OPTIMAL CONTROL OF CHEMICAL VAPOR
DEPOSITION REACTOR

By

Avner Friedman
and
Bei Hu

IMA Preprint Series # 1428
September 1996

INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS
UNIVERSITY OF MINNESOTA
514 Vincent Hall
206 Church Street S.E.
Minneapolis, Minnesota 55455
OPTIMAL CONTROL OF
CHEMICAL VAPOR DEPOSITION REACTOR

AVNER FRIEDMAN* AND BEI HU†

Abstract. We study a simple model of chemical vapor deposition on a silicon wafer. The control is a flux of chemical species, and the objective is to grow the semiconductor film so that its surface attains, as nearly as possible, a prescribed profile. The surface is spatially fast oscillating due to the small feature scale, and therefore the problem is formulated in terms of its homogenized approximation. We prove that the optimal control is bang-bang, and we use this information to develop a numerical scheme for computing the optimal control.

1. The Problem. Chemical vapor deposition is one of the steps in semiconductor processing. Figure 1 shows schematically a chemical vapor deposition reactor with silicon wafer placed on a table. A flux g of chemical species (plasma) is injected from the top, and it diffuses onto the wafer. The feature size on the semiconductor surface is submicron, approximately 10^{-6} the linear size of the reactor. Because of the small feature size, the evolving surface of the semiconductor film affects the actual deposition of the plasma on the film, and must therefore be taken into account in the model.

A problem of interest is: How to choose the control variable g so that the surface of the film will approximate a prescribed desired profile.

We shall consider a simple model where the reactor is a 2-d rectangle:

$$\Omega_0 = \{(x_1, x_2); \quad -a < x_1 < a, \quad 0 < x_2 < b\}$$

and the wafer occupies the entire base

$$\Gamma = \{(x_1, 0); \quad -a < x_1 < a\}.$$

The surface of the film over the wafer is then a moving boundary

$$\Gamma_\varepsilon(t) : \quad x_2 = \varepsilon f_\varepsilon(x_1, t), \quad -a < x_1 < a$$

*University of Minnesota, Institute for Mathematics and its Applications, Minneapolis, MN 55455
†University of Notre Dame, Department of Mathematics, Notre Dame, Indiana 46556.
where ε is a small positive parameter, of the same order of magnitude as the feature size. We expect f_ε to be nonnegative, and set

$$\Omega_\varepsilon(t) = \{(x_1, x_2) \in \Omega_0; \; \varepsilon f_\varepsilon(x_1, t) < x_2 < b\}.$$

We assume that the plasma consists of just one active species with concentration u, and that u satisfies the diffusion equation

$$u_t - \Delta u = 0 \quad \text{for} \quad x = (x_1, x_2) \in \Omega_\varepsilon(t),$$

and the boundary conditions

$$\frac{\partial u}{\partial n} = g \quad \text{on} \quad \Gamma_b = \{(x_1, b); \; -a < x_1 < a\},$$

$$\frac{\partial u}{\partial x_1} = 0 \quad \text{on} \quad x_1 = \pm a,$$

$$\frac{\partial u}{\partial n} + p(x_1, \frac{x_1}{\varepsilon})u = 0 \quad \text{on} \quad \Gamma_\varepsilon(t)$$

where n is the outward normal.
Setting
\[V_N = \text{velocity of points on } \Gamma_\varepsilon(t) \text{ in the direction } n, \]
the equation of the continuity is
\[V_N = \varepsilon \frac{\partial u}{\partial n}, \]
or, by (1.4),
\[V_N = -\varepsilon pu \quad \text{on } \Gamma_\varepsilon(t). \]
(1.5)

Finally, we prescribe initial conditions
\[u(x, 0) = 0, \quad f_\varepsilon(x_1, 0) = f_0(x_1, \frac{x_1}{\varepsilon}). \]
(1.6)

Our basic assumptions on \(p \) and \(f_0 \) are:

(a) \(p(x_1, \xi_1) \) and \(f_0(x_1, \xi_1) \) are smooth functions in
\[(x_1, \xi_1) \in [-a, a] \times \mathbb{R}, \text{ 1-periodic in } \xi_1, \]
(1.7) (b) \(p_{x_1}(\pm a, \xi_1) = p_{\xi_1}(\pm a, \xi_1) \equiv 0, \quad (f_0)_{x_1}(\pm a, \xi_1) = (f_0)_{\xi_1}(\pm a, \xi_1) \equiv 0, \)
(c) \(p(x_1, \xi_1) \geq p_0 > 0, \quad f_0(x_1, \xi_1) \geq 0. \)

Note that (1.5) can be written in the form
\[\frac{\partial f_\varepsilon}{\partial t} = pu \left\{ 1 + \left(\frac{\partial (\varepsilon f_\varepsilon)}{\partial x_1} \right)^2 \right\}^{1/2} \quad \text{on } \Gamma_\varepsilon(t). \]
(1.8)
The function \(g = g(x_1, t) \) is a control variable defined in the rectangle
\[Q = \{(x_1, t); \quad -a \leq x_1 \leq a, \quad 0 \leq t \leq T\}. \]

We shall consider two classes of control sets:
\[\mathfrak{A} = \left\{ g \in L^\infty(Q); \quad 0 \leq g \leq K \right\}, \]
\[\mathfrak{A}_M = \left\{ g \in L^\infty(Q); \quad 0 \leq g \leq K, \quad \int_Q g dx_1 dt \leq M \right\} \]
where \(KT > M. \)

Friedman and Hu [6] proved that for any \(g \in \mathfrak{A} \) there exists a unique classical solution \((u_\varepsilon, f_\varepsilon) \) of (1.1)–(1.7) for \(0 \leq t \leq T_0 \), where \(T_0 \) depends only on \(K \), and
\[\max_{0 \leq t \leq T_0} \| u_\varepsilon - u_0 \|_{L^2(\Gamma_\varepsilon(t))} \leq C \varepsilon, \]
(1.9)
\begin{equation}
\max_{0 \leq t \leq T_0} \left\| f_\varepsilon(x_1, t) - f(x_1, \frac{x_1}{\varepsilon}, t) \right\|_{L^2(\Omega_\varepsilon(t))} \leq C\varepsilon;
\end{equation}

here \((u_0, f)\) form the unique solution of the homogenized problem

\begin{align*}
\frac{\partial u_0}{\partial t} - \Delta u_0 &= 0 \quad \text{for } x \in \Omega_0, \\
\frac{\partial u_0}{\partial n} &= g(x_1, t) \quad \text{on } \Gamma_b = \{x_2 = b\}, \\
\frac{\partial u_0}{\partial x_1} &= 0 \quad \text{on } \{x_1 = \pm a\}, \\
\frac{\partial u_0}{\partial n} + Pu_0 &= 0 \quad \text{on } \Gamma = \{x_2 = 0\}, \\
u_0(x, 0) &= 0 \quad \text{on } \Omega_0
\end{align*}

where

\begin{equation}
P(x_1, t) = \int_0^1 p(x_1, \xi_1) \left[1 + (f_\xi(x_1, \xi_1, t))^2\right]^{1/2} d\xi_1,
\end{equation}

and

\begin{align*}
f_t(x_1, \xi_1, t) &= p(x_1, \xi_1)u_0(x_1, 0, t) \left[1 + (f_\xi(x_1, \xi_1, t))^2\right]^{1/2}, \\
f(x_1, \xi_1, 0) &= f_0(x_1, \xi_1).
\end{align*}

Let \(G(x_1, \xi_1, s)\) be the solution of the hyperbolic equation

\begin{equation}
\frac{\partial G}{\partial s} = p(x_1, \xi_1) \left[1 + G^2_{\xi_1}\right]^{1/2}, \quad 0 \leq s \leq S,
\end{equation}

with initial condition

\begin{equation}
G(x_1, \xi_1, 0) = f_0(x_1, \xi_1).
\end{equation}

Then we can represent \(f\) in the form

\begin{equation}
f(x_1, \xi_1, t) = G(x_1, \xi_1, \int_0^t u_0(x_1, 0, \tau) d\tau).
\end{equation}

Note that \(S\) can be taken to be any positive number such that the characteristics of (1.18), (1.19) do not intersect each other for all times \(0 \leq s \leq S\).

One can check that the function

\[\|g\|_{L^\infty} \cdot \left(x_2 + \frac{1}{p_0}\right)\]

satisfies (1.11)–(1.15) with "\(\geq\)" in (1.12), (1.14), (1.15), and consequently it is \(\geq u_0\).

Hence

\begin{equation}
0 \leq u_0 \leq K\left(b + \frac{1}{p_0}\right).
\end{equation}
As in the proof of Theorem 5.1 in [6] one can then show that \(T_0 \) can be taken to be any number satisfying

\[
T_0 \leq T, \quad T_0 K \left(b + \frac{1}{p_0} \right) \leq S
\]

provided \(\varepsilon \) is small enough, say \(\varepsilon \leq \varepsilon_0 \). We shall henceforce choose \(T \) such that

\[
T \leq \frac{S}{K(1 + 1/p_0)}
\]

and take \(0 < \varepsilon < \varepsilon_0 \); then for any \(g \in \mathfrak{g} \) there exists a unique classical solution of (1.1)–(1.7) for \(0 \leq t \leq T \).

Let \(c_\varepsilon(x_1, t) \) be a positive continuous function for \((x_1, t) \in Q \), and let \(\psi(t) \) be a continuous positive function for \(0 \leq t \leq T \). We introduce the functional

\[
\tilde{J}[g] = \int_0^T \int_{-a}^a \psi(t) \left(f_\varepsilon(x_1, t) - c_\varepsilon(x_1, t) \right)^2 dx_1 dt.
\]

We wish to find \(g \) which minimizes this functional.

In view of the estimate (1.10), if we replace \(f_\varepsilon(x_1, t) \) by \(f(x_1, x_1 / \varepsilon, t) \) we incur a small error, \(O(\varepsilon) \). We shall henceforce make this replacement, and also take \(c_\varepsilon \) to have the form:

\[
(1.22) \quad c_\varepsilon = c(x_1, x_1 / \varepsilon, t) \quad \text{where} \quad c(x_1, \xi_1, t) \quad \text{is a continuous positive function for} \quad -a \leq x_1 \leq a, \xi_1 \in \mathbb{R}, 0 \leq t \leq T, \ 1\text{-periodic in} \xi_1.
\]

The functional we shall consider is

\[
(1.23) \quad J[g] = \int_0^T \int_{-a}^a \int_0^1 \psi(t) \left(f(x_1, \xi_1, t) - c(x_1, \xi_1, t) \right)^2 d\xi_1 dx_1 dt.
\]

Problem (P).

\[
(1.24) \quad \minimize \{ J[g]; \ g \in \mathfrak{g} \}
\]

where \((f, u_0) \) is the solution of (1.11)–(1.17).

Problem (P).

\[
(1.25) \quad \minimize \{ J[g]; \ g \in \mathfrak{g}_M \}
\]

where \((f, u_0) \) is the solution of (1.11)–(1.17).

Optimal control problems for chemical vapor deposition reactor were recently considered in [12] [13]; the models in these articles are based on ODE and do not incorporate the moving surface of the film.
The model of stationary film surface
\[x_2 = \varepsilon f(x_1, \frac{x_1}{\varepsilon}) \]
with \(p \) as in (1.7) was considered by Belyaev [1] [2] (see also [14]), assuming that \(u \) satisfies the Poisson equation; matched asymptotic expansion was employed in [8] [9] [10] to study the same problem. Articles [5; Chap 10] [8] [9] and [11] describe the physical aspects of the model. A more general stationary boundary
\[x_2 = f_0(x_1) + \varepsilon f_1(x_1, \frac{x_1}{\varepsilon}) + \varepsilon^2 f_2(x_1, \frac{x_1}{\varepsilon}, \frac{x_1}{\varepsilon^2}) \]
was considered in [7].

In §2 we shall derive an optimality condition, using a method similar to [3] [4]. We shall apply this condition, in §3, to obtain some information on the structure of any optimal control \(g_0 \). Section 4 deals with final-time objective function. Finally, in §5 we provide a numerical scheme based on the results of §3.

2. An optimality condition. The existence of an optimal control \(g_0 \) to problems (P) or \((P_M) \) can be established by a standard compactness argument.

Let \((u_0, f)\) be the solution of (1.11)–(1.17) corresponding to \(g_0 \), with \(P = P_0 \), that is,
\[P_0(x_1, t) = \int_0^1 p(x_1, \xi_1) \left\{ 1 + C_{\xi_1}^2 \left(x_1, \xi_1, \int_0^t u_0(x_1, 0, \tau) d\tau \right) \right\}^{1/2} d\xi_1. \]

Take any function \(h(x_1, t) \) such that
\[g_0 + \delta h \in B \quad (or \in B) \quad \text{for any small } \delta > 0, \]
and denote the corresponding solution of (1.11)–(1.17) by \((u_t, f_t)\), Then
\[\frac{\partial u_t}{\partial t} - \Delta u_t = 0 \quad \text{for } x \in \Omega_0, \]
\[\frac{\partial u_t}{\partial n} = g_0 + \delta h \quad \text{on } \Gamma_b, \]
\[\frac{\partial u_t}{\partial x_1} = 0 \quad \text{on } \{x_1 = \pm a\}, \]
\[\frac{\partial u_t}{\partial n} + P_t u_t = 0 \quad \text{on } \Gamma \]
where
\[P_t(x_1, t) = \int_0^1 p(x_1, \xi_1) \left\{ 1 + C_{\xi_1}^2 \left(x_1, \xi_1, \int_0^t u_t(x_1, 0, \tau) d\tau \right) \right\}^{1/2} d\xi_1. \]
It follows that
\begin{equation}
 P_t - P_0 = \int_0^1 \left\{ p(x_1, \xi_1) \frac{\partial}{\partial s} \left[1 + C_{\xi_1}^2(x_1, \xi_1, s) \right]^{1/2} \right\}_{s = \int_0^t u_0(x, \rho, \tau) d\tau} \times \int_0^t (u_t - u_0)(x_1, 0, \tau) d\tau \bigg\} d\xi_1 + O \left(\left| \int_0^t (u_t - u_0)(x_1, 0, \tau) d\tau \right|^2 \right).
\end{equation}

By comparison we can estimate \(u_t - u_0 \), in terms of \(\sup |P_t - P_0| \) (cf. the derivation of (1.21)), and this (together with (2.4)) yields an integral inequality for
\[\| u_t - u_0 \|_{L^\infty(\Omega_0 \times \{ t \})}. \]

By Gronwall’s inequality it then follows that
\begin{equation}
 \| u_t - u_0 \|_{L^\infty} \leq C \delta.
\end{equation}

Using parabolic estimates as well as integration along characteristics, as in [7], we can deduce from (2.5) estimates for higher order derivatives of \(u_t - u_0 \); in particular,
\[\| u_t - u_0 \|_{C^1([0,T]; C^\alpha(\overline{\Omega}_0))} \leq C \delta \quad \text{for any } 0 < \alpha < 1. \]

It follows that, for any \(0 < \beta < \alpha \),
\begin{equation}
 \frac{u_t - u_0}{\delta} \rightarrow z_l \quad \text{in } C^\beta(\overline{\Omega}_0 \times [0,T])
\end{equation}

for a sequence \(\delta \rightarrow 0 \).

Since
\[\frac{\partial(u_t - u_0)}{\partial n} + P_0(u_t - u_0) = -u_t(P_t - P_0) \quad \text{on } \Gamma = \{ x_2 = 0 \}, \]

by using (2.4) we get
\[\frac{\partial z_l}{\partial n} + P_0 z_l = \frac{\partial}{\partial s} \int_0^1 \left\{ p(x_1, \xi_1) \left[1 + C_{\xi_1}^2(x_1, \xi_1, s) \right]^{1/2} \right\}_{s = \int_0^t u_0(x, \rho, \tau) d\tau} \times \int_0^t z_l(x_1, 0, \tau) d\tau \bigg\} d\xi_1 \cdot u_0(x_1, 0, t) \]
\[= -\frac{\partial}{\partial t} P_0 \cdot \int_0^t z_l(x_1, 0, \tau) d\tau, \]

or
\begin{equation}
 \frac{\partial z_l}{\partial n} + \frac{\partial}{\partial t} \left\{ P_0 \int_0^t z_l(x_1, 0, \tau) d\tau \right\} = 0 \quad \text{on } \Gamma.
\end{equation}
It will be convenient to introduce the function

\begin{equation}
\zeta(x_1, t) = \int_0^t z_l(x_1, 0, \tau) d\tau.
\end{equation}

It satisfies:

\begin{align}
\frac{\partial \zeta}{\partial t} - \Delta \zeta &= 0 \quad \text{for } x \in \Omega_0, \\
\frac{\partial \zeta}{\partial n} &= \int_0^t l(x_1, \tau) d\tau \quad \text{on } \Gamma_b, \\
\frac{\partial \zeta}{\partial x_1} &= 0 \quad \text{on } \{x_1 = \pm a\}, \\
\frac{\partial \zeta}{\partial n} + P_0(x_1, t) \zeta &= 0 \quad \text{on } \Gamma
\end{align}

and

\begin{equation}
\zeta = 0 \quad \text{for } t = 0.
\end{equation}

Observe that since \(\zeta\) (or \(z_l\)) is uniquely determined, the convergence in (2.6) holds for any sequence \(\delta \to 0\).

By optimality

\[J[g_0 + \delta l] \geq J[g_0] \]

i.e.,

\[\int_0^T \int_{-a}^{a} \int_0^1 \psi(t) \left\{ \left[G(x_1, \xi_1, \int_0^t u_l(x_1, 0, \tau) d\tau) - c(x_1, \xi_1, t) \right]^2 \\
- \left[G(x_1, \xi_1, \int_0^t u_0(x_1, 0, \tau) d\tau) - c(x_1, \xi_1, t) \right]^2 \right\} d\xi_1 \geq 0. \]

Dividing by \(\delta\) and letting \(\delta \to 0\), we easily obtain

\begin{equation}
\int_0^T \int_{-a}^{a} \sigma(x_1, t) \zeta(x_1, 0, t) dx_1 dt \geq 0
\end{equation}

where

\[\sigma(x_1, t) = \psi(t) \left[G \left(x_1, \xi_1, \int_0^t u_l(x_1, 0, \tau) d\tau \right) - c(x_1, \xi_1, t) \right] \\
\cdot \left[G_s \left(x_1, \xi_1, \int_0^t u_0(x_1, 0, \tau) d\tau \right) \right] d\xi_1. \]

We next wish to recast (2.14) in a more useful form. To do that we introduce the "adjoint" problem to (2.9)–(2.13):

\begin{equation}
\frac{\partial w}{\partial t} + \Delta w = 0 \quad \text{for } x \in \Omega_0,
\end{equation}
(2.17) \[\frac{\partial w}{\partial n} = 0 \quad \text{on } \Gamma_b, \]

(2.18) \[\frac{\partial w}{\partial x_1} = 0 \quad \text{on } \{x_1 = \pm a\}, \]

(2.19) \[\frac{\partial w}{\partial n} + P_0(x_1, t)w = \sigma(x_1, t) \quad \text{on } \Gamma \]

with terminal condition

(2.20) \[w = 0 \quad \text{for } t = T. \]

Then

\[
0 = \int_0^T \int_{\Omega_0} \left(\zeta w \right)_t \, dx \, dt = \int_0^T \int_{\Omega_0} \left(w \Delta \zeta - \zeta \Delta w \right) \, dx \, dt \\
= \int_0^T \int_{\Gamma_b} \left(\frac{\partial \zeta}{\partial n} w - \frac{\partial w}{\partial n} \zeta \right) + \int_0^T \int_{\Gamma} \left[\left(\frac{\partial \zeta}{\partial n} + P_0 \zeta \right) w - \left(\frac{\partial w}{\partial n} + P_0 w \right) \zeta \right]
\]

or

\[
\int_0^T \int_{-a}^a \left(\int_0^t l(x_1, \tau) \, d\tau \right) w(x_1, b, t) \, dx_1 \, dt = \int_0^T \int_{-a}^a \sigma(x_1, t) \zeta(x_1, 0, t) \, dx_1 \, dt \geq 0
\]

by (2.14). Setting

(2.21) \[W(x, t) = \int_t^T w(x, \tau) \, d\tau, \]

we summarize:

Theorem 2.1. If \((g_0, u_0)\) is an optimal solution of problem (P) (or (PM)), then for any \(l\) such that \(g_0 + \delta l \in \mathcal{A}\) (or \(l \in \mathcal{A}_M\)) for all small \(\delta > 0\), there holds:

(2.22) \[\int_0^T \int_{-a}^a W(x_1, b, t) l(x_1, t) \, dx_1 \, dt \geq 0, \]

where \(W\) is defined by (2.21) and \(w\) is the solution to (2.16)–(2.20).

3. **Properties of the minimizers.** In this section we use Theorem 2.1 to derive properties of \(g_0\).

Theorem 3.1. Let \((g_0, u_0)\) be a solution of problem (P) or (PM), and assume that

(3.1) \[\int_{-a}^a \sigma^2(x_1, t) \, dx_1 \neq 0 \quad \text{for a.e. } t \in (0, T). \]

Then

(3.2) \[g_0 = K \mathcal{X}_A \]

where \(A\) is a subset of \(Q\).
This means that the optimal control is bang-bang.

Proof. Consider first the case where \((g_0, u_0)\) is a solution to problem (P). If the assertion (3.2) is not true then there is a sufficiently large integer \(n\) and a subset \(B\) of \(Q\) with positive measure, such that

\[
\frac{1}{n} \leq g_0 \leq K - \frac{1}{n} \quad \text{on } B.
\]

By Fubini's theorem, there is a set \(\Sigma \subset [0, T]\) of positive measure such that, for any \(t \in \Sigma\), the set

\[
\Sigma_t = \{(x_1, t) \in B\}
\]

has positive measure.

For any \(l\) bounded and supported on \(B\), \(g_0 + \delta l\) is in \(\mathcal{A}\) if \(\delta\) is a small positive number. Hence, by Theorem 2.1,

\[
\int_0^T \int_{-a}^a \left(\int_t^T w(x_1, b, \tau) d\tau \right) l(x_1, t) dx_1 dt \geq 0.
\]

Since the same is true for \(-l\),

\[
(3.3) \quad \int_t^T w(x_1, b, \tau) d\tau = 0 \quad \text{on } B,
\]

and, by differentiation,

\[
(3.4) \quad w(x_1, b, t) = 0 \quad \text{a.e. in } B.
\]

We may assume that every point in \(B\) is a point of Lebesgue density 1. Since \(w(x, t)\) is \(C^\infty\) in \((\Omega_0 \cup \Gamma_b) \times (0, T)\), it follows that the successive derivatives

\[
\partial_{x_1}^m \partial_t^n w(x_1, b, t) \quad (m + n = 1, 2, \ldots)
\]

also vanish on \(B\). Recall, by (2.17), that

\[
\frac{\partial}{\partial x_2} w(x_1, b, t) \equiv 0 \quad \text{in } B.
\]

Using (2.16) we deduce that

\[
\frac{\partial^2}{\partial x_2^2} w(x_1, b, t) = 0 \quad \text{in } B
\]

and, as before,

\[
\frac{\partial^2}{\partial x_2^2} \partial_{x_1}^m \partial_t^n w(x_1, b, t) = 0 \quad \text{in } B.
\]
We next differentiate (2.16) in x_2 and deduce that

$$\frac{\partial^3}{\partial x_2^3} w(x_1, b, t) \equiv 0 \quad \text{in } B;$$

by another differentiation,

$$\frac{\partial^4}{\partial x_2^4} w(x_1, b, t) \equiv 0 \quad \text{in } B, \text{ etc.}$$

Thus all the derivatives of w vanish on the set $\{(x_1, b, t); \ (x_1, t) \in B\}$. Since $w(x, t)$ is analytic in x in $\Omega_0 \cup \Gamma_b$, it follows that

$$w(x, t) \equiv 0 \quad \text{for } x \in \Omega_0,$$

for a.e. $t \in \Sigma$. Recalling (2.19) we conclude, in particular, that $\sigma(x_1, t) = 0$ if $-a < x_1 < a$, for a.e. $t \in \Sigma$, which is a contradiction to the assumption (3.1).

In the case of (P_M), we need to impose on l the restriction $\int_B l \leq 0$, and we therefore obtain (by imposing just the condition $\int_B l = 0$), instead of (3.3), the relation

$$\int_t^T w(x_1, b, \tau) d\tau = \text{constant} \quad \text{on } B.$$

Differentiating in t we get (3.4), and we can then proceed as before. \(\Box\)

Remark 3.1 A by-product of the above proof is the assertion that each set $\{W = \mu\}$ has measure zero.

We next wish to get some information on the set A.

Theorem 3.2. Under the assumptions of Theorem 3.1 there exists a $\lambda \leq 0$ such that

$$g_0 = K \quad \text{a.e. on } \{(x_1, t) \in Q, \ W(x_1, b, t) < \lambda\},$$

$$g_0 = 0 \quad \text{a.e. on } \{(x_1, t) \in Q, \ W(x_1, b, t) > \lambda\};$$

furthermore, $\lambda = 0$ for a minimizer of problem (P), or for a minimizer of problem (P_M) if $\int_Q g_0 < M$.

Proof. We first prove that (3.5) for some constant λ. Suppose this is not the case. Then there exist subsets B_1, B_2 of Q of positive measure, and a large positive integer n, such that

$$g_0 = K \quad \text{in } B_1, \quad g_0 = 0 \quad \text{in } B_2.$$
and
\[W(x_1, b, t) > W(\bar{x}_1, b, \bar{t}) + \frac{1}{n} \]
for any \((x_1, t) \in B_1, (\bar{x}_1, \bar{t}) \in B_2\). We may assume that \(B_1\) and \(B_2\) have the same measure.

Take \(l = -1\) on \(B_1\), \(l = 1\) on \(B_2\), \(l = 0\) elsewhere. Then \(g_0 + \delta l\) is admissible control for both problems \((P)\) and \((P_M)\) if \(\delta\) is positive and small. Hence, by Theorem 2.1,
\[\int_{B_1} W(x_1, b, t) \leq \int_{B_2} W(x_1, b, t), \]
which is a contradiction to (3.6).

If \((g_0, u_0)\) is a solution (to either problem \((P)\) or problem \((P_M)\)), then \(g_0 = 0\) on the set \(\{W(x_1, b, t) > 0\}\); for otherwise there is a subset \(B\) of positive measure on which \(g_0 = K\) on \(B\). We can take \(l = -1\) on \(B\) and zero elsewhere and get a contradiction to (2.22). This proves that \(\lambda \leq 0\).

Similarly, for problem \((P)\) (or for problem \((P_M)\) when \(\int_Q g_0 < M\)), \(g_0\) must equal to \(K\) on the set \(\{W(x_1, b, t) < 0\}\), so that (3.5) holds with \(\lambda = 0\).

Remark 3.2 If \(g_0\) is a control satisfying the necessary conditions of Theorem 3.2, then \(J[g]\) cannot take maximum at \(g_0\) in the sense that
\[J[g_0 + \delta l] \leq J[g_0] \]
for some \(l \neq 0\) a.e., and a sequence \(\delta = \delta_n \to 0+\). Indeed, otherwise, we get the reverse inequality to (2.22), namely
\[\int_0^T \int_{-a}^a W(x_1, b, t)l(x_1, t)dx_1 dt \leq 0. \]

However, since \(g_0 + \delta l\) is admissible,
\[l \leq 0 \quad \text{on} \quad \{g_0 = K\}, \]
\[l \geq 0 \quad \text{on} \quad \{g_0 = 0\}, \]
so that \(\text{sgn } l = \text{sgn}(W - \lambda)\). Since further \(l \neq 0\) and \(W - \lambda \neq 0\) a.e. in \(Q\), it follows that \(\int_Q (W - \lambda)l > 0\), a contradiction to (3.6) if \(\lambda = 0\). If \(\lambda < 0\), then we are in the constrained case \((P_M)\) with \(\int_Q g_0 = M\), and consequently \(\int_Q l \leq 0\). Hence
\[\int_Q Wl \geq \int_Q (W - \lambda)l > 0, \]
a contradiction to (3.8). In the above analysis we could have taken $-l$ instead of l; hence the restriction $\delta > 0$ can be removed, and we have actually proved the following results:

If g_0 satisfies the optimality condition of Theorem 3.2, then $J[g]$ takes strict local minimum at g_0 in any direction l ($l \neq 0$ a.e.):

$$J[g_0 + \delta l] > J[g_0] \quad \text{if } \delta \text{ is small enough, and } g_0 + \delta l \in \mathcal{A} \ (\text{or } g_0 + \delta l \in \mathcal{A}_M).$$

Thus the necessary optimality condition is (roughly) also sufficient, provided (3.1) is satisfied.

Remark 3.3 The function $c(x_1, \xi_1, t)$ is the goal we wish to achieve for $f(x_1, \xi_1, t)$. It is natural to assume that

$$f(x_1, \xi_1, 0) < c(x_1, \xi_1, 0),$$

i.e., initially (before the deposition) the surface of the film has the lower profile than the desire surface. If this situation prevails for all $t \leq T$, i.e., if

$$f(x_1, \xi_1, t) < c(x_1, \xi_1, t),$$

for all $(x_1, \xi_1, t) \in [-a, a] \times [0, 1] \times [0, T]$ then, by (1.20),

$$G(x_1, \xi_1, \int_0^t u_0(x_1, 0, t) d\tau) - c(x_1, \xi_1, t) < 0,$$

and, since $G_s > 0$,

(3.9) \quad \sigma(x_1, t) < 0.

Theorem 3.3. Let (g_0, u_0) be a solution to problem (P) or (P_M) and assume that

(3.10) \quad \sigma(x_1, t) \leq 0, \quad \int_{-a}^{a} \sigma^2(x_1, t) dx_1 \neq 0 \quad \text{a.e.}

Then the set $\{g_0 = K\}$ is a subgraph, i.e., there exists a function $\varphi(x_1) (-a \leq x_1 \leq a)$ such the symmetric difference

(3.11) \quad \{g_0 = K\} \triangle \{(x_1, t) \in Q; \ 0 \leq t \leq \varphi(x_1)\}

has zero measure; if further $\sigma(x_1, T) \neq 0$, then $\varphi(x_1)$ is C^∞ in a neighborhood of any point \bar{x}_1 such that $-a \leq \bar{x}_1 \leq a$ and $0 < \varphi(\bar{x}_1) < b$.
Proof. Since \(\sigma \leq 0 \), (2.19) implies that
\[
\frac{\partial w}{\partial n} + P_0 w \leq 0
\]
and, by maximum principle, \(w \leq 0 \). Consequently
\[
\frac{\partial W}{\partial t} = -w \geq 0,
\]
i.e., \(W(x,t) \) is monotone increasing in \(t \), and (3.11) follows from Theorem 3.2.

Under the additional assumption that \(\sigma(x_1,T) \neq 0 \), \(w \) is strictly negative on \(Q \) (by strong maximum principle), and then
\[
(3.12) \quad \frac{\partial W(x_1,b,t)}{\partial t} \neq 0 \quad \text{on } Q.
\]
The function \(t = \varphi(x_1) \) is determined by solving
\[
W(x_1,b,t) = \lambda
\]
for \(t = t(x_1) \). Since (3.12) holds, and since \(W \) is in \(C^\infty \) away from \(\Gamma \), the implicit function theorem asserts that \(\varphi \) is uniquely defined and it belongs to \(C^\infty \) in a neighborhood of any point \(\bar{x}_1 \) such that \(-a < \bar{x}_1 < a \) and \(0 < \varphi(\bar{x}_1) < b \). The solution \(u_0 \) can be extended by reflection across \(x_1 = \pm a \) (see [6]) and, consequently, the above is valid also if \(\bar{x}_1 = \pm a \). □

Note that since \(W(x,t) \leq 0 \) for \(t < T \) (when (3.10) holds), Theorem 3.2 implies that, for the problem (P), \(\varphi(x_1) \equiv T \) i.e., \(g_0 \equiv K \) a.e.

4. Final-time control. In this section we study the optimal control for the problem where we are interested only in the profile at the final time \(t = T \). The functional of (1.23) is replaced by:
\[
J^T[g] = \int_{-a}^{a} \int_{0}^{1} \left(f_\varepsilon(x_1,\xi_1,T) - c(x_1,\xi_1) \right)^2 d\xi_1 dx_1.
\]

Problem (P)^T.
\[
(4.2) \quad \text{minimize } \{ J^T[g]; \quad g \in \mathcal{A} \}
\]
where \((f,u_0) \) is the solution of (1.11)–(1.17).

Problem (P)^T_M.
\[
(4.3) \quad \text{minimize } \{ J^T[g]; \quad g \in \mathcal{A}_M \}
\]
where \((f, u_0)\) is the solution of (1.11)-(1.17).

The existence of an optimal control \(g_0\) to problems \((P^T)\) or \((P^T_M)\) can be established by a standard compactness argument.

For the optimality condition, we can argue as in Section 2. Using the functional in (4.1), we deduce, instead of (2.14), the inequality
\[
\int_{-a}^{a} \sigma(x_1) \zeta(x_1, 0, T) dx_1 \geq 0
\]
where
\[
\sigma(x_1) = \int_0^1 \left[G(x_1, \xi_1, \int_0^T u_0(x_1, 0, \tau) d\tau) - c(x_1, \xi_1) \right]
\cdot \left[G_s(x_1, \xi_1, \int_0^T u_0(x_1, 0, \tau) d\tau) \right] d\xi_1.
\]

We now proceed to define the adjoint problem: For any small \(\eta > 0\), let \(w = w_\eta\) be the solution of the problem:
\[
\frac{\partial w}{\partial t} + \Delta w = 0 \quad \text{for } x \in \Omega_0,
\]
\[
\frac{\partial w}{\partial n} = 0 \quad \text{on } \Gamma_b,
\]
\[
\frac{\partial w}{\partial n} = 0 \quad \text{on } \{x_1 = \pm a\},
\]
\[
\frac{\partial w}{\partial n} + P_0(x_1, t) w = \frac{\chi_{[T-\eta,T]}}{\eta} \sigma(x_1) \quad \text{on } \Gamma
\]
with terminal condition
\[
w = 0 \quad \text{for } t = T.
\]
As in Section 2 we obtain, for \(W(x, t) = \int_t^T w(x_1, x_2, \tau) d\tau\),
\[
\int_0^T \int_{-a}^{a} W(x_1, b, t) l(x_1, t) dx_1 dt = \frac{1}{\eta} \int_{T-\eta}^{T-\eta} \int_{-a}^{a} \sigma(x_1) \zeta(x_1, 0, t) dx_1 dt.
\]
It is clear that \(W = W_\eta\) satisfies:
\[
\frac{\partial W}{\partial t} + \Delta W = 0 \quad \text{for } x \in \Omega_0,
\]
\[
\frac{\partial W}{\partial n} = 0 \quad \text{on } \Gamma_b,
\]
\[
\frac{\partial W}{\partial n} = 0 \quad \text{on } \{x_1 = \pm a\},
\]
\[
\frac{\partial W}{\partial n} + P_0(x_1, t) W = \int_t^T \frac{\chi_{[T-\eta,T]}(\tau)}{\eta} \sigma(x_1) d\tau
\]
\[
+ \int_t^T (P_0)_t(x_1, \tau) W(x_1, b, \tau) d\tau \quad \text{on } \Gamma
\]
with the terminal condition
\[W = 0 \quad \text{for } t = T. \]

If we let \(\eta \to 0 \) and use also (4.4) and (4.11), we obtain the following optimality condition:

Theorem 4.1. If \((g_0, u_0)\) is an optimal solution of problem \((P^T)\) (or \((P^T_M)\)), then, for any \(l \) such that \(g_0 + \delta l \in \mathbb{A} \) (or \(\mathbb{A}_M \)) for all small \(\delta > 0 \), there holds:

\[\int_0^T \int_{-a}^a W(x_1, b, t)l(x_1, t)dx_1dt \geq 0, \]

where \(W \) is the solution of the following system:

\[\frac{\partial W}{\partial t} + \Delta W = 0 \quad \text{for } x \in \Omega_0, \]

\[\frac{\partial W}{\partial n} = 0 \quad \text{on } \Gamma_b, \]

\[\frac{\partial W}{\partial n} = 0 \quad \text{on } \{x_1 = \pm a\}, \]

\[\frac{\partial W}{\partial n} + P_0(x_1, t)W = \sigma(x_1) + \int_t^T (P_0)_T(x_1, \tau)W(x_1, b, \tau)d\tau \quad \text{on } \Gamma \]

with terminal condition

\[W = 0 \quad \text{for } t = T. \]

We can also prove, under appropriate assumptions, that optimal control is bang-bang.

Theorem 4.2. Let \((g_0, u_0)\) be a solution of problem \((P^T)\) (or \((P^T_M)\)), and assume that

\[\int_{-a}^a \left\{ \sigma(x_1) + \int_t^T (P_0)_T(x_1, \tau)W(x_1, b, \tau)d\tau - P_0(x_1, t)W(x_1, b, t) \right\}^2 dx_1 \neq 0 \]

for a.e. \(t \in [0, T] \),

Then

\[g_0 = Kx_A \quad \text{a.e in } Q, \]

where \(A \) is a subset of \(Q \).

The proof is the same as in Section 3 and will not be repeated here.

Remark 4.1. If

\[\int_{-a}^a \sigma^2(x_1)dx_1 \neq 0, \]
then (4.23) holds if \(T - \gamma < t < T \) for some small \(\gamma > 0 \), and (4.24) is thus valid in \(Q \cap \{T - \gamma < t < T\} \).

Remark 4.2 If the diffusion coefficient is very large, then we may also consider the elliptic system with the time \(t \) as a parameter. For this system (with a free boundary), the homogenized system was derived in [6]. The optimality conditions of Sections 3–5 extend also to such a system.

5. **Numerical results.** In this section we give some numerical results for the problems \((P)\) and \((P_M)\).

The restriction (3.1) under which we proved the bang-bang principle seems quite weak, and is undoubtedly satisfied “generically”. The numerical scheme described below assumes that (3.1) holds, so that any optimal control possesses the property established in Theorem 3.2.

I. Direct Iteration:

We base our method on the following successive iteration scheme:

For \(g_j \in \mathfrak{A} \) (or \(\mathfrak{A}_M \)), we solve the system (1.11)–(1.20) using a finite difference scheme. Then we solve the parabolic system (2.16)–(2.20) for \(w_j \) using again the finite difference scheme. Next we integrate \(w_j \) to get \(W_j \) and define the new \(g_{j+1} \) by (3.5), and iterate.

In defining \(g_{j+1} \) we choose \(\lambda = 0 \) in (3.5) for problem \((P)\), and for problem \((P_M)\) if \(\int_Q g_{j+1} \) turns out to be \(< M \). For Problem \((P_M)\), if the choice \(\lambda = 0 \) does not give a \(g_{j+1} \) which satisfies the constraint, then we shall solve \(\lambda = \lambda_{j+1} \) and \(g_{j+1} \) at the same time, using the constraint equation \(\int_Q g_{j+1} = M \).

It is clear that \(W_j \) depends continuously on the \(L^1 \) norm of \(g_j \). The new \(g_{j+1} \) is basically determined by solving the equation \(W_j = \lambda_{j+1} \). Thus the continuity of \(g_{j+1} \) in the \(L^1 \) norm as a function of \(W_j \) depends on the non-vanishing of \((W_{j,t_1}, W_{j,x_1}) \) on the set \(W_j = \lambda_{j+1} \). We stop the iteration process if the error \(\int_Q |g_{j+1} - g_j| \) first becomes smaller than \(tol \cdot (2K\alpha) \) where the tolerance factor \(tol \) is around \(10^{-2} \).

At \(t = T \), \(w_j = 0 \). Thus \(W_j \) decreases quadratically to zero if \(T - t \to 0 \), and consequently \(g_{j+1} \) is not as sharply determined near \(t = T \). To overcome this difficulty we use a smaller mesh size in \(t \) near \(t = T \).

Our experiments show that this scheme converges in just a few iterations if (3.9) holds for each iteration steps. Figure 2 is a computational result for the problem \((P_M)\).
with the following choice of data:

\[
\begin{align*}
&\text{the domain } 0 < x_1 < 1, \ 0 < x_2 < 1, \ 0 < t < 1, \\
&p(x_1, \xi_1) = 2 + \sin(\pi x_1) + \frac{1}{\pi} \sin(2\pi \xi_1), \\
&c(x_1, \xi_1, t) \equiv c(x_1, \xi_1) = 2 + \sin\left(\frac{\pi}{2} x_1\right) + \cos(2\pi \xi_1), \\
&f_0(x_1, \xi_1) = 1 + \cos\left(\frac{\pi}{2} x_1\right) + \frac{1}{\pi} \sin(2\pi \xi_1), \\
&\text{initial data } q(x) \equiv 0.2, \\
&K = 1 \quad \text{and} \quad M = \frac{1}{2}.
\end{align*}
\]

Note that in the theory developed in the preceding sections we have taken initial data \(q(x) \equiv 0 \). However all the results extend to general smooth initial data \(q(x) \) which are \(\geq 0 \) and which satisfy the consistency condition at \(t = 0 \) with respect to the boundary conditions of both \(u_e \) and \(u_0 \) at \(\partial \Omega_e \) and \(\partial \Omega_0 \), respectively (Actually, consistency at \(x_2 = b \) is not needed). Notice that the choice \(q(x) \equiv 0.2 \) does not satisfy the consistency condition, but it will not cause any problem for numerical computations, since the time step is very small. The reason for choosing \(q \) positive is in order to obtain significant advancement of the free boundary quickly in time.

Accelerated Scheme.

Our experiments show that when (3.9) is not satisfied the Direct Iteration Scheme is either slowly convergent, or not convergent at all. To improve convergence we introduce Accelerated Scheme which includes a penalty term in each iteration so that the step length \(g_{j+1} - g_j \) will not be "too large". Suppose that \(g_j \) is already known; then we consider, instead of (1.23), the functional

\[
(5.1) \quad J_j[g] = J[g] + \frac{\mu_j}{2} \int_0^T \int_{-a}^a \left(g(x_1, t) - g_j(x_1, t) \right)^2 dx_1 dt;
\]

where \(\mu_j \) is a positive constant which converges to 0 as \(j \to \infty \). We denote a minimizer of (5.1) by \(g_{j+1} \). Note that if \(g_j \) is a minimizer of \(J \), then \(J_j \) has the unique minimizer \(g_j \). For this reason we expect a minimizer of \(J_j \) to be a good approximation to the actual minimizer, if \(g_j \) is near this minimizer. We can proceed as in Section 2 to derive the following inequality:

\[
(5.2) \quad \int_0^T \int_{-a}^a \left[W_j(x_1, b, t) + \mu_j \left(g_{j+1}(x_1, t) - g_j(x_1, t) \right) \right] t(x_1, t) dx_1 dt \geq 0,
\]
where W_j is defined by (2.21) with $w = w_j$. From this optimality condition, one can obtain, as in Section 3, for problem (P),

\begin{align}
 g_{j+1} &= K \quad \text{a.e. on } \left\{ (x_1, t) \in Q, \quad W_j(x_1, b, t) < -\mu_j \left(K - g_j(x_1, t) \right) \right\} \\
 g_{j+1} &= 0 \quad \text{a.e. on } \left\{ (x_1, t) \in Q, \quad W_j(x_1, b, t) > \mu_j g_j(x_1, t) \right\}.
\end{align}

Note that we have not specified the value of g_{j+1} in the set

$$S = \left\{ -\mu_j K \leq W_j(x_1, b, t) - \mu_j g_j(x_1, t) \leq 0 \right\}.$$

Since this set is small (as $\mu_j \to 0$ if $j \to \infty$) we arbitrarily set $g_{j+1} = 0$ in $S \cap \left\{ -\frac{1}{2} \mu_j K \leq W_j(x_1, b, t) - \mu_j g_j(x_1, t) \right\}$ and $g_{j+1} = K$ in the complementary subset of S. Thus

\begin{align}
 g_{j+1} &= K \quad \text{a.e. on } \left\{ (x_1, t) \in Q, \quad W_j(x_1, b, t) < -\mu_j \left(\frac{K}{2} - g_j(x_1, t) \right) \right\} \\
 g_{j+1} &= 0 \quad \text{a.e. on } \left\{ (x_1, t) \in Q, \quad W_j(x_1, b, t) > -\mu_j \left(\frac{K}{2} - g_j(x_1, t) \right) \right\}.
\end{align}

Although μ_j converges to zero, for the penalty term to be effective μ_j should not converge too fast to zero. A good choice seems to be

$$\mu_j = \max \left\{ tol, \frac{1}{2Ka} \| g_j - g_{j-1} \|_{L^1((-a,a) \times [0,T])} \right\} \cdot \| W_j(\cdot, b, \cdot) \|_{L^\infty((-a,a) \times [0,T])}$$

where tol is a predetermined small number, and we stop the process if

$$\| g_j - g_{j-1} \|_{L^1((-a,a) \times [0,T])} + \| g_{j+1} - g_j \|_{L^1((-a,a) \times [0,T])} \leq 2 \cdot tol \cdot (2Ka).$$

This Scheme converges much faster than the previous one. We experimented with a variety of data and found that it converges in most cases, although sometimes the convergence is slow (twenty iterations). Figure 3 uses the Accelerated Scheme for the problem (P_M) with the following data:

- the domain $0 < x_1 < 1, \quad 0 < x_2 < 1, \quad 0 < t < 1,$
- $p(x_1, \xi_1) = 3 + \sin(4\pi x_1) + \sin(2\pi \xi_1)$,
- $c(x_1, \xi_1, t) \equiv c(x_1, \xi_1) = 3 + 4(x_1 - 0.5)^2 + \cos(2\pi \xi_1)$,
- $f_0(x_1, \xi_1) = 2 + (1 - x_1) + \frac{1}{\pi} \sin(2\pi \xi_1)$,
- initial data $q(x) \equiv 0.5,$
- and $K = 1,$

and we choose tol to be around 10^{-2}.

In both cases the control is bang-bang, i.e., $g_0 = Kx_A$. In Figure 2 the set A is a subgraph whereas in Figure 3 it is not.
The Optimal Control Function g

Figure 2.
Optimal Control of Free Boundary

Optimal Control Function g

Figure 3.
Acknowledgment. The first author is partially supported by the National Science Foundation Grant DMS #94-01251. The second author is partially supported by the National Science Foundation Grant DMS #92-24935.

REFERENCES

<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1339</td>
<td>R. Lipton</td>
<td>Reciprocal relations, bounds and size effects for composites with highly conducting interface</td>
</tr>
<tr>
<td>1340</td>
<td>H.A. Levine & J. Serrin</td>
<td>A global nonexistence theorem for quasilinear evolution equations with dissipation</td>
</tr>
<tr>
<td>1341</td>
<td>A. Boutet de Monvel & R. Purice</td>
<td>The conjugate operator method: Application to DIRAC operators and to stratified media</td>
</tr>
<tr>
<td>1342</td>
<td>G. Michele Graf</td>
<td>Stability of matter through an electrostatic inequality</td>
</tr>
<tr>
<td>1343</td>
<td>G. Avalos</td>
<td>Sharp regularity estimates for solutions of the wave equation and their traces with prescribed Neumann data</td>
</tr>
<tr>
<td>1344</td>
<td>G. Avalos</td>
<td>The exponential stability of a coupled hyperbolic/parabolic system arising in structural acoustics</td>
</tr>
<tr>
<td>1345</td>
<td>G. Avalos & I. Lasiecka</td>
<td>A differential Riccati equation for the active control of a problem in structural acoustics</td>
</tr>
<tr>
<td>1346</td>
<td>G. Avalos</td>
<td>Well-posedness for a coupled hyperbolic/parabolic system seen in structural acoustics</td>
</tr>
<tr>
<td>1347</td>
<td>G. Avalos & I. Lasiecka</td>
<td>The strong stability of a semigroup arising from a coupled hyperbolic/parabolic system</td>
</tr>
<tr>
<td>1348</td>
<td>A.V. Fursikov</td>
<td>Certain optimal control problems for Navier-Stokes system with distributed control function</td>
</tr>
<tr>
<td>1349</td>
<td>F. Gesztesy, R. Nowell & W. Pötz</td>
<td>One-dimensional scattering theory for quantum systems with nontrivial spatial asymptotics</td>
</tr>
<tr>
<td>1350</td>
<td>F. Gesztesy & H. Holden</td>
<td>On trace formulas for Schrödinger-type operators</td>
</tr>
<tr>
<td>1351</td>
<td>X. Chen</td>
<td>Global asymptotic limit of solutions of the Cahn-Hilliard equation</td>
</tr>
<tr>
<td>1352</td>
<td>X. Chen</td>
<td>Lorenz equations, Part I: Existence and nonexistence of homoclinic orbits</td>
</tr>
<tr>
<td>1353</td>
<td>X. Chen</td>
<td>Lorenz equations Part II: “Randomly” rotated homoclinic orbits and chaotic trajectories</td>
</tr>
<tr>
<td>1354</td>
<td>X. Chen</td>
<td>Lorenz equations, Part III: Existence of hyperbolic sets</td>
</tr>
<tr>
<td>1356</td>
<td>C. Liu</td>
<td>The Helmholtz equation on Lipschitz domains</td>
</tr>
<tr>
<td>1357</td>
<td>G. Avalos & I. Lasiecka</td>
<td>Exponential stability of a thermoelastic system without mechanical dissipation</td>
</tr>
<tr>
<td>1358</td>
<td>R. Lipton</td>
<td>Heat conduction in fine scale mixtures with interfacial contact resistance</td>
</tr>
<tr>
<td>1359</td>
<td>V. Odisharia & J. Peradze</td>
<td>Solvability of a nonlinear problem of Kirchhoff shell</td>
</tr>
<tr>
<td>1360</td>
<td>P.J. Olver, G. Sapiro & A. Tannenbaum</td>
<td>Affine invariant edge maps and active contours</td>
</tr>
<tr>
<td>1361</td>
<td>R.D. James</td>
<td>Hysteresis in phase transformations</td>
</tr>
<tr>
<td>1362</td>
<td>A. Sei & W. Symes</td>
<td>A note on consistency and adjointness for numerical schemes</td>
</tr>
<tr>
<td>1363</td>
<td>A. Friedman & B. Hu</td>
<td>Head-media interaction in magnetic recording</td>
</tr>
<tr>
<td>1364</td>
<td>A. Friedman & J.J.L. Velázquez</td>
<td>Time-dependent coating flows in a strip, part I: The linearized problem</td>
</tr>
<tr>
<td>1365</td>
<td>X. Ren & M. Winter</td>
<td>Young measures in a nonlocal phase transition problem</td>
</tr>
<tr>
<td>1366</td>
<td>K. Bhattacharya & R.V. Kohn</td>
<td>Elastic energy minimization and the recoverable strains of polycrystalline shape-memory materials</td>
</tr>
<tr>
<td>1367</td>
<td>G.A. Chechkin</td>
<td>Operator pencil and homogenization in the problem of vibration of fluid in a vessel with a fine net on the surface</td>
</tr>
<tr>
<td>1368</td>
<td>M. Carme Calderer & B. Mukherjee</td>
<td>On Poiseuille flow of liquid crystals</td>
</tr>
<tr>
<td>1369</td>
<td>M.A. Pinsky & M.E. Taylor</td>
<td>Pointwise Fourier inversion: A wave equation approach</td>
</tr>
<tr>
<td>1370</td>
<td>D. Brandon & R.C. Rogers</td>
<td>Order parameter models of elastic bars and precursor oscillations</td>
</tr>
<tr>
<td>1371</td>
<td>H.A. Levine & B.D. Sleeman</td>
<td>A system of reaction diffusion equations arising in the theory of reinforced random walks</td>
</tr>
<tr>
<td>1372</td>
<td>B. Cockburn & P.-A. Gremaud</td>
<td>A priori error estimates for numerical methods for scalar conservation laws. Part II: Flux-splitting monotone schemes on irregular Cartesian grids</td>
</tr>
<tr>
<td>1373</td>
<td>B. Li & M. Luskin</td>
<td>Finite element analysis of microstructure for the cubic to tetragonal transformation</td>
</tr>
<tr>
<td>1374</td>
<td>M. Luskin</td>
<td>On the computation of crystalline microstructure</td>
</tr>
<tr>
<td>1375</td>
<td>J.P. Matos</td>
<td>On gradient young measures supported on a point and a well</td>
</tr>
<tr>
<td>1376</td>
<td>M. Nitsche</td>
<td>Scaling properties of vortex ring formation at a circular tube opening</td>
</tr>
<tr>
<td>1377</td>
<td>J.L. Bona & Y.A. Li</td>
<td>Decay and analyticity of solitary waves</td>
</tr>
<tr>
<td>1378</td>
<td>V. Isakov</td>
<td>On uniqueness in a lateral cauchy problem with multiple characteristics</td>
</tr>
<tr>
<td>1379</td>
<td>M.A. Kouřitzin</td>
<td>Averaging for fundamental solutions of parabolic equations</td>
</tr>
<tr>
<td>1380</td>
<td>T. Aktosun, M. Klaus & C. van der Mee</td>
<td>Integral equation methods for the inverse problem with discontinuous wavespeed</td>
</tr>
<tr>
<td>1381</td>
<td>P. Morin & R.D. Spies</td>
<td>Convergent spectral approximations for the thermomechanical processes in shape memory allows</td>
</tr>
<tr>
<td>1382</td>
<td>D.N. Arnold & X. Liu</td>
<td>Interior estimates for a low order finite element method for the Reissner-Mindlin plate model</td>
</tr>
<tr>
<td>1383</td>
<td>D.N. Arnold & R.S. Falk</td>
<td>Analysis of a linear-linear finite element for the Reissner-Mindlin plate model</td>
</tr>
<tr>
<td>1384</td>
<td>D.N. Arnold, R.S. Falk & R. Winther</td>
<td>Preconditioning in $H(\text{div})$ and applications</td>
</tr>
<tr>
<td>1385</td>
<td>M. Lavrentiev</td>
<td>Nonlinear parabolic problems possessing solutions with unbounded gradients</td>
</tr>
</tbody>
</table>
1386 O.P. Bruno & P. Laurence, Existence of three-dimensional toroidal MHD equilibria with nonconstant pressure
1387 O.P. Bruno, F. Reitich, & P.H. Leo, The overall elastic energy of polycrystallin martensitic solids
1388 M. Fila & H.A. Levine, On critical exponents for a semilinear parabolic system coupled in an equation and a boundary condition
1390 J.M. Berg & H.G. Kwatny, Unfolding the zero structure of a linear control system
1391 A. Sei, High order finite-difference approximations of the wave equation with absorbing boundary conditions: A stability analysis
1392 A.V. Coward & Y.Y. Renardy, Small amplitude oscillatory forcing on two-layer plane channel flow
1393 V.A. Pliss & G.R. Sell, Approximation dynamics and the stability of invariant sets
1394 J.G. Cao & P. Roblin, A new computational model for heterojunction resonant tunneling diode
1395 C. Liu, Inverse obstacle problem: Local uniqueness for rougher obstacles and the identification of a ball
1396 K.A. Percik-Spector & S.J. Spector, Dynamic cavitation with shocks in nonlinear elasticity
1397 G. Avalos & I. Lasiecka, Exponential stability of a thermoelastic system without mechanical dissipation II: The case of simply supported boundary conditions
1398 B. Brighi & M. Chipot, Approximation of infima in the calculus of variations
1399 G. Avalos, Concerning the well-posedness of a nonlinearly coupled semilinear wave and beam-like equation
1400 R. Lipton, Variational methods, bounds and size effects for composites with highly conducting interface
1401 B.T. Hayes & P.G. LeFloch, Non-classical shock waves in scalar conservation laws
1402 K.T. Joseph & P.G. LeFloch, Boundary layers in weak solutions to hyperbolic conservation laws
1403 Y. Diao, C. Ernst, & E.J.J. Van Rensburg, Energies of knots
1404 Xiaofeng Ren, Multi-layer local minimum solutions of the bistable equation in an infinite tube
1405 Vlastimil Pták, Krylov sequences and orthogonal polynomials
1406 T. Aktosun, M. Klaus, & C. van der Mee, Factorization of scattering matrices due to aptitioning of potentials in one-dimensional Schrödinger-type equations
1408 D.N. Arnold, R.S. Falk, & R. Winther, Preconditioning discrete approximations of the Reissner-Mindlin plate model
1409 M.A. Kouritzin, On exact filters for continuous signals with discrete observations
1410 R. Lipton, The second Stekloff eigenvalue and energy dissipation inequalities for functionals with surface energy
1411 R. Lipton, The second Stekloff eigenvalue of an inclusion and new size effects for composites with imperfect interface
1412 W. Littman & B. Liu, The regularity and singularity of solutions of certain elliptic problems on polygonal domains
1413 C.R. Collins, Spurious oscillations are not fatal in computing microstructures
1414 M.A. Horn, Sharp trace regularity for the solutions of the equations of dynamic elasticity
1415 A. Friedman, B. Hu & Y. Liu, A boundary value problem for the Poisson equation with multi-scale oscillating boundary
1416 P. Baumann, D. Phillips & Q. Tang, Stable nucleation for the Ginzburg-Landau system with an applied magnetic field
1417 J.M. Berg, A strain profile for robust control of microstructure using dynamic recrystallization
1418 P. Klouček, Toward the computational modeling of nonequilibrium thermodynamics of the Martensitic transformations
1419 S. Chawla & S.M. Lenhart, Application of optimal control theory to in situ bioremediation
1420 B. Li & M. Luskin, Nonconforming finite element approximation of crystalline microstructure
1421 H. Kang & J.K. Seo, Inverse conductivity problem with one measurement: Uniqueness of balls in \mathbb{R}^3
1422 Avner Friedman & Robert Gulliver, Organizers, Mathematical modeling for instructors, July 29 – August 16, 1996
1423 G. Frieske, Pair correlations and exchange phenomena in the free electron gas
1424 Y.A. Li & P.J. Olver, Convergence of solitary-wave solutions in a perturbed Bi-Hamiltonian dynamical system
1425 C. Huang, On boundary regularity of vortex patches for 3D incompressible euler systems
1426 C. Huang, A free boundary problem with nonlinear jump and kinetics on the free boundaries
1427 X. Chen, C. Huang & J. Zhao, A nonlinear parabolic equation modeling surfactant diffusion
1428 A. Friedman & B. Hu, Optimal control of chemical vapor deposition reactor
1429 A. Friedman & B. Hu, A non-stationary multi-scale oscillating free boundary for the Laplace and heat equations
1430 X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations
1431 J. Yong, Finding adapted solutions of forward-backward stochastic differential equations – Methods of continuation
1432 J. Yong, Linear forward-backward stochastic differential equations
1433 D.A. Dawson & M.A. Kouritzin, Invariance principles for parabolic equations with random coefficients
1434 R. Lipton, Energy minimizing configurations for mixtures of two imperfectly bonded conductors