OPTIMAL ORDER ERROR ESTIMATES FOR THE FINITE ELEMENT APPROXIMATION OF THE SOLUTION OF A NONCONVEX VARIATIONAL PROBLEM

By

Charles Collins

and

Mitchell Luskin

IMA Preprint Series # 703

September 1990
OPTIMAL ORDER ERROR ESTIMATES FOR THE FINITE ELEMENT APPROXIMATION OF THE SOLUTION OF A NONCONVEX VARIATIONAL PROBLEM*

CHARLES COLLINS† AND MITCHELL LUSKIN‡

Abstract. Nonconvex variational problems arise in models for the equilibria of crystals and other ordered materials. The solution of these variational problems must be described in terms of a microstructure rather than in terms of a deformation. Moreover, the numerical approximation of the deformation gradient often does not converge strongly as the mesh is refined. Nevertheless, the probability distribution of the deformation gradients near each material point does converge. In [6], we introduced a metric to analyze this convergence. In this paper, we give an optimal order error estimate for the convergence of the deformation gradient in a norm which is stronger than the metric in [6].

Key words. finite element method, error estimates, numerical approximation, variational problem, nonconvex

AMS(MOS) subject classifications. 65N15, 65N30, 35J20, 35J70, 73C60

1. Introduction. Nonconvex variational problems often arise in the modeling of the equilibria of crystals or other ordered states [2]–[9], [11]–[20]. For instance, the free energy for a solid crystal which has symmetry-related (martensitic) variants will have multiple, distinct energy wells. These variational problems may fail to attain a minimum value for any admissible deformation. Rather, the deformation gradients of minimizing sequences can have oscillations which do not converge strongly enough to evaluate nonlinear integrals of the deformation gradient such as the bulk energy functional. Nevertheless, the solution to these variational problems can be described in terms of an appropriate mathematical description of microstructure such as the Young measure [2]–[5], [15]–[20].

A continuum theory to describe the equilibria of crystals such as CuZn, CuAlNi, NiAl, and InTl which have symmetry-related variants has been recently developed [2]–[9], [11]–[20]. A corresponding theory of microstructure using the concept of the Young measure or parametrized measure has also been recently developed to describe solutions to the variational problems given by the above continuum theory [2]–[5], [15]–[20]. This theory of microstructure gives a calculus for the computation of macroscopic properties of the crystals.

We have reported computational results for two and three-dimensional models which give oscillations in the gradient on the scale of the mesh [7]–[9]. These oscillations do not

*This work was supported in part by the National Science Foundation and AFOSR through grants DMS 835-1080 and DMS 871-8881, the ARO through grants DAAL03-88-K-0110 and DAAL03-89-G-0081, the Cray Research Foundation, and by a grant from the Minnesota Supercomputer Institute.
†School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455.
‡Applied Mathematics, California Institute of Technology, Pasadena, California 91125.
converge strongly in any L^p space, even locally, as the mesh is refined. However, the probability distribution of the deformation gradients near each material point does converge to a Young measure (or parametrized measure). We introduced a metric to analyze this convergence in [6], and we obtained a $O(h^{1/4})$ convergence rate in this metric for a one-dimensional model problem by obtaining error estimates for the probability distribution of the deformation gradient near each point. In this paper, we utilize some new analytic methods to obtain an optimal order $O(h)$ error estimate for the deformation gradient in a norm with a stronger topology than the metric in [6] as well as other improved estimates.

We define the mathematical problem and the norm in §2, and we give the main results in that section. In §3 we prove the main results for problems with unconstrained boundary conditions. We give the extension of these results to the Dirichlet problem in §4. The optimality of the order of the error estimates in given in §5.

2. Convergence of the deformation gradient. We denote by L^p for $1 \leq p \leq \infty$ with norm $|v|_{L^p}$ the usual space of Lebesgue measurable functions [22] on $I \equiv (0, 1)$ such that

$$|v|_{L^p} \equiv \left[\int_0^1 |v(x)|^p \, dx \right]^{1/p} < \infty \quad \text{for } 1 \leq p < \infty$$

and

$$|v|_{L^\infty} \equiv \text{ess sup}_{x \in I} |v(x)| < \infty.$$

We then denote the Sobolev space H^1 [1] by

$$H^1 = \{ v \in L^2 : v' \in L^2 \}.$$

The energy density $\phi(s)$ for our model of a one-dimensional crystal satisfies

$$\lambda_1 \min\{(s - s_L)^2, (s - s_U)^2\} \leq \phi(s) \leq \lambda_2(|s| + 1)^2 \quad \text{for all } s \in \mathbb{R},$$

(2.1)

$$\phi(s_L) = \phi(s_U) = 0$$

where λ_1 and λ_2 are material constants, s is the linear strain, and s_L and s_U with $s_L < s_U$ represent the transformation strains for the martensitic variants. We note that by Lemma 2 it follows that the energy density need be defined (and satisfy) (2.1) only in a neighborhood of $\{s_L, s_U\}$. A derivation of the energy density (2.1) from a three-dimensional physical model with one-dimensional symmetry is given in [2]. We model the bulk energy of a martensitic one-dimensional crystal [2] by

$$E(v) = \int_0^1 \left[\phi(v'(y)) + (v(y) - f(y))^2 \right] \, dy,$$

(2.2)

where $v(x)$ is a scalar-valued displacement and

$$f(y) = sy + b \quad \text{for } x \in I$$
for \(\bar{s} \) satisfying \(s_L < \bar{s} < s_U \). The functional \(\mathcal{E}(v) \) is well-defined for \(v \in H^1 \). It is well-known (see Lemma 1 below, for instance) that

\[
\inf_{v \in H^1} \mathcal{E}(v) = 0,
\]

but that there does not exist \(u \in H^1 \) such that \(\mathcal{E}(u) = 0 \). (To see this, assume that \(\mathcal{E}(u) = 0 \). Since \(\int_0^1 (u(x) - f(x))^2 \, dx = 0 \), we have that \(u(x) = f(x) \) a.e. Thus, \(\phi(u') = \phi(f') = \phi(\bar{s}) > 0 \). So, \(\int_0^1 \phi(u'(x)) \, dx > 0 \). This contradicts the assumption that \(\mathcal{E}(u) = 0 \).)

We shall give an optimal order error analysis for the minimization of the functional \(\mathcal{E} \) over finite element spaces, \(\mathcal{M}_h \). To define \(\mathcal{M}_h \), let the mesh length \(h = 1/M \) for some \(M \in \mathbb{N} \); let the vertex points \(x_i = ih \) for \(i = 0, \ldots, M \); and let the subintervals \(I_i = (x_{i-1}, x_i) \) for \(i = 1, \ldots, M \). The finite element space \(\mathcal{M}_h \) is defined to be the space of piecewise linear, continuous functions

\[
\mathcal{M}_h \equiv \{ v \in C(I) : v|_{I_i} \text{ is linear for } i = 1, \ldots, M \}.
\]

The approximate solutions \(u_h \in \mathcal{M}_h \) satisfy

\[
(2.3) \quad \mathcal{E}(u_h) = \min_{v_h \in \mathcal{M}_h} \mathcal{E}(v_h) \equiv E_h.
\]

The following lemma was proven in [6]. For completeness, we give a more elementary proof in §3.

Lemma 1. The energy \(E_h \) converges to 0 at the rate given by

\[
E_h \leq \frac{(s_U - s_L)^2 h^2}{4}.
\]

However, \(u_h'(x) \) does not converge as \(h \to 0 \) in any \(L^p \) space, even locally. In [6], it was shown that \(u_h'(x) \) and nonlinear functions of \(u_h'(x) \) converge weakly, though. We introduced a metric for this convergence in [6], and we showed that the convergence rate was \(O(h^{1/4}) \). In this paper, we give a proof that the convergence rate is \(O(h) \) in a norm with a stronger topology than the metric in [6] and we show that this convergence rate is optimal.

Before we define the norm for the convergence of \(u_h'(x) \) we need to recall that we proved in [6] that \(u_h'(x) \) oscillates about a small neighborhood of \(s_L \) and \(s_U \). More precisely, we proved a variant of the following lemma in [6] which we also review in §3.

Lemma 2. The approximate strain \(u_h'(x) \) satisfies the bound

\[
(2.4) \quad \max_{x \in I} \min_{z \in I} \{(u_h'(x) - s_L)^2, (u_h'(x) - s_U)^2\} \leq \frac{(s_U - s_L)^2 h}{4 \lambda_1}.
\]
For \(\hat{s} \in \mathbb{R} \) and \(\alpha > 0 \) denote the closed ball of radius \(\alpha \) at \(\hat{s} \) by

\[
B_\alpha(\hat{s}) = \{ s : \hat{s} - \alpha \leq s \leq \hat{s} + \alpha \}
\]

and denote the closed neighborhood \(N_\alpha \) of \(\{s_L, s_U\} \) by

\[
N_\alpha = B_\alpha(s_L) \cup B_\alpha(s_U).
\]

It follows from Lemma 2 that if \(h \leq 4\alpha^2 \lambda_1/(s_U - s_L)^2 \), then

\[
u'_{h}(x) \in N_\alpha \quad \text{for } x \in I.
\]

Equivalently,

\[
u'_{h}(x) \in N_{h^{1/2}(s_U - s_L)/2\lambda_1^{1/2}} \quad \text{for } x \in I.
\]

Our first main theorem states that the approximate strains, \(u'_{h}(x) \), are locally in the state \(s_L \) with probability

\[
(2.5) \quad \gamma = \frac{s_U - \hat{s}}{s_U - s_L}
\]

and are locally in the state \(s_U \) with probability \(1 - \gamma = (\hat{s} - s_L)/(s_U - s_L) \). In the jargon of the calculus of variations, the measure

\[
(2.6) \quad \nu_x \equiv \gamma \delta_{s_L} + (1 - \gamma) \delta_{s_U} \quad \text{for } 0 < x < 1,
\]

where \(\delta_s \) is the Dirac delta function with unit mass concentrated at \(\hat{s} \) for \(\hat{s} = s_L, s_U \), is the unique Young measure associated with minimizing (2.2).

We define the Sobolev space \(\mathcal{V} \) to be the space of functions \(F(x, s) : I \times N_\alpha \rightarrow \mathbb{R} \) such that

\[
(2.7) \quad \frac{\partial F}{\partial s} \in L^2(I, L^\infty(N_\alpha))
\]

and

\[
\frac{\partial}{\partial x} [F(x, s_U) - F(x, s_L)] \in L^1(I)
\]

with norm (which depends on \(\alpha > 0 \))

\[
\|F\|_\mathcal{V} = \left[\int_0^1 \left| \frac{\partial F}{\partial s}(x, \cdot) \right|^2_{L^\infty(N_\alpha)} dx \right]^{1/2}
\[
+ |F(0, s_U) - F(0, s_L)| + \int_0^1 \left| \frac{\partial}{\partial x} [F(x, s_U) - F(x, s_L)] \right| dx.
\]

We will prove the following theorem.
THEOREM 1. For \(h \leq \min\{4\lambda_1, 4\alpha^2\lambda_1/(s_U - s_L)^2\} \) and \(F \in V \) we have the estimate

\[
(2.8) \quad \left| \int_0^1 [F(x, u'_h(x)) - \gamma F(x, s_L) - (1 - \gamma) F(x, s_U)] \, dx \right| \leq \left[\frac{(s_U - s_L)}{2\lambda_1^{1/2}} + \frac{1}{2\lambda_1^{1/2}} + 4 \right] \|F\|_{V h}.
\]

We note that the thermodynamic properties of materials depend nonlinearly on the strain \(s \). Theorem 1 shows that even though \(u_h(x) \to f(x) \) uniformly as \(h \to 0 \) (see Lemma 5), the material property described by the microscopic density \(F(y, s) \) has the macroscopic density (weak limit)

\[
\gamma F(x, s_L) + (1 - \gamma) F(x, s_U)
\]

for the minimizing microstructure for the energy (2.2).

To estimate the rate of convergence of \(u_h'(x) \) we define the operator norm on the dual of \(V, V^* \), by

\[
(2.9) \quad \|L\|_{V^*} = \sup_{F \in V} \frac{|\langle L, F \rangle|}{\|F\|_V}
\]

for \(L \in V^* \). For \(h \leq 4\alpha^2\lambda_1/(s_U - s_L)^2 \), we can identify with \(u_h' \) the functional \(L_{u_h} \in V^* \) defined by

\[
\langle L_{u_h'}, F \rangle = \int_0^1 F(x, u_h') \, dx
\]

and we identify with \(\nu \equiv \gamma \delta_{s_L} + (1 - \gamma) \delta_{s_U} \) the functional \(L_{\nu} \in V^* \) defined by

\[
\langle L_{\nu}, F \rangle = \int_0^1 [\gamma F(x, s_L) + (1 - \gamma) F(x, s_U)] \, dx.
\]

We then have the following theorem which is a direct consequence of (2.8).

THEOREM 2. For \(h \leq \min\{4\lambda_1, 4\alpha^2\lambda_1/(s_U - s_L)^2\} \) we have that

\[
(2.10) \quad \|L_{u_h'} - L_{\nu}\|_{V^*} \leq \left[\frac{(s_U - s_L)}{2\lambda_1^{1/2}} + \frac{1}{2\lambda_1^{1/2}} + 4 \right] h.
\]

We also have that

\[
\langle L_{u_h'}, F \rangle \leq \|F\|_{L^1(I, C(N_\alpha))} \quad \text{for } F \in L^1(I, C(N_\alpha)).
\]
Thus, \(L_{u_h'} \) is uniformly bounded in the operator norm (with norm 1) in the dual of \(L^1(I, C(\mathcal{N}_\alpha)) \). Since \(V \) is dense in \(L^1(I, C(\mathcal{N}_\alpha)) \) the above result implies that \(L_{u_h'} \to L_v \) as \(h \to 0 \) in the weak* topology of \(L^1(I, C(\mathcal{N}_\alpha))^* \). It is known [10], [23] that

\[
L^1(I, C(\mathcal{N}_\alpha))^* = L^\infty(I, C(\mathcal{N}_\alpha)^*) = L^\infty(I, M(\mathcal{N}_\alpha))
\]

where \(M(\mathcal{N}_\alpha) \) is the space of real Borel measures on \(N_\alpha \) with bounded variation.

Results similar to those described above are given in §4 for the Dirichlet problem to minimize \(\mathcal{E}(v) \) over \(\mathcal{W} \) where

\[
\mathcal{W} \equiv \{ v \in H^1 : v(0) = f(0) \text{ and } v(1) = f(1) \}.
\]

We note that the variational problem

\[
(2.11) \quad \inf_{v \in \mathcal{W}} \int_0^1 \phi(v') \, dy
\]

may have many solutions, both in the sense that the limit of the displacements \(v(x) \) of a minimizing sequence need not be unique and in the sense that the possible Young measure for the strains \(v'(x) \) need not be unique. However, the simplest limit displacement in this case is affine and the unconstrained problem

\[
(2.12) \quad \inf_{v \in H^1} \mathcal{E}(v)
\]

has this as its unique limit displacement. Moreover, in our present situation, the Young measure so generated is also unique. Since the multi-dimensional Dirichlet problem corresponding to (2.11) gives a unique Young measure for appropriate affine boundary conditions [4], we utilize the term

\[
(2.13) \quad \int_0^1 (v(y) - f(y))^2 \, dy
\]

in the definition of \(\mathcal{E}(v) \) to select a unique Young measure analogous to the selection of a unique Young measure for multi-dimensional problems by appropriate Dirichlet boundary conditions. Thus, we consider (2.2) in place of the more traditional variational integral. A mechanical interpretation of the term (2.13) can be obtained from a model of a thin crystal plate glued to a rigid substrate [2].

3. Error estimates for the deformation gradient. We can assume in the following without loss of generality that

\[
f(y) \equiv 0
\]
and
\[s_L < 0 < s_U. \]

To see this, note that \(v_h(x) + f(x) \in \mathcal{M}_h \) if \(v_h \in \mathcal{M}_h \) and that
\[
\mathcal{E}(v + f) = \int_0^1 \left[\phi(v'(y) + \tilde{s}) + v(y)^2 \right] dy.
\]

Further, \(\phi(s + \tilde{s}) \) satisfies (2.1) with \(s_L \) replaced by \(s_L + \tilde{s} \) and \(s_U \) replaced by \(s_U + \tilde{s} \) if \(\phi(s) \) satisfies (2.1). We first give a simplified proof of Lemma 1 [6].

Proof of Lemma 1. Define \(v_h(x) \in \mathcal{M}_h \) by \(v_h(0) = 0 \) and for \(k = 0, \ldots, M - 1 \),
\[
v_h(x_{k+1}) = \begin{cases}
 v_h(x_k) + hs_L & \text{if } |v_h(x_k) + hs_L| \leq |v_h(x_k) + hs_U|, \\
 v_h(x_k) + hs_U & \text{if } |v_h(x_k) + hs_L| > |v_h(x_k) + hs_U|.
\end{cases}
\]

Since \(v'_h(x) = s_L \) or \(v'_h(x) = s_U \) for \(x \in I \) we have that \(\phi(v'_h(x)) \equiv 0 \).

Next, we shall show that
\[
v_h(x) \leq (s_U - s_L)h/2 \quad \text{for } x \in I.
\]

Suppose there were a smallest positive integer \(P \) such that
\[
(3.1) \quad v_h(x_P) > (s_U - s_L)h/2.
\]

Since \(v_h(x_P) > v_h(x_{P-1}) \), it follows from the definition of \(v_h(x) \) above that
\[
v_h(x_P) = v_h(x_{P-1}) + hs_U.
\]

However, by (3.1),
\[
v_h(x_P) = v_h(x_{P-1}) + s_U > (s_U - s_L)h/2,
\]

or equivalently, after some elementary algebra,
\[
|v_h(x_{P-1}) + hs_U| = v_h(x_{P-1}) + hs_U > -v_h(x_{P-1}) - hs_L.
\]

Since \(s_L < s_U \) we also have that
\[
|v_h(x_{P-1}) + hs_U| = v_h(x_{P-1}) + hs_U > v_h(x_{P-1}) + hs_L.
\]

Thus, the previous two inequalities imply that
\[
|v_h(x_{P-1}) + hs_U| > |v_h(x_{P-1}) + hs_L|.
\]
This contradicts the definition of $v_h(x)$. The proof that
\[-v_h(x) \leq (s_U - s_L)h/2 \quad \text{for } x \in I\]
is similar. Thus, we have shown that
\[(3.2) \quad |v_h(x)| \leq (s_U - s_L)h/2 \quad \text{for } x \in I.\]
Hence, it follows that
\[
E_h \leq \mathcal{E}(v_h) \leq \max |v_h|^2 \leq \frac{(s_U - s_L)^2 h^2}{4}. \quad \Box
\]

We next prove Lemma 2 which gives a pointwise estimate of the oscillation of $u'_h(x)$ about s_L and s_U.

Proof of Lemma 2. Since $u'_h(x)$ is piecewise constant on the finite element mesh of length scale h, it follows from (2.1) and Lemma 1 that
\[
\lambda_1 \min\{(u'_h(x) - s_L)^2, (u'_h(x) - s_U)^2\}h \leq \phi(u'_h(x))h \leq \frac{(s_U - s_L)^2 h^2}{4}
\]
for $x \in I$. The result (2.4) follows directly from the above estimate. \quad \Box

The next lemma gives an L^1 estimate of the oscillation of $u'_h(x)$ about s_L and s_U. It will be useful to have the projection operator $\Pi : \mathbb{R} \to \{s_L, s_U\}$ defined by
\[
\Pi s = \begin{cases}
 s_L & \text{for } s < (s_L + s_U)/2, \\
 s_U & \text{for } s \geq (s_L + s_U)/2.
\end{cases}
\]
Note that
\[
|s - \Pi s|^2 = \min\{(s - s_L)^2, (s - s_U)^2\}
\]
so by (2.1)
\[(3.3) \quad \phi(s) \geq \lambda_1 |s - \Pi s|^2.
\]

Lemma 3. We have the estimate
\[(3.4) \quad \int_0^1 |u'_h(x) - \Pi u'_h(x)|^2 \, dx \leq \frac{(s_U - s_L)^2 h^2}{4\lambda_1}.
\]

Proof of Lemma 3. The estimate follows easily from (2.1) and Lemma 1 since they imply that
\[
\lambda_1 \int_0^1 |u'_h(x) - \Pi u'_h(x)|^2 \, dx \leq E_h \leq \frac{(s_U - s_L)^2 h^2}{4}. \quad \Box
\]
Lemma 4. We have the bound
\[
\max_{x \in \mathcal{I}} |u_h(x)| \leq \max \left\{ \max_{x \in \mathcal{I}} |u'_h(x)|, s_U, |s_L| \right\} h.
\]

Proof of Lemma 4. Set
\[
\nu = \max \left\{ \max_{x \in \mathcal{I}} |u'_h(x)|, s_U, |s_L| \right\}.
\]
We assume that
\[
(3.5) \quad \max_{x \in \mathcal{I}} |u_h(x)| > \nu h
\]
and we shall show that this leads to a contradiction by constructing \(\hat{u}_h(x) \in \mathcal{M}_h \) such that
\[E(\hat{u}_h) < E(u_h).\]

By (3.5), there exists \(p \) such that \(|u_h(x_p)| \geq |u_h(x_l)| \) for \(l = 0, \ldots, M \) and \(|u_h(x_p)| > \nu h \). First, we show that \(x_p \neq 0 \) and \(x_p \neq 1 \). If \(u_h(0) > \nu h \), then we construct \(\hat{u}_h(x) \in \mathcal{M}_h \) by
\[
\hat{u}_h(x_k) = \begin{cases}
 u_h(x_1) - s_U h, & \text{for } k = 0 \\
 u_h(x_k), & \text{for } k = 1, \ldots, M.
\end{cases}
\]
Now \(u_h(x_1) > 0 \) since \(u_h(0) > \nu h \) and since \(|u'_h(x)| \leq \nu \) for \(x \in I_1 \). Also, \(|\hat{u}_h(0)| = |u_h(x_1) - s_U h| < h s_U < \nu h \), so \(|\hat{u}_h(x)| < u_h(x) \) for \(x \in I_1 \). Further, \(\hat{u}'_h(x) = s_U \) for \(x \in I_1 \) and \(\hat{u}_h(x) = u_h(x) \) for \(x \in \langle x_1, 1 \rangle \). Thus, we have that
\[E(\hat{u}_h) < E(u_h).\]

Similar arguments for the other cases show that \(x_p \neq 0 \) and \(x_p \neq 1 \).

We may now assume that \(p \) is chosen so that \(0 < x_p < 1 \), that \(|u_h(x_p)| > \nu h \), and that \(|u_h(x_p)| > |u_h(x_{p-1})| \) and \(|u_h(x_p)| \geq |u_h(x_{p+1})| \). In this case, we construct \(\hat{u}_h(x) \in \mathcal{M}_h \) by
\[
\hat{u}_h(x_k) = \begin{cases}
 u_h(x_{p-1}) + u_h(x_{p+1}) - u_h(x_p), & \text{for } k = p \\
 u_h(x_k), & \text{for } k = 0, \ldots, p-1, p+1, \ldots, M.
\end{cases}
\]
Then \(\hat{u}'_h(x) = u'_h(x + h) \) for \(x \in I_p \), \(\hat{u}'_h(x) = u'_h(x - h) \) for \(x \in I_{p+1} \), \(|\hat{u}_h(x)| < |u_h(x)| \) for \(x \in I_p \cup I_{p+1} \), and \(\hat{u}_h(x) = u_h(x) \) for \(x \in (0, x_p - 1) \cup (x_{p+1}, 1) \). Hence, we have that
\[E(\hat{u}_h) < E(u_h).\]

Thus, we have proved the lemma by contradiction. \(\square \)

Next, we give an estimate for the convergence of \(u_h(x) \) to 0. It is shown in §5 that this rate of convergence is optimal.
Lemma 5. If $h \leq 4\lambda_1$, then

$$\max_{x \in I} |u_h(x)| \leq 2(s_U - s_L)h.$$

Proof of Lemma 5. It follows from Lemma 2 that if $h \leq 4\lambda_1$, then

$$\max_{x \in I} |u'_h(x)| \leq 2(s_U - s_L).$$

The result (3.6) now follows from Lemma 4.

Proof of Theorem 1. We estimate the error as follows:

$$\left| \int_0^1 [F(x, u'_h(x)) - \gamma F(x, s_L) - (1 - \gamma)F(x, s_U)] \, dx \right|$$

$$\leq \left| \int_0^1 [F(x, u'_h(x)) - F(x, \Pi u'_h(x))] \, dx \right|$$

$$+ \left| \int_0^1 [F(x, \Pi u'_h(x)) - \gamma F(x, s_L) - (1 - \gamma)F(x, s_U)] \, dx \right|$$

$$= I_1 + I_2.$$

Then we have by (2.5), Lemma 3, and the Cauchy-Schwarz inequality that

$$I_1 \leq \int_0^1 \left| \frac{\partial F}{\partial s}(x, \cdot) \right|_{L^\infty(N_a)} |u'_h(x) - \Pi u'_h(x)| \, dx$$

$$\leq \left(\int_0^1 \left| \frac{\partial F}{\partial s}(x, \cdot) \right|^2_{L^\infty(N_a)} \, dx \right)^{1/2} \left(\int_0^1 |u'_h(x) - \Pi u'_h(x)|^2 \, dx \right)^{1/2}$$

$$\leq \frac{(s_U - s_L)h}{2\lambda_1^{1/2}} \| F \|_V.$$

Let $G(x) = F(x, s_L) - F(x, s_U)$. If $\Pi u'_h(x) = s_L$, then

$$F(x, \Pi u'_h(x)) - \gamma F(x, s_L) - (1 - \gamma)F(x, s_U) = (1 - \gamma)G(x)$$

and if $\Pi u'_h(x) = s_U$, then

$$F(x, \Pi u'_h(x)) - \gamma F(x, s_L) - (1 - \gamma)F(x, s_U) = -\gamma G(x).$$

Note that

$$\frac{\Pi u'_h(x)}{s_U - s_L} = \begin{cases} \gamma - 1 & \text{if } \Pi u'_h(x) = s_L \\ \gamma & \text{if } \Pi u'_h(x) = s_U. \end{cases}$$
Thus, it follows from (3.7) and (3.8) that

\(F(x, \Pi u'_h(x)) - \gamma F(x, s_L) - (1 - \gamma) F(x, s_U) = -\frac{\Pi u'_h(x)}{s_U - s_L} G(x) \quad \text{for } x \in I. \) (3.9)

Hence, we can estimate \(I_2 \) by

\[
I_2 = \left| \int_0^1 \frac{\Pi u'_h(x)}{s_U - s_L} G(x) \, dx \right|
\]

\[
\leq \frac{1}{s_U - s_L} \left| \int_0^1 (\Pi u'_h(x) - u'_h(x)) G(x) \, dx \right| + \frac{1}{s_U - s_L} \left| \int_0^1 u'_h(x) G(x) \, dx \right|
\]

\[
= \frac{1}{s_U - s_L} (I_3 + I_4).
\]

Now by (2.6), Lemma 3, and the Cauchy-Schwarz inequality we have that

\[
I_3 = \left| \int_0^1 [u'_h(x) - \Pi u'_h(x)] [F(x, s_L) - F(x, s_U)] \, dx \right|
\]

\[
\leq \left\{ \int_0^1 [u'_h(x) - \Pi u'_h(x)]^2 \, dx \right\}^{1/2} \left\{ \int_0^1 [F(x, s_L) - F(x, s_U)]^2 \, dx \right\}^{1/2}
\]

\[
\leq \frac{(s_U - s_L) h}{2\lambda_1^{1/2}} \| F \|_V.
\] (3.10)

since [1]

\[
\left\{ \int_0^1 [F(x, s_L) - F(x, s_U)]^2 \, dx \right\}^{1/2}
\]

\[
\leq \left| F(0, s_U) - F(0, s_L) \right| + \int_0^1 \left| \frac{\partial}{\partial x} [F(x, s_U) - F(x, s_L)] \right| \, dx.
\]

Next, use integration by parts on \(I_4 \) and (2.6), (2.7), and Lemma 5 to obtain that

\[
I_4 = \left| u_h(1) G(1) - u_h(0) G(0) - \int_0^1 u_h(x) G'(x) \, dx \right|
\]

\[
\leq \max_{x \in I} |u'_h(x)| \left[|G(1)| + |G(0)| + \int_0^1 |G'(x)| \, dx \right]
\]

\[
\leq \max_{x \in I} |u'_h(x)| \left[2|G(0)| + 2 \int_0^1 |G'(x)| \, dx \right]
\]

\[
\leq 4(s_U - s_L) h \| F \|_V.
\]

Combining these results we obtain that

\[
\left| \int_0^1 [F(x, u'_h(x)) - \gamma F(x, s_L) - (1 - \gamma) F(x, s_U)] \, dx \right|
\]

\[
\leq \left[\frac{(s_U - s_L)}{2\lambda_1^{1/2}} + \frac{1}{2\lambda_1^{1/2}} + 4 \right] \| F \|_V h. \quad \Box
\]
4. The Dirichlet problem. In this section we consider the numerical approximation of the Dirichlet problem to compute \(u_h \in \mathcal{M}_h \cap \mathcal{W} \) satisfying

\[
\mathcal{E}(u_h) = \min_{v_h \in \mathcal{M}_h \cap \mathcal{W}} \mathcal{E}(v_h).
\]

We further assume that there exist \(\lambda_2 \) and \(\bar{\alpha} > 0 \) such that

\[
\phi(s) \leq \lambda_2 |s - \Pi s|^2 \quad \text{for } s \in \mathcal{N}_\alpha.
\]

We can now prove the following variant of Lemma 1 for the Dirichlet problem.

Lemma 6. For \(h \leq 2\bar{\alpha}/(s_U - s_L) \), we have that

\[
\min_{v_h \in \mathcal{M}_h \cap \mathcal{W}} \mathcal{E}(v_h) \leq \left(\frac{\lambda_2}{4} + \frac{2}{3}(s_U - s_L)^2 h^2 \right).
\]

Proof. We define \(w_h \in \mathcal{M}_h \cap \mathcal{W} \) by

\[
w_h(x) = v_h(x) - v_h(1)x
\]

where \(v_h(x) \in \mathcal{M}_h \) is the function defined in Lemma 1. Now by (3.2),

\[
\int_0^1 w_h(x)^2 \, dx \leq 2 \int_0^1 \left[v_h(x)^2 + (v_h(x) - w_h(x))^2 \right] \, dx
\]

\[
\leq \frac{2}{3}(s_U - s_L)^2 h^2.
\]

Further, since \(w'_h(x) \in \mathcal{N}_\alpha \) for \(x \in I \), we have that

\[
\phi(w'_h(x)) \leq \lambda_2 v_h(1)^2
\]

\[
\leq \frac{\lambda_2}{4}(s_U - s_L)^2 h^2, \quad x \in I.
\]

Thus,

\[
\min_{v_h \in \mathcal{M}_h \cap \mathcal{W}} \mathcal{E}(v_h) \leq \left(\frac{\lambda_2}{4} + \frac{2}{3}(s_U - s_L)^2 h^2 \right). \quad \square
\]

Lemmas 2–5 and Theorems 1–2 for the Dirichlet problem can now be proven by the identical arguments used for problem (2.3). (The constants in these results must be changed to reflect the different constants in the bounds for the energy in Lemma 1 and Lemma 6.)

Finally, we note that the results of Lemmas 2–5 and Theorems 1–2 can be extended to the Dirichlet problem when the minimal energies attained in the wells of \(\phi(s) \) are not
equal. More specifically, we can allow the energy density $\phi(s)$ to have the property that $\dot{\phi}(s) = \phi(s) + l(s)$ satisfies (2.1) where $l(s)$ is an affine function. To see this, note that if

$$\dot{\mathcal{E}}(v) = \int_0^1 \left[\dot{\phi}(v'(y)) + (v(y) - f(y))^2 \right] dy,$$

then for $v \in \mathcal{W}$,

$$\dot{\mathcal{E}}(v) = \mathcal{E}(v) + l(v(1) - v(0)) = \mathcal{E}(v) + l(f(1) - f(0)).$$

Thus, $u_h \in \mathcal{M}_h \cap \mathcal{W}$ satisfies

$$\mathcal{E}(u_h) = \min_{v_h \in \mathcal{M}_h \cap \mathcal{W}} \mathcal{E}(v_h)$$

if and if $u_h \in \mathcal{M}_h \cap \mathcal{W}$ satisfies

(4.3)

$$\dot{\mathcal{E}}(u_h) = \min_{v_h \in \mathcal{M}_h \cap \mathcal{W}} \dot{\mathcal{E}}(v_h).$$

The analyses of Lemmas 1–5 and Theorems 1–2 can now be applied directly to problem (4.3).

5. Optimality of the main results. We next discuss the optimality of our results for problem (2.3). First, we set

$$\bar{\alpha} = \min \left\{ -\frac{s_L}{2}, \frac{s_U}{2} \right\} > 0.$$

It then follows from Lemma 2 that for $h \leq 4\bar{\alpha}^2\lambda_1/(s_U - s_L)^2$ we have that

$$|u_h'(x)| \geq \bar{\alpha} \quad \text{for } x \in I.$$

Hence, since $u_h'(x)$ is linear on each interval I_i, we have for $i = 1, \ldots, M$ that

(5.1) \hspace{1cm} \max_{x \in I_i} |u_h(x)| \geq \bar{\alpha}h/2 \quad \text{for } x \in I_i,$

and

(5.2) \hspace{1cm} \int_{I_i} u_h(x)^2 \, dx \geq \bar{\alpha}^2 h^3/12.

Thus, from (5.2) we see that

(5.3) \hspace{1cm} \int_0^1 u_h(x)^2 \, dx \geq \bar{\alpha}^2 h^2/12.
and hence, that

\begin{equation}
E_h \geq \tilde{a}^2 h^2/12.
\end{equation}

The estimate (5.4) shows the optimality of the order of the error bound for E_h given in Lemma 1 and the estimate (5.1) shows the optimality of the order of the error bound for $u_h(x)$ given in Lemma 5. Bounds similar to the above bounds are also clearly valid for the Dirichlet problem (4.1).

To demonstrate the optimality of the bounds given in Theorem 1 and Theorem 2, we consider the example

\begin{equation}
\phi(s) = (s - 1)^2 (s + 1)^2.
\end{equation}

for problem (2.3) In this case, $s_L = -1$, $s_U = 1$, and $\gamma = 1/2$. For this example, we can calculate analytically the displacement, $u_h(x)$, at which the minimum of the energy \mathcal{E} is attained to be

\begin{equation}
u_h(x_i) = (-1)^i \frac{h}{2} \left(1 - \frac{h^2}{24} \right)^{1/2} \quad \text{for } i = 0, \ldots, M.
\end{equation}

(The minimum energy is also attained at $-u_h(x)$, of course.) We also have that

\begin{equation}
u'_h(x) = (-1)^i \left(1 - \frac{h^2}{24} \right)^{1/2} \quad \text{for } x \in I_i
\end{equation}

and

\begin{equation}
\mathcal{E}(u_h) = \frac{h^2}{12} \left(1 - \frac{h^2}{48} \right).
\end{equation}

To see this note that the minimum of

\begin{equation}
\mathcal{E}_i(v_h) = \int_{I_i} [\phi(v'_h(y)) + v_h(y)^2] \, dy \quad \text{for } v_h \in \mathcal{M}_h
\end{equation}

is attained at $\tilde{u}_h \in \mathcal{M}_h$ such that

\begin{equation}
\tilde{u}_h(x_{i-1}) = \pm \frac{h}{2} \left(1 - \frac{h^2}{24} \right)^{1/2},
\end{equation}

\begin{equation}
\tilde{u}_h(x_i) = \pm \frac{h}{2} \left(1 - \frac{h^2}{24} \right)^{1/2}
\end{equation}

and

\begin{equation}
\tilde{u}_h(x_{i+1}) = \pm \frac{h}{2} \left(1 - \frac{h^2}{24} \right)^{1/2}.
\end{equation}
with minimum energy
\[\mathcal{E}_i(\hat{u}_h) = \frac{h^3}{12} \left(1 - \frac{h^2}{48} \right). \]

Hence, we see that the order of the bounds in Lemma 2 and Lemma 3 are not optimal for this example and that
\[\int_0^1 |u'_h(x) - \Pi u'_h(x)| \, dx \leq \frac{h^2}{24}. \]

(5.9)

However, by asymptotic methods (non-rigorous) we have found that the order of the estimate in Lemma 3 is optimal for the Dirichlet problem. We have further found for the Dirichlet problem that in general the pointwise result \(u'_h(x) - \Pi u'_h(x) = O(h) \) holds.

A review of the proof of Theorem 1 shows that for the energy density (5.5) and problem (2.3) that
\[I_1 \leq \beta_1 h^2 / 24 \quad \text{and} \quad I_3 \leq \beta_2 h^2 / 24. \]

Thus,
\[\left| \int_0^1 \left[F(x, u'_h(x)) - \gamma F(x, s_L) - (1 - \gamma) F(x, s_U) \right] \, dx \right| \]
\[\geq - \left[\frac{\beta_1}{24} + \frac{\beta_2}{24(s_U - s_L)} \right] h^2 \]
\[+ \frac{1}{s_U - s_L} \left| u_h(1) G(1) - u_h(0) G(0) - \int_0^1 u_h(x) G'(x) \, dx \right|. \]

(5.10)

Now
\[\int_0^1 u_h(x) G'(x) \, dx = \int_0^1 u_h(x) \left(G'(x) - \hat{G}'(x) \right) \, dx \]

(5.11)

where \(\hat{G}'(x) \) is the piecewise constant function which takes the average value of \(G'(x) \) on each interval \(I_i \) defined by
\[\hat{G}'(x) = \frac{1}{h} \int_{I_i} G'(x) \, dy \quad \text{for} \quad x \in I_i, \]

since
\[\int_{I_i} u_h(x) \, dx = 0 \quad \text{for} \quad i = 1, \ldots, M. \]

Further,
\[\left| \int_0^1 u_h(x) (G'(x) - \hat{G}'(x)) \, dx \right| \]
\[\leq \max_{x \in I} |u_h(x)| \int_0^1 |G'(x) - \hat{G}'(x)| \, dx \]
\[\leq \max_{x \in I} |u_h(x)| h \int_0^1 |G''(x)| \, dx \]
\[\leq \frac{h^2}{2} \left(1 - \frac{h^2}{24} \right)^{1/2} \int_0^1 |G''(x)| \, dx. \]

15
Hence, by using the estimates (5.10) and (5.12) we obtain
\[
\left| \int_0^1 [F(x, u_h(x)) - \gamma F(x, s_L) - (1 - \gamma)F(x, s_U)] \, dx \right|
\geq - \left[\frac{\beta_1}{24} + \frac{\beta_2}{24(s_U - s_L)} + \frac{1}{2(s_U - s_L)} \left(1 - \frac{h^2}{24} \right)^{1/2} \int_0^1 |G''(x)| \, dx \right] h^2
+ \frac{1}{s_U - s_L} |u_h(1)G(1) - u_h(0)G(0)|.
\]

Thus, for \(G(0) = 1\) and \(G(1) = (-1)^{M+1}\), we have
\[
(5.13) \quad |u_h(1)G(1) - u_h(0)G(0)| = 2|u_h(0)| = h \left(1 - \frac{h^2}{24} \right)^{1/2}.
\]

So, we finally obtain the estimate
\[
\left| \int_0^1 [F(x, u_h(x)) - \gamma F(x, s_L) - (1 - \gamma)F(x, s_U)] \, dx \right|
\geq - \left[\frac{\beta_1}{24} + \frac{\beta_2}{24(s_U - s_L)} + \frac{1}{2(s_U - s_L)} \left(1 - \frac{h^2}{24} \right)^{1/2} \int_0^1 |G''(x)| \, dx \right] h^2
+ \frac{h}{s_U - s_L} \left(1 - \frac{h^2}{24} \right)^{1/2}.
\]

The above estimate shows that the order of the error bound in Theorem 1 (and, therefore, Theorem 2) is optimal.

We note that if \(F(x, s)\) is independent of \(x\), i.e., \(F(x, s) = F(s)\), then \(G(1) = G(0)\). Now if \(M\) is even we have that \(u_h(0) = u_h(1)\), so
\[u_h(1)G(1) - u_h(0)G(0) = 0\]
and
\[
\left| \int_0^1 [F(x, u_h(x)) - \gamma F(x, s_L) - (1 - \gamma)F(x, s_U)] \, dx \right|
\leq \left[\frac{\beta_1}{24} + \frac{\beta_2}{24(s_U - s_L)} + \frac{1}{2(s_U - s_L)} \left(1 - \frac{h^2}{24} \right)^{1/2} \int_0^1 |G''(x)| \, dx \right] h^2.
\]

Hence, for this example we obtain a higher order error estimate for Theorem 1 when \(F(x, s)\) is independent of \(x\) and \(M\) is even. When \(M\) is odd and \(F(x, s)\) is independent of \(x\), we have that \(u_h(0) = -u_h(1)\) and (5.13) and (5.14) are valid. So, when \(M\) is odd and \(F(x, s)\) is independent of \(x\) Theorem 1 gives the optimal order error estimate.
REFERENCES

<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>618</td>
<td>L.E. Fraenkel</td>
<td>On a linear, partly hyperbolic model of viscoelastic flow past a plate</td>
</tr>
<tr>
<td>619</td>
<td>Stephen Schechter and Michael Shearer</td>
<td>Undercompressive shocks for nonstrictly hyperbolic conservation laws</td>
</tr>
<tr>
<td>620</td>
<td>Xinfu Chen</td>
<td>Axially symmetric jets of compressible fluid</td>
</tr>
<tr>
<td>621</td>
<td>J. David Logan</td>
<td>Wave propagation in a qualitative model of combustion under equilibrium conditions</td>
</tr>
<tr>
<td>622</td>
<td>M.L. Zeeman</td>
<td>Ilopf bifurcations in competitive three-dimensional Lotka-Volterra Systems</td>
</tr>
<tr>
<td>623</td>
<td>Allan P. Fordy</td>
<td>Isospectral flows: their Hamiltonian structures, Miura maps and master symmetries</td>
</tr>
<tr>
<td>624</td>
<td>Daniel D. Joseph, John Nelson, Michael Renardy, and Yuriko Renardy</td>
<td>Two-Dimensional cusped interfaces</td>
</tr>
<tr>
<td>625</td>
<td>Avner Friedman and Bei Hu</td>
<td>A free boundary problem arising in electrophotography</td>
</tr>
<tr>
<td>626</td>
<td>Hamid Bellout, Avner Friedman and Victor Isakov</td>
<td>Stability for an inverse problem in potential theory</td>
</tr>
<tr>
<td>627</td>
<td>Barbara Lee Keyfitz</td>
<td>Shocks near the sonic line: A comparison between steady and unsteady models for change of type</td>
</tr>
<tr>
<td>628</td>
<td>Barbara Lee Keyfitz and Gerald G. Warncke</td>
<td>The existence of viscous profiles and admissibility for transonic shocks</td>
</tr>
<tr>
<td>629</td>
<td>P. Szmolyan</td>
<td>Transversal heteroclinic and homoclinic orbits in singular perturbation problems</td>
</tr>
<tr>
<td>630</td>
<td>Philip Boyland</td>
<td>Rotation sets and monotone periodic orbits for annulus homeomorphisms</td>
</tr>
<tr>
<td>631</td>
<td>Kenneth R. Meyer</td>
<td>Apollonius coordinates, the N-body problem and continuation of periodic solutions</td>
</tr>
<tr>
<td>632</td>
<td>Chjan C. Lim</td>
<td>On the Poincare–Whitney circuitspace and other properties of an incidence matrix for binary trees</td>
</tr>
<tr>
<td>634</td>
<td>Stanley Minkowitz and Matthew Witten</td>
<td>Periodicity in cell proliferation using an asynchronous cell population</td>
</tr>
<tr>
<td>635</td>
<td>M. Chipot and G. Dal Maso</td>
<td>Relaxed shape optimization: The case of nonnegative data for the Dirichlet problem</td>
</tr>
<tr>
<td>636</td>
<td>Jeffery M. Franke and Harlan W. Stech</td>
<td>Extensions of an algorithm for the analysis of nongeneric Ilopf bifurcations, with applications to delay–difference equations</td>
</tr>
<tr>
<td>637</td>
<td>Xinfu Chen</td>
<td>Generation and propagation of the interface for reaction–diffusion equations</td>
</tr>
<tr>
<td>638</td>
<td>Philip Korman</td>
<td>Dynamics of the Lotka–Volterra systems with diffusion</td>
</tr>
<tr>
<td>639</td>
<td>Harlan W. Stech</td>
<td>Generic Ilopf bifurcation in a class of integro-differential equations</td>
</tr>
<tr>
<td>640</td>
<td>Stephane Laederich</td>
<td>Periodic solutions of non linear differential difference equations</td>
</tr>
<tr>
<td>641</td>
<td>Peter J. Olver</td>
<td>Canonical Forms and Integrability of BiHamiltonian Systems</td>
</tr>
<tr>
<td>642</td>
<td>S.A. van Gils, M.P. Krupa and W.F. Langford</td>
<td>Hopf bifurcation with nonsemisimple 1:1 Resonance</td>
</tr>
<tr>
<td>643</td>
<td>R.D. James and D. Kinderlehrer</td>
<td>Frustration in ferromagnetic materials</td>
</tr>
<tr>
<td>644</td>
<td>Carlos Rocha</td>
<td>Properties of the attractor of a scalar parabolic P.D.E.</td>
</tr>
<tr>
<td>645</td>
<td>Debra Lewis</td>
<td>Lagrangian block diagonalization</td>
</tr>
<tr>
<td>646</td>
<td>Richard C. Churchill and David L. Rod</td>
<td>On the determination of Ziglin monodromy groups</td>
</tr>
<tr>
<td>647</td>
<td>Xinfu Chen and Avner Friedman</td>
<td>A nonlocal diffusion equation arising in terminally attached polymer chains</td>
</tr>
<tr>
<td>648</td>
<td>Peter Gritzmann and Victor Klee</td>
<td>Inner and outer j- Radii of convex bodies in finite-dimensional normed spaces</td>
</tr>
<tr>
<td>649</td>
<td>P. Szmolyan</td>
<td>Analysis of a singularly perturbed traveling wave problem</td>
</tr>
<tr>
<td>650</td>
<td>Stanley Reiter and Carl P. Simon</td>
<td>Decentralized dynamic processes for finding equilibrium</td>
</tr>
<tr>
<td>651</td>
<td>Fernando Reitich</td>
<td>Singular solutions of a transmission problem in plane linear elasticity for wedge-shaped regions</td>
</tr>
<tr>
<td>652</td>
<td>Russell A. Johnson</td>
<td>Cantor spectrum for the quasi-periodic Schrödinger equation</td>
</tr>
<tr>
<td>653</td>
<td>Wenxiong Liu</td>
<td>Singular solutions for a convection diffusion equation with absorption</td>
</tr>
<tr>
<td>654</td>
<td>Deborah Brandon and William J. Hrusa</td>
<td>Global existence of smooth shearing motions of a nonlinear viscoelastic fluid</td>
</tr>
<tr>
<td>655</td>
<td>James F. Reineck</td>
<td>The connection matrix in Morse–Smale flows II</td>
</tr>
<tr>
<td>656</td>
<td>Claude Baesens, John Guckenheimer, Seunghwan Kim and Robert Mackay</td>
<td>Simple resonance regions of torus diffeomorphisms</td>
</tr>
<tr>
<td>657</td>
<td>Willard Miller, Jr.</td>
<td>Lecture notes in radar/sonar: Topics in Harmonic analysis with applications to radar and sonar</td>
</tr>
</tbody>
</table>
Calvin H. Wilcox, Lecture notes in radar/sonar: Sonar and Radar Echo Structure
Richard E. Blahut, Lecture notes in radar/sonar: Theory of remote surveillance algorithms
D.V. Anosov, Hilbert's 21st problem (according to Bolibruch)
Stephane Laederich, Ray-Singer torsion for complex manifolds and the adiabatic limit
Geneviève Raugel and George R. Sell, Navier-Stokes equations in thin 3d domains: Global regularity of solutions I
Emanuel Parzen, Time series, statistics, and information
Andrew Majda and Kevin Lamb, Simplified equations for low Mach number combustion with strong heat release
Ju. S. Il'yashenko, Global analysis of the phase portrait for the Kuramoto–Sivashinsky equation
James F. Reineck, Continuation to gradient flows
Mohamed Sami Elbialy, Simultaneous binary collisions in the collinear N-body problem
John A. Jacquez and Carl P. Simon, AIDS: The epidemiological significance of two different mean rates of partner-change
Carl P. Simon and John A. Jacquez, Reproduction numbers and the stability of equilibria of SI models for heterogeneous populations
Matthew Stafford, Markov partitions for expanding maps of the circle
Ciprian Foias and Edriss S. Titi, Determining nodes, finite difference schemes and inertial manifolds
M.W. Smiley, Global attractors and approximate inertial manifolds for abstract dissipative equations
M.W. Smiley, On the existence of smooth breathers for nonlinear wave equations
Hitay Özbay and Janos Turi, Robust stabilization of systems governed by singular integro-differential equations
Mary Silber and Edgar Knobloch, Hopf bifurcation on a square lattice
Christophe Golé, Ghost circles for twist maps
Christophe Golé, Ghost tori for monotone maps
Christophe Golé, Monotone maps of $T^n \times R^n$ and their periodic orbits
E.G. Kalnins and W. Miller, Jr., Hypergeometric expansions of Heun polynomials
Victor A. Pliss and George R. Sell, Perturbations of attractors of differential equations
Avner Friedman and Peter Knabner, A transport model with micro- and macro-structure
E.G. Kalnins and W. Miller, Jr., A note on group contractions and radar ambiguity functions
George R. Sell, References on dynamical systems
Shui-Nee Chow, Kening Lu and George R. Sell, Smoothness of inertial manifolds
Shui-Nee Chow, Xiao-Biao Lin and Kening Lu, Smooth invariant foliations in infinite dimensional spaces
Kening Lu, A Hartman–Grobow theorem for scalar reaction-diffusion equations
Christophe Golé and Glen R. Hall, Poincaré’s proof of Poincaré’s last geometric theorem
Mario Taboada, Approximate inertial manifolds for parabolic evolutionary equations via Yosida approximations
Peter Rejto and Mario Taboada, Weighted resolvent estimates for Volterra operators on unbounded intervals
Joel D. Avrin, Some examples of temperature bounds and concentration decay for a model of solid fuel combustion
Susan Friedlander and Misha M. Vishik, Lax pair formulation for the Euler equation
H. Scott Dumas, Ergodization rates for linear flow on the torus
A. Eden, A.J. Milani and B. Nicolaenko, Finite dimensional exponential attractors for semilinear wave equations with damping
A. Eden, C. Foias, B. Nicolaenko & R. Temam, Inertial sets for dissipative evolution equations
A. Eden, C. Foias, B. Nicolaenko & R. Temam, Hölder continuity for the inverse of Mañé’s projection
Michel Chipot and Charles Collins, Numerical approximations in variational problems with potential wells
Huanan Yang, Nonlinear wave analysis and convergence of MUSCL schemes
László Gerencsér and Zsuzsanna Vágó, A strong approximation theorem for estimator processes in continuous time
László Gerencsér, Multiple integrals with respect to L-mixing processes
David Kinderlehrer and Pablo Pedregal, Weak convergence of integrands and the Young measure representation
Bo Deng, Symbolic dynamics for chaotic systems
Charles Collins and Mitchell Luskin, Optimal order error estimates for the finite element approximation of the solution of a nonconvex variational problem
Peter Gritzmann and Victor Klee, Computational complexity of inner and outer j-radii of polytopes in finite-dimensional normed spaces