],
$$

(7.12)

where we have defined

$$
I_{10} := \frac{i}{2\pi} \int_{-\infty}^{\infty} dk \, k \left[T(k) \, m_1(k, x) \, m_\tau(k, x_0) - 1 \right] e^{ik(x-x_0-t)},
$$

(7.13)

$$
I_{11} := \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \, T(k) \, m_1'(k, x) \, m_\tau(k, x_0) e^{ik(x-x_0-t)}.
$$

(7.14)

When $V \in L_1^1(\mathbb{R})$, it is known that φ_j' is continuous; hence, the summation term within the brackets in (7.12) is continuous in (x, t). From the integrands in (7.13) and (7.14) let us separate the terms that are continuous in (k, x) and integrable in k; by the Lebesgue dominated convergence theorem, the integrals of such terms are continuous in (x, t). Using (7.1)-(7.7) and (7.9), as $k \to \infty$ in \overline{C}^+ we obtain

$$
ix \left[T(k) \, m_1(k, x) \, m_\tau(k, x_0) - 1 \right] = -\frac{1}{2} \int_{x}^{x_0} dy \, V(y) \\
+ \frac{i}{4(k + \delta^+)} \left[D(x, x_0) + q_1(k, x) - q_\tau(k, x_0) \right] + O(1/k^2),
$$

(7.15)

$$
T(k) \, m_1'(k, x) \, m_\tau(k, x_0) = \frac{q_1(k, x)}{2i(k + \delta^+)} + O(1/k^2),
$$

(7.16)

where the $O(1/k^2)$-terms are continuous in (k, x) and integrable in k. When $x < x_0 + t$, the $O(1)$-term in (7.15) does not contribute to the integral in (7.13). With the help of
\[\int_{-\infty}^{\infty} dk \, e^{ikz}/(k + i0^+) = -2\pi i \theta(-z), \] we evaluate the contribution of the \(O(1/k)\)-terms in (7.13) and (7.14) to \(I_{10}\) and \(I_{11}\), respectively, which, with the help of (7.10), results in (7.11).

Let us define

\[
G(x, t; x_0) := -\frac{1}{4} [V(x_0) + V(x) + D(x, x_0)] \, \theta(x_0 + t - x) - \frac{1}{4} \theta(x_0 + t - x) \sum_{a_j > x} [V(a_j^+) - V(a_j^-)] \, \theta(x - 2a_j + x_0 + t) + \frac{1}{4} \theta(x_0 + t - x) \sum_{a_j < x_0} [V(a_j^+) - V(a_j^-)] \, \theta(-x + 2a_j - x_0 + t), \tag{7.17}
\]

where \(D(x, x_0)\) is the quantity in (7.10).

Theorem 7.3 Assume that \(V\) satisfies hypotheses (H1)-(H5). Then, the discontinuous part of \(\partial\Upsilon_1(x, t; x_0)/\partial t\) is equal to \(G(x, t; x_0)\) defined in (7.17).

PROOF: As in (7.12) we have

\[
\frac{\partial \Upsilon_1(x, t; x_0)}{\partial t} = \theta(x_0 + t - x) \left[-I_{10} + \sum_{j=1}^{N} \kappa_j \varphi_j(x) \varphi_j(x_0) e^{\kappa_j t} \right]. \tag{7.18}
\]

Proceeding as in the proof of Theorem 7.2, we see that the only contribution to the discontinuities comes from the \(O(1/k)\)-term in (7.13), which gives us (7.17).

As a corollary of (7.18), we see that \(U_t(x, t; x_0)\) is the solution to (1.1) satisfying the initial conditions \(U_1(x, 0; x_0) = \delta(x - x_0)\) and

\[
\frac{\partial U_1(x, 0; x_0)}{\partial t} = \delta'(x - x_0) + \sum_{j=1}^{N} \kappa_j \varphi_j(x) \varphi_j(x_0) \tag{7.19}
\]

\[- \frac{i}{2\pi} \int_{-\infty}^{\infty} dk \, k [T(k) m_1(k, x) m_1(k, x_0) - 1] \, e^{ik(x-x_0)}. \]

With the help of (7.11)-(7.13), it is possible to identify the discontinuities on the right-hand side of (7.19) and hence also in \(\partial U_1(x, 0; x_0)/\partial t\). The initial value \(\partial U_t(x, 0; x_0)/\partial t\) can be obtained similarly and its discontinuities can be evaluated explicitly in an analogous manner.
In the next proposition we obtain the asymptotics for our focusing wave U_1 and its temporal derivative as $t \to -\infty$.

Proposition 7.4 Assume V satisfies hypotheses (H1)-(H5). Then, as $t \to -\infty$ we have

$$U_1(x, t; x_0) = \delta(x - x_0 - t) + \frac{1}{2} \theta(x_0 + t - x) \int_x^{x_0} dz V(z) + o(1), \quad (7.20)$$

$$\frac{\partial U_1(x, t; x_0)}{\partial t} = \delta'(x - x_0 - t) + G(x, t; x_0) + o(1), \quad (7.21)$$

where $G(x, t; x_0)$ is the quantity defined in (7.17).

PROOF: Note that the summation term in (6.1) and its t-derivative both vanish as $t \to -\infty$ because $\kappa_j > 0$. With the help of (7.4)-(7.6), as $k \to \infty$ in \mathbb{C}^+ we get

$$T(k) m_l(k, x) m_r(k, x_0) - 1 = \frac{1}{2ik} \int_x^{x_0} dz V(z) + O(1/k^2). \quad (7.22)$$

By the Riemann-Lebesgue lemma, the Fourier transform in (6.1) of the $O(1/k^2)$-terms in (7.22) vanishes as $t \to -\infty$; the contribution from the $O(1/k)$-term in (7.22) leads to (7.20). In a similar manner, in order to obtain (7.21), we use (7.18) and evaluate the contribution from the $O(1/k)$-term in the integrand of (7.13). \[\blacksquare \]

Next, we turn our attention to the inverse scattering problem and describe the recovery of $V(x_0)$ by using only the wave $U_1(x, t; x_0)$ focusing to x_0. Assume that V satisfies hypotheses (H1)-(H5) and that x_0 is a point of continuity of V. As stated below (4.34), we know that the height of the tail Υ_1 at the wavefront at any fixed time $t < -x_0$ is given by (4.30). Furthermore, from (7.11) we see that the x-derivative from the left for the tail Υ_1 at the wavefront is given by

$$\frac{\partial \Upsilon_1(x_0^- + t, t; x_0)}{\partial x} = \frac{1}{4} [V(x_0) - V(x_0 + t)] - \frac{1}{8} \left(\int_{x_0 + t}^{x_0} dz V(z) \right)^2. \quad (7.23)$$

Eliminating the integral term in (4.30) and (7.23), we get

$$V(x_0) = V(x_0 + t) + 2 \Upsilon_1(x_0^- + t, t; x_0)^2 + 4 \frac{\partial \Upsilon_1(x_0^- + t, t; x_0)}{\partial x}. \quad (7.24)$$

Note that all of the three terms on the right-hand side of (7.24) can be measured at some moment $t < -x_0$, where $x_0 + t$ is a point of continuity for V; in fact, we can even make our
measurement when \(t \to -\infty \), in which case \(V(x_0 + t) \to 0 \). Thus, \(V(x_0) \) can be remotely determined by using only the wave that focuses to \(x_0 \).

As a corollary of the arguments leading to (5.21) and (7.24) we obtain the following property for the solution to the Marchenko equation (5.2).

Theorem 7.5 Assume \(V \) satisfies hypotheses (H1)-(H5) and \(V \equiv 0 \) for \(x < 0 \). Then, for any point \(x \in \mathbb{R} \), at which \(V \) is continuous, the solution \(K_r(x, t) \) of the Marchenko equation (5.2) satisfies

\[
\frac{\partial K_r(x, x^-)}{\partial x} - \frac{\partial K_r(x, x^-)}{\partial t} = K_r(x, x^-)^2, \quad x \in \mathbb{R}.
\]

Proof: Note that (7.25) holds trivially for all \(x \leq 0 \) because \(K_r(x, t) = 0 \) for \(x \leq 0 \) as indicated above (5.21). From the Marchenko method, it is known that

\[
V(x_0) = 2 \frac{\partial K_r(x_0, x_0^-)}{\partial x} + 2 \frac{\partial K_r(x_0, x_0^-)}{\partial t}, \quad x \in \mathbb{R}.
\]

From (5.21) we see that \(\Upsilon_1(x, t; x_0) = K_r(x_0, x - t) \) for all \(x < 0 \) and \(t < -x_0 \); hence, we can write (7.24) with \(x_0 > 0 \) and \(t < -x_0 \) as

\[
V(x_0) = 2 K_r(x_0, x_0^-)^2 + 4 \frac{\partial K_r(x_0, x_0^-)}{\partial t}, \quad x_0 > 0.
\]

Finally, comparing (7.26) and (7.27), we see that (7.25) also holds for \(x > 0 \). \(\blacksquare \)

We next present the analog of Theorem 7.5 for \(K_1 \) without a proof. It can also be obtained from (7.25) by changing the signs of \(x \) and \(t \).

Theorem 7.6 Assume \(V \) satisfies hypotheses (H1)-(H5) and \(V \equiv 0 \) for \(x > 0 \). Then, for any point \(x \in \mathbb{R} \), at which \(V \) is continuous, the solution \(K_1(x, t) \) of the Marchenko equation (5.3) satisfies

\[
\frac{\partial K_1(x, x^+)}{\partial x} - \frac{\partial K_1(x, x^+)}{\partial t} = K_1(x, x^+)^2, \quad x \in \mathbb{R}.
\]

VIII. EXAMPLES

In this section we demonstrate wave focusing with some examples. We choose the potentials in these examples as in Fig. 8.1 in order to illustrate various properties of wave focusing developed in the previous sections.
Example 8.1 Consider

\[V(x) = \theta(x) \frac{80(\sqrt{5} + 1)(\sqrt{5} + 2)e^{2\sqrt{5}x}}{[(\sqrt{5} + 1)(\sqrt{5} + 2)e^{2\sqrt{5}x} - 2]^2}. \] (8.1)

Note that \(V \) is supported on the positive half line, and being nonnegative it does not support any bound states. The corresponding scattering coefficients are rational functions of \(k \), and one can obtain explicitly the scattering coefficients and Jost solutions of (1.2). We have

\[T(k) = \frac{k(k + \sqrt{5}i)}{(k + i)(k + 2i)}, \quad L(k) = \frac{2}{(k + i)(k + 2i)}, \quad R(k) = \frac{-2(k + \sqrt{5}i)}{(k + i)(k + 2i)(k - \sqrt{5}i)}, \]

\[f_1(k, x) = e^{ikx} \left[1 + \frac{iE(x)}{k + \sqrt{5}i} \right], \quad x \geq 0; \quad f_r(k, x) = e^{-ikx}, \quad x \leq 0, \]

where

\[E(x) = \frac{4\sqrt{5}}{(1 + \sqrt{5})(2 + \sqrt{5})e^{2\sqrt{5}x} - 2}. \] (8.4)

Using (8.2) and (8.3) in (3.3) and (3.4), we get

\[f_1(k, x) = \frac{(k + i)(k + 2i)}{k(k + \sqrt{5}i)} e^{ikx} + \frac{2}{k(k + \sqrt{5}i)} e^{-ikx}, \quad x \leq 0, \]

\[f_r(k, x) = e^{-ikx} \left[1 - \frac{iE(x)}{k - \sqrt{5}i} \right] - \frac{2(k + \sqrt{5}i)e^{ikx}}{(k + i)(k + 2i)(k - \sqrt{5}i)} \left[1 + \frac{iE(x)}{k + \sqrt{5}i} \right], \quad x \geq 0, \]

Using a contour integration in (4.18), the wave \(U_1(x, t; x_0) \) can be explicitly evaluated and verified that \(U_1(x, 0; x_0) = \delta(x - x_0) \). When \(x_0 > 0 \), this wave is illustrated in Fig. 8.2
and it can be verified that the support of the tail is as stated in Theorem 6.6. When \(x_0 < 0 \), the wave is illustrated in Fig. 8.3, and it can be verified that the support of the tail is compatible with the result of Theorem 6.5. It can also be verified directly that the jump discontinuity at the wavefront is compatible with (4.30), the discontinuities in the \(x \)-derivative of the tail agree with (7.11), and the discontinuities in the \(t \)-derivative agree with (7.17).

Fig. 8.2 The focusing wave of Example 8.1 with \(x_0 = 1 \) is shown at \(t = -2, -1, 0, 1, 2 \).

Fig. 8.3 The focusing wave of Example 8.1 with \(x_0 = -1 \) is shown at \(t = 0, 1, 1.2, 2, 3 \).

Example 8.2 Let us now consider a focusing example with a bound state. Let \(T(k) = (k + i)/(k - i) \) and \(L(k) = R(k) = 0 \), which corresponds to the one-parameter family of potentials

\[
V(c, x) = -\frac{16c^2 e^{2x}}{(2e^{2x} + c^2)^2},
\]

where \(c \) is a bound-state norming constant. The Jost solutions for \(x \in \mathbb{R} \) are given by

\[
f_i(k, x) = e^{ikx} \left[1 - \frac{2i}{k + i} \frac{e^{2x}}{2e^{2x} + c^2} \right], \quad f_i(k, x) = e^{-ikx} \left[1 - \frac{4i}{k + i} \frac{e^{2x}}{2e^{2x} + c^2} \right].
\]

Using (4.18) we get

\[
U_1(x, t; x_0) = \delta(x - x_0 - t) + \theta(-x + x_0 + t) \frac{4c^2 e^{x+x_0}(e^t - e^{-t})}{(2e^{2x} + c^2)(2e^{2x_0} + c^2)}.
\]
It can readily be verified that $U_1(x, 0; x_0) = \delta(x - x_0)$. In this example, since V has no discontinuities, at each fixed t, the x-derivative of $U_1(\cdot, t; x_0)$ exists for all $x < x_0 + t$. The discontinuities in the tail, in its x-derivative, and in its t-derivative occur only at the wavefront, and it can be verified that those discontinuities agree with (4.30), (7.11), and (7.17), respectively. The wave is illustrated in Figs. 8.4 and 8.5 for positive and negative x_0, respectively.

Fig. 8.4 The focusing wave of Example 8.2 with $c = x_0 = 1$ is shown at $t = -3, -2, -1, 0, 1$.

Fig. 8.5 The focusing wave of Example 8.2 with $c = -x_0 = 1$ is shown at $t = -2, -1, 0, 1, 2$.

Example 8.3 Consider the focusing for

$$R(k) = \frac{1}{(k + i)^2}, \quad T(k) = \frac{k(k + \sqrt{2}i)}{(k + i)^2},$$

corresponding to the potential

$$V(x) = \theta(-x) \frac{16(\sqrt{2} + 1)^2 e^{-2\sqrt{2}x}}{[(\sqrt{2} + 1)^2 e^{-2\sqrt{2}x} - 1]^2}.$$

We have $f_1(k, x) = e^{ikx}$ for $x \geq 0$, and

$$f_r(k, x) = e^{-ikx} \left[1 + \frac{i}{k + \sqrt{2}i (\sqrt{2} + 1)^2 e^{-2\sqrt{2}x} - 1} \right], \quad x \leq 0.$$

Note that there are no bound states; the potential is supported in $(-\infty, 0)$ and hence the region $(0, +\infty)$ is the ‘free region.’
We can evaluate U_1 explicitly and verify that U_1 focuses to x_0 at time $t = 0$. When $x_0 > 0$, as indicated in Theorem 6.4, a gap develops between the wavefront and the tail, which is illustrated in Fig. 8.6. When $x_0 < 0$, the corresponding wave is illustrated in Fig. 8.7. It can be verified directly that the discontinuity in the tail at the wavefront, the discontinuities in the x-derivative of the tail, and the discontinuities in the t-derivative of the tail agree with the results in (4.30), (7.11), and (7.17), respectively.

![Fig. 8.6 The focusing wave of Example 8.3 with $x_0 = 1$ is shown at $t = -1, 0, 0.5, 1, 2$.](image)

![Fig. 8.7 The focusing wave of Example 8.3 with $x_0 = -1$ is shown at $t = -1, 0, 1, 2, 3$.](image)

Next, we illustrate the recovery of $V(x_0)$ by using the technique described at the end of Sec. IV.

Example 8.4 Consider the potential of Example 8.1. With the help of (4.35), it is possible to obtain $V(x_0)$ for $x_0 > 0$ as we illustrate here. Since $V \equiv 0$ when $x < 0$, we see that $V(x_0 + t) = 0$ for any fixed $t < -x_0$. Using (8.2) and (8.3), it is possible to construct $U_1(x, t; x_0)$ explicitly. Then $\Gamma_1(x_0, t)$ given in (4.34) can be computed as $\sqrt{\frac{t}{5}} - 3 + E(x_0)$, where $E(x)$ is the quantity defined in (8.4). Then, using (4.35), we obtain $V(x_0) = 2 E'(x_0)$, agreeing with (8.1).

Finally, we illustrate the recovery of $V(x_0)$ by using the technique described at the end of Sec. VII.
Example 8.5 Consider the focusing wave of Example 8.2. From (8.6) with \(x = x_0^+ + t \), we get

\[
\Upsilon_1(x_0^+, t; x_0) = \frac{4c^2 e^{t + x_0} (e^t - e^{-t})}{(2e^{2x_0} + c^2) (2e^{2(t + x_0)} + c^2)},
\]

and hence

\[
\lim_{t \to -\infty} \Upsilon_1(x_0^+, t; x_0) = -\frac{4c x_0}{2e^{2x_0} + c^2}.
\]

(8.7)

Moreover, from (8.6) we have

\[
\frac{\partial \Upsilon_1(x_0^+, t; x_0)}{\partial x} = \frac{4c^2 e^{2x_0+t} (e^t - e^{-t}) (c^2 - c^2(t+x_0))}{(2e^{2x_0} + c^2) (2e^{2(t + x_0)} + c^2)^2},
\]

and hence

\[
\lim_{t \to -\infty} \frac{\partial \Upsilon_1(x_0^+, t; x_0)}{\partial x} = \frac{4c^2 x_0}{2e^{2x_0} + c^2}.
\]

(8.8)

Since \(\lim_{t \to -\infty} V(x_0 + t) = 0 \), using (8.7) and (8.8) in (7.24), we obtain

\[
V(x_0) = -\frac{16c^2 e^{2x_0}}{(2e^{2x_0} + c^2)^2},
\]

which agrees with (8.5).

IX. FOCUSING FOR THE VARIABLE-SPEED WAVE EQUATION

In this section we analyze focusing for the variable-speed wave equation given in (9.14) by using the corresponding results for (1.1).

Consider the generalized Schrödinger equation

\[
\frac{d^2 \psi(k, x)}{dx^2} + k^2 H(x)^2 \psi(k, x) = Q(x) \psi(k, x), \quad x \in \mathbb{R},
\]

(9.1)

where \(Q \) is real valued and belongs to \(L^1_1(\mathbb{R}) \), and \(H \) is bounded, strictly positive, \(H - 1 \in L^1(\mathbb{R}) \), and \(2HH'' - 3(H')^2 \in L^1_1(\mathbb{R}) \). Via the Liouville transformation

\[
y = y(x) := \int_0^x dz H(z), \quad \phi(k, y(x)) := \sqrt{H(x)} \psi(k, x),
\]

(9.2)

we can transform (9.1) into the Schrödinger equation

\[
\frac{d^2 \phi(k, y)}{dy^2} + k^2 \phi(k, y) = V(y) \phi(k, y), \quad y \in \mathbb{R},
\]

(9.3)
with

\[V(y) = V(y(x)) = \frac{Q(x)}{H(x)^2} + \frac{H''(x)}{2H(x)^3} - \frac{3H'(x)^2}{4H(x)^4}. \] (9.4)

The aforementioned conditions on \(Q \) and \(H \) guarantee that \(V \) is real valued and belongs to \(L^1_\text{loc}(\mathbb{R}) \), for which the scattering and inverse scattering problems are well understood.

Let \(f_l(k, x) \) and \(f_r(k, x) \) denote the Jost solutions of (9.1) satisfying the boundary conditions (2.1) and (2.2), respectively. The scattering coefficients for (9.1) are obtained as in (2.3) and (2.4). For the analysis of the scattering and inverse scattering problems for (9.1), see e.g. Aktosun (1992a,b). It is known that the potential \(V(y) \) has bound states if and only if \(Q(x) \) has bound states. Since \(H(x) \) is strictly positive, the mapping \(x \mapsto y \) is one-to-one. Thus, for any \(x_0 \) there is a unique \(y_0 := y(x_0) \), and conversely.

Let us denote the Jost solutions of (9.3) by \(g_l(k, y) \) and \(g_r(k, y) \), from the left and right, respectively. Let us use \(\tau(k) \), \(\rho(k) \), and \(\ell(k) \) to denote the transmission coefficient and the reflection coefficients from the right and left, respectively, for (9.3). We have, see e.g. Aktosun (1992a),

\[g_l(k, y) = e^{-ikA_-} \sqrt{H(x)} f_l(k, x), \quad g_r(k, y) = e^{-ikA_+} \sqrt{H(x)} f_r(k, x), \] (9.5)

\[\tau(k) = T(k) e^{ikA}, \quad \ell(k) = L(k) e^{2ikA_-}, \quad \rho(k) = R(k) e^{2ikA_+}, \] (9.6)

where

\[A_\pm := \pm \int_0^{+\infty} dt \left[1 - H(t) \right], \quad A := A_- + A_. \]

As seen from the first formula in (9.6) the bound states for (9.1) and (9.3) occur simultaneously at the same \(k \)-value on the positive imaginary axis, i.e. at the common poles of \(T(k) \) and \(\tau(k) \) in \(\mathbb{C}^+ \). We let \(N \) denote the number of bound states for (9.1) and let the bound states occur at \(k = i\kappa_j \) with \(0 < \kappa_1 < \cdots < \kappa_N \).

In terms of the Jost solutions of (9.3), as in (4.1) and (4.2), let us define

\[\tilde{K}_1(y, t) := \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \left[g_l(k, y) - e^{iky} \right] e^{-ikt}, \]

\[\tilde{K}_r(y, t) := \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \left[g_r(k, y) - e^{-iky} \right] e^{ikt}. \]
As in (4.4) we have
\[
\tilde{K}_1(y, t) = 0, \quad t < y; \quad \tilde{K}_r(y, t) = 0, \quad t > y.
\]
For each fixed \(y \in \mathbb{R}, \tilde{K}_1(y, \cdot) \) and \(\tilde{K}_r(y, \cdot) \) belong to \(L^2(\mathbb{R}) \cap L^1(\mathbb{R}) \). They are discontinuous at \(t = y \), and as in (4.5) the jumps there are related to \(V \) as
\[
\tilde{K}_1(y, y^+) = \frac{1}{2} \int_y^\infty dz \, V(z), \quad \tilde{K}_r(y, y^-) = \frac{1}{2} \int_{-\infty}^y dz \, V(z).
\]
Next we present the analog of Theorem 3.1 for (9.1).

Theorem 9.1 Assume \(Q \) and \(H \) satisfy the conditions stated below (9.1). Then
\[
\frac{1}{2\pi} \int_{-\infty}^{\infty} dk \, T(k) \, f_1(k, x) \, f_r(k, x_0) + \sum_{j=1}^{N} \varphi_j(x) \, \varphi_j(x_0) = \frac{\delta(x - x_0)}{H(x) \, H(x_0)}, \quad (9.7)
\]
where \(\varphi_j(x) \) are the normalized bound-state wave functions for (9.1) corresponding to the bound states at \(k = i\kappa_j \) with \(j = 1, \ldots, N \).

PROOF: Using (9.5) and (9.6), from (3.6) we get
\[
\frac{1}{2\pi} \int_{-\infty}^{\infty} dk \, \tau(k) \, g_1(k, y) \, g_r(k, y_0) + \sum_{j=1}^{N} \xi_j(y) \, \xi_j(y_0) = \delta(y - y_0), \quad (9.8)
\]
where \(\xi_j(y) \) are the normalized bound-state wave functions for (9.3). Using (9.5) and (9.6), we can write the first term on the left-hand side of (9.8) as
\[
\frac{1}{2\pi} \int_{-\infty}^{\infty} dk \, \tau(k) \, g_1(k, y) \, g_r(k, y_0) = \frac{\sqrt{H(x) \, H(x_0)}}{2\pi} \int_{-\infty}^{\infty} dk \, T(k) \, f_1(k, x) \, f_r(k, x_0). \quad (9.9)
\]
As in (2.5) and (2.7), for \(j = 1, \ldots, N \) we have
\[
\xi_j(y) = \frac{g_1(i\kappa_j, y)}{\sqrt{\int_{-\infty}^{\infty} dz \, g_1(i\kappa_j, z)^2}}, \quad \varphi_j(x) = \frac{H(x) \, f_1(i\kappa_j, x)}{\sqrt{\int_{-\infty}^{\infty} dz \, H(z)^2 \, f_1(i\kappa_j, z)^2}}. \quad (9.10)
\]
With the help of (9.5) and (9.10), we see that \(\xi_j(y) \) and \(\varphi_j(x) \) are related to each other as
\[
\xi_j(y) = \frac{\varphi_j(x)}{\sqrt{H(x)}}, \quad (9.11)
\]
37
and thus the summation term on the left-hand side of (9.8) is expressed as

$$
\sum_{j=1}^{N} \xi_j(y) \xi_j(y_0) = \sum_{j=1}^{N} \frac{\varphi_j(x) \varphi_j(x_0)}{\sqrt{H(x)} H(x_0)}.
$$

(9.12)

Moreover, from \(dy/dx = H(x)\) and the fact that \(y = y_0\) if and only if \(x = x_0\), we get

$$
\delta(y - y_0) = \frac{\delta(x - x_0)}{\sqrt{H(x)} H(x_0)}.
$$

(9.13)

Hence, using (9.9), (9.12), and (9.13) in (9.8), we obtain (9.7).

Using the Fourier transformation (1.3), we can transform (9.1) into the variable-speed wave equation

$$
\frac{\partial^2 w(x, t)}{\partial x^2} - H(x)^2 \frac{\partial^2 w(x, t)}{\partial t^2} = Q(x) w(x, t), \quad x, t \in \mathbb{R},
$$

(9.14)

where \(1/H(x)\) corresponds to the variable wave speed. We are interested in wave focusing for (9.14); in other words, we would like to construct causal solutions to (9.14) incident either from the left or right such that they focus at time \(t = 0\) to any specified point \(x_0\). In particular, we want to construct solutions to (9.14) satisfying \(w(x, 0) = \delta(x - x_0)/H(x_0)\).

Let us define

$$
W_1(x, t; x_0) := \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \ T(k) \ f_1(k, x) \ f_1(k, x_0) \ e^{-ikt} + \sum_{j=1}^{N} \frac{\varphi_j(x) \varphi_j(x_0)}{H(x) H(x_0)} e^{\kappa_j t},
$$

(9.15)

$$
W_r(x, t; x_0) := \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \ T(k) \ f_1(k, x) \ f_1(k, x_0) \ e^{-ikt} + \sum_{j=1}^{N} \frac{\varphi_j(x) \varphi_j(x_0)}{H(x) H(x_0)} e^{\kappa_j t},
$$

(9.16)

where \(\varphi_j\) are the normalized bound-state wave functions given in (9.10).

Theorem 9.2 Assume that \(Q\) and \(H\) satisfy the conditions stated below (9.1). Then \(W_1\) is a causal solution to (9.14) that is incident from the left and that focuses to \(x = x_0\) when \(t = 0\). Similarly, \(W_r\) is a causal solution to (9.14) that is incident from the right and that focuses to \(x = x_0\) when \(t = 0\).

Proof: Since \(g_1(k, y)\) is a solution to (9.3), with the help of (9.2), (9.10), and (9.11) we see that \(W_1\) defined in (9.15) is a solution to (9.14). Using (9.5), (9.6), and (9.12) in (9.15)
we get
\[
\sqrt{H(x)H(x_0)} W_1(x, t; x_0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \, \tau(k) g_1(k, y) g_r(k, y_0) e^{-ikt} + \sum_{j=1}^{N} \xi_j(y) \xi_j(y_0) e^{\kappa_j t}.
\]
(9.17)

By comparing the right-hand sides of (4.18) and (9.17) and applying Theorem 4.3, we see that the theorem is proved for W_1. The proof for W_r defined in (9.16) is similarly obtained. ■

We see from Theorem 9.2 that W_1 consists of the wavefront $\delta(y-y_0-t)/\sqrt{H(x)H(x_0)}$ followed by a tail on the left and that it is incident from the left. Similarly, W_r consists of the wavefront $\delta(y-y_0+t)/\sqrt{H(x)H(x_0)}$ followed by a tail on the right and that it is incident from the right.

The Marchenko equations associated with (9.1) were analyzed in Aktosun (1992a). Using the results given in Secs. III and IV, it is possible to give various representations for W_1 and W_r, similar to those in (4.22), (4.23), (5.13), (5.14), (5.19), and (5.20), and thus obtain the analogs of Theorems 4.5 and 5.3. We let the interested reader work out the details.

Next we present an example of focusing for (9.14).

Example 9.3 Consider
\[
y(x) = \theta(-x) \left[x - 1 + \frac{1}{1-x} \right] + \theta(x) \left[x + 1 - \frac{1}{x+1} \right],
\]
and hence
\[
H(x) = \theta(-x) \frac{1 + (1-x)^2}{(1-x)^2} + \theta(x) \frac{1 + (1+x)^2}{(1+x)^2}.
\]
Note that $H(x)$ is continuous, but $H'(x)$ has a discontinuity at $x = 0$. Even though the focusing theory we outlined above is developed under the assumption that H'' exists, it can be extended in a straightforward manner when H'' contains some Dirac delta distributions. We have $H(0) = 2$, $H'(0^+) = -2$, $H'(0^-) = 2$, and hence H'' contains a delta distribution at $x = 0$. Letting
\[
Q(x) = \theta(-x) \frac{-3}{[1+(1-x)^2]^2} + \theta(x) \frac{-3}{[1+(1+x)^2]^2},
\]
(9.18)
from (9.4) we get $V(y) = -\delta(y)/2$. In Fig. 9.1 we show $y(x)$, $H(x)$, and $Q(x)$.

![Graphs of y(x), H(x), and Q(x)](image)

Fig. 9.1 The plots of $y(x)$, $H(x)$, and $Q(x)$ in Example 9.3.

Using (9.5) and (9.6) we obtain

$$T(k) = \frac{4k e^{2i k}}{4k - i}, \quad R(k) = \frac{4i e^{2i k}}{4k - i}, \quad L(k) = \frac{4i e^{2i k}}{4k - i},$$

$$f_1(k, x) = \begin{cases}
\frac{e^{ik(y-1)}}{\sqrt{H(x)}}, & x \geq 0, \\
(1 + \frac{1}{4ik}) \frac{e^{-ik(y+1)}}{\sqrt{H(x)}} - \frac{1}{4ik} \frac{e^{ik(y-1)}}{\sqrt{H(x)}}, & x \leq 0,
\end{cases}$$

$$f_1(k, x) = \begin{cases}
\frac{e^{-ik(y+1)}}{\sqrt{H(x)}}, & x \geq 0, \\
(1 + \frac{1}{4ik}) \frac{e^{ik(y+1)}}{\sqrt{H(x)}} - \frac{1}{4ik} \frac{e^{ik(y+1)}}{\sqrt{H(x)}}, & x \leq 0.
\end{cases}$$

Note that there is a bound state at $k = i/4$. Using (2.7) and (9.11) we get the normalized bound-state wave function as

$$\varphi(x) = \frac{\sqrt{H(x)}}{2} e^{-|y|/4}.$$

If the focusing point x_0 occurs in $[0, +\infty)$, with $y_0 := y(x_0)$ from (9.15) we get

$$W_1(x, t; x_0) = \frac{\delta(y - y_0 - t)}{\sqrt{H(x) H(x_0)}} + \frac{\theta(-x) w_- (x, t; x_0) + \theta(x) w_+(x, t; x_0)}{4 \sqrt{H(x) H(x_0)}},$$

where

$$w_- (x, t; x_0) := -\theta(-y + y_0 + t) + \theta(y + y_0 + t) + \theta(-y - y_0 + t)$$

$$- \theta(y - y_0 + t) + \theta(y - y_0 + t) e^{(y-y_0+t)/4},$$

40
\[w_+(x, t; x_0) := \theta(-y - y_0 + t) e^{-(y+y_0-t)/4}. \]

It can directly be verified that \(W_1(x, 0; x_0) = \delta(x-x_0)/[H(x)H(x_0)] \). This wave is illustrated in Fig. 9.2.

![Wave.png](attachment:Wave.png)

Fig. 9.2 The focusing wave of Example 9.3 with \(x_0 = 1 \) is shown at \(t = -1, -0.5, 0, 0.5, 1 \).

Now let us consider a slight modification of the above example.

Example 9.4 Suppose that \(y(x) \) and hence \(H(x) \) are as in Example 9.3. Let us assume that \(Q(x) \) is given by

\[
Q(x) = \delta(x) + \theta(-x) \frac{-3}{[1 + (1-x)^2]^2} + \theta(x) \frac{-3}{[1 + (1+x)^2]^2},
\]

and hence differs from (9.18) by a delta distribution at \(x = 0 \). From (9.4) it follows that \(V(y) = 0 \) for all \(y \in \mathbb{R} \), and hence \(\tau(k) = 1 \) and \(\rho(k) = \ell(k) = 0 \). Thus, we have a reflectionless case and there are no bound states. In this case, from (9.5) and (9.6) we get \(T(k) = e^{2ik} \), \(R(k) = L(k) = 0 \), and

\[
f_1(k, x) = \frac{e^{ik(y-1)}}{\sqrt{H(x)}}, \quad f_1'(k, x) = \frac{e^{-ik(y+1)}}{\sqrt{H(x)}}.
\]

Since \(Q \) contains a delta distribution, \(f_1' \) and \(f_1'' \) are discontinuous in \(x \) at \(x = 0 \). Using (9.15) we obtain

\[
W_1(x, t; x_0) = \frac{\delta(y-y_0-t)}{\sqrt{H(x)H(x_0)}}.
\]

Thus, the wave \(W_1 \) is always focused, and there is no tail following the wavefront due to the fact that there is no reflection.

Acknowledgments. The authors are grateful to Prof. Paul Sacks for some useful discussions and for preparing an animated example of wave focusing. The research leading
to this article was supported in part by the National Science Foundation under grant DMS-9803219 and the Department of Energy under grant DE-FG02-01ER45861.

REFERENCES

Rose, J. H., “Time-reversal, focusing and exact inverse scattering,” In: M. Fink et al. (eds),