MULTIPLE INTEGRALS WITH RESPECT TO
L-MIXING PROCESSES

By

László Gerencsér

IMA Preprint Series # 699
September 1990
Multiple integrals with respect to L-mixing processes

László Gerencsér *

Department of Electrical Engineering
McGill University
3480 University Street
Montréal, Québec, H3A 2A7 Canada

* On leave from Computer and Automation Institute, Hungarian Academy of Sciences, Budapest, Hungary
Multiple integrals with respect to L-mixing processes

László Gerencsér

Abstract

We prove a moment inequality for multiple integrals of the Volterra-type with respect to zero-mean L-mixing processes. The result is the extension of an earlier result for single integrals. This investigation was motivated by a problem in the theory of recursive identification for linear systems.
1. Introduction

An important notion in system identification is the notion of \(L \)-mixing processes introduced in Gerencsér (1989). To define the class of \(L \)-mixing processes we first introduce the following definition, in which the \(k \)-dimensional Euclidean space will be denoted by \(\mathbb{R}^k \).

Definition 1.1. Let \((x_t)\) be an \(\mathbb{R}^k \)-valued stochastic process. We say that \((x_t)\) is \(M \)-bounded if for all \(1 \leq q < \infty \)

\[
M_q(x) = \sup_{t \geq 0} \mathbb{E}^{1/q}|x_t|^q < \infty.
\]

Let us consider a family of monotone increasing \(\sigma \)-algebras \((\mathcal{F}_t), t \geq 0\) and a family of monotone decreasing \(\sigma \)-algebras \((\mathcal{F}_t^+), t \geq 0\), such that \(\mathcal{F}_t, \mathcal{F}_t^+ \) are independent for all \(t \) and \(\mathcal{F}_t = \sigma(\cup_{\epsilon>0} \mathcal{F}_{t+\epsilon}) \) for all \(t \).

Definition 1.2. We say that a stochastic process \((x_t)\) is \(L \)-mixing with respect to \((\mathcal{F}_t, \mathcal{F}_t^+)\) if it is \((\mathcal{F}_t)\)-progressively measurable, \(M \)-bounded and if we set for \(q \geq 1, \quad \tau > 0 \)

\[
\gamma_q(\tau, x) = \gamma_q(\tau) = \sup_{t \geq \tau} \mathbb{E}^{1/q}|x_t - \mathbb{E}(x_t|\mathcal{F}_{t-\tau})|^q
\]

then we have

\[
\Gamma_q = \Gamma_q(x) = \int_0^\infty \gamma_q(\tau) d\tau < \infty.
\]

A fundamental inequality of the theory of \(L \)-mixing processes is the following:

Theorem A. (Theorem 1.1 in Gerencsér (1989)) Let \((u_t), t \geq 0\) be an \(L \)-mixing process with \(\mathbb{E} u_t = 0 \) for all \(t \). Let \((f_t)\) be a function in \(L_2[0, T] \). Then we have for all \(1 \leq m < \infty \)

\[
\mathbb{E}^{1/2m} |\int_0^T f_t u_t dt|^{2m} \leq C_m \left(\int_0^T f_t^2 dt \right)^{1/2} M_{2m}^{1/2}(u) \Gamma_{2m}^{1/2}(u)
\]

where \(C_m = (4m - 2)^{1/2} \).
1. Introduction

The proof of this theorem is partly based on the following lemma:

Lemma B. (Lemma 2.3 in Gerencsér (1989)) Let \((x_t)\) be a zero-mean \(L\)-mixing process with respect to \((\mathcal{F}_t, \mathcal{F}_t^+)\) and let for some \(0 < s < t\) \(\eta\) be an \(\mathcal{F}_s\)-measurable random variable. Then

\[
|E x_t \eta| \leq 2 \gamma_p (t-s, x) E^{1/q} |\eta|^q
\]

for every \(1 < p, q < \infty\) such that \(1/p + 1/q = 1\). The proposition remains true for \(p = \infty\) and \(q = 1\).

An important problem is whether the deterministic function \(f_t\) can be replaced by an adapted stochastic process. It is easy to see that this is not possible without any qualification. Set e.g. \(u_t = f_t\), then the integral in Theorem A grows as \(T\) rather than \(T^{1/2}\). However, we may expect that if the process \((f_t)\) has a lot of "information-content" in the past then the theorem may remain true. A possible assumption is that \(f_t\) can be written as

\[
f_t = \int_0^t g_s v_s ds
\]

where \(g_s\) is a deterministic locally square integrable function and \((v_s)\) is a zero-mean \(L\)-mixing process. Thus the integral in Theorem A can be represented as a double integral. Estimation of double integrals is important in the theory of recursive identification, E.g. double integrals of the form

\[
I_{T_0} = \int_{T_0}^{T} \frac{1}{t} u_t \int_{T_0}^{t} \frac{1}{s} v_s ds dt
\]

has to be estimated, where \((u_t), (v_s)\) are zero-mean \(L\)-mixing processes (c.f. Gerencsér (1990)) to get a characterization of the parameter estimation error process. The theorem below gives a general answer to the problem raised above. Also, the theorem has a potential for being used in the analysis of nonlinear stochastic systems.

Theorem Let \((u_{i,t}), t \geq 0, i = 1, ..., N\) be zero-mean \(L\)-mixing processes with respect to a pair of families for \(\sigma\)-algebras \((\mathcal{F}_t, \mathcal{F}_t^+)\) and let \((f_{i,t}), t \geq 0, i = 1, ..., N\) be locally square-
integrable functions. Then for the multiple integral

\[x_{N,T} = \int_0^T \int_0^{t_1} \cdots \int_0^{t_2} (f_{1,t_1} u_{1,t_1}) \cdots (f_{N,t_N} u_{N,t_N}) dt_1 \cdots dt_N. \quad (1.1) \]

we have for any \(m \geq 1 \)

\[E^{1/2m} x_{N,T}^{2m} \leq \varphi_{N,2m,T} \quad (1.2) \]

where \(\varphi_{N,2m,T} \) are defined recursively as follows: for \(N = 0 \) we set \(\varphi_{0,2m,T} = 1 \), for \(N = 1 \) we have

\[\varphi_{1,2m,T} = 4m^{1/2} M_{2m}^{1/2}(u_1) \Gamma_{2m}^{1/2}(u_1) \left(\int_0^T f_{1,t_1}^2 dt_1 \right)^{1/2} \]

and for \(N > 1 \) we first define

\[h_s = \int_s^T 2m_1N(t-r,u_N)|f_{N,t}|dt \]

and then set

\[\varphi_{N,2m,T} = 4m M_{2mN}^{1/2}(u_N) \left(\int_0^T |f_{N,s}| \cdot h_s \cdot \varphi_{N-1,2mN/(N-1),s}^2 ds \right)^{1/2} + 8m M_{2mN}(u_N) \int_0^T |f_{N-1,s}| \cdot h_s \cdot \varphi_{N-2,2mN/(N-2),s} ds. \]

Remark If the functions \(|f_{i,t}| \) are monotone nonincreasing then we have

\[h_s \leq \int_s^t \gamma_{2mN}(t-r,u_N)|f_{N,s}|ds \leq \Gamma_{2mN}(u_N)|f_{N,s}| \]

and a simpler upper bound can be obtained using the recursion

\[\varphi_{N,2m,T} 4m^{1/2} M_{2mN}^{1/2}(u_N) \Gamma_{2mN}^{1/2}(u_N) \cdot \left(\int_0^T f_{N,s}^2 \varphi_{N-1,2mN/(N-1),s}^2 ds \right)^{1/2} + 8m \cdot M_{2mN}(u_{N-1}) \Gamma_{2mN}(u_N) \int_0^T |f_{N-1,s}| \cdot f_{N,s} \cdot \varphi_{N-2,2mN/(N-2),s} ds. \]

To illustrate the usefulness of the theorem we shall apply it to estimate the moments of the double integral \(I_{T_0} \) above as a function of \(T_0 \). For \(N = 1 \) we have

\[\varphi_{1,2m,T} = O \left(\int_{T_0}^{1/2} ds \right)^{1/2} = O(T_0^{-1/2}). \]
2. The proof.

For $N = 2$ we note that $h_s = O(s^{-1})$. Hence

$$\varphi_{2,2m,T} = O\left(\int_{T_0}^{T} \frac{1}{s^2} T_0^{-1} ds\right)^{1/2} + O\left(\int_{T_0}^{T} \frac{1}{s^2} ds\right) = O(T_0^{-1}).$$

Thus we finally get

$$I_{T_0} = \int_{T_0}^{T} \frac{1}{t} u_t \int_{T_0}^{t} \frac{1}{s} v_s ds dt = O_M(T_0^{-1}).$$

Remark Note that if $u_t d_t$ and $v_s d_s$ are replaced by Gaussian white-noise say $d u_t$ and $d v_s$ we have a similar result, i.e.

$$\int_{T_0}^{T} \frac{1}{t} d u_t \int_{T_0}^{t} \frac{1}{s} d v_s = O_M(T_0^{-1}),$$

which can easily be seen using standard moment inequalities for stochastic integrals.

2. The proof.

We have for $m \geq 1$

$$\frac{d}{d T} |x_{N,T}|^{2m} = 2m |x_{N,T}|^{2m-1} (\text{sgn} x_{N,T}) f_{N,T} u_{N,T} \cdot x_{N-1,T}. \tag{2.1}$$

Setting

$$y_{N,T} = 2m |x_{N,T}|^{2m-1} (\text{sgn} x_{N,T}) \cdot x_{N-1,T}$$

we can write (2.1) also in the form

$$|x_{N,T}|^{2m} = \int_{0}^{T} f_{N,t} u_{N,T} \cdot y_{N,t} dt. \tag{2.2}$$

To get a similar integral representation for $y_{N,T}$ we note that

$$\frac{d}{d T} |x_{N,T}|^{2m-1} \text{sgn} x_{N,T} = (2m - 1) |x_{N,T}|^{2m-2} \cdot f_{N,T} u_{N,T} \cdot x_{N-1,T}$$

hence

$$\frac{d}{d T} y_{N,T}^{2m-1} (2m - 1) |x_{N,T}|^{2m-2} \cdot f_{N,T} u_{N,T} \cdot x_{N-1,T} \cdot x_{N-1,T}$$

$$+ 2m |x_{N,T}|^{2m-1} (\text{sgn} x_{N,T}) \cdot f_{N-1,T} u_{n-1,T} \cdot x_{N-2,T}. $$

4
Setting
\[z_{N,T} = 2m(2m - 1)|x_{N,T}|^{2m-2} \cdot (x_{N-1,T})^2 \]
and
\[w_{N,T} = 2m|x_{N,T}|^{2m-1}(\text{sgn}x_{N,T}) \cdot x_{N-2,T} \]
we can write
\[y_{N,T} = \int_0^T (f_{N,t}u_{N,t} \cdot z_{N,t} + f_{N-1,t}u_{N-1,t} \cdot w_{N,t})dt. \]
Substituting this expression into (2.2) we get
\[|x_{N,T}|^{2m} = \int_0^T f_{N,t}u_{N,t} \int_0^t (f_{N,s}u_{N,s} \cdot z_{N,s} + f_{N-1,s}u_{N-1,s} \cdot w_{N,s})dsdt \quad (2.3) \]
Take expectations of both sides and apply the "improved Hölder's inequality" given in Lemma B. We have in general
\[|E u_{N,t} \cdot u_{N,s} \cdot z_{N,s}| \leq 2 \gamma p_1(t - s, u_N) \cdot M_{q_1}(u_N) \cdot E^{1/r_1}|z_{N,s}|^{r_1} \]
with any \(p_1, q_1, r_1 > 0 \) such that \(1/p_1 + 1/q_1 + 1/r_1 = 1 \). Furthermore
\[E^{1/r_1}|z_{N,s}|^{r_1} \leq 2m(2m - 1)E^{1/r_1'}|x_{N,s}|^{(2m-2)r_1'}E^{1/r_1''}|x_{N-1,s}|^{2r_1''} \]
where \(r_1', r_1'' > 0 \) are such that \(1/r_1' + 1/r_1'' = 1/r_1 \). Now let us set
\[r_1' = 2m/(2m - 2) \quad \text{i.e.} \quad 1/r_1' = 1 - 1/m. \quad (2.4) \]
Then using inductive hypothesis we get
\[|E u_{N,t} \cdot u_{N,s} \cdot z_{N,s}| \leq 4m(2m - 1) \cdot \gamma p_1(t - s, u_N) \cdot M_{q_1}(u_N) \cdot F_{N,s}^{1-1/m} \cdot \varphi_{N-1,2r_1''}^2 \quad (2.4) \]
for any \(p_1, q_1, r_1'' > 0 \) such that \(1/p_1 + 1/q_1 + 1/r_1'' = 1 - 1/r_1' = 1/m \). Note that \(2r_1'' > 2 \) therefore the use of the inductive hypothesis is justified. Similarly
\[|E u_{N,t} \cdot u_{N-1,s} \cdot w_{N,s}| \leq 2 \gamma p_2(t - s, u_N) \cdot M_{q_2}(u_{N-1}) \cdot E^{1/r_2}|w_{N,s}|^{r_2} \]
with any \(p_2, q_2, r_2 > 0 \) such that \(1/p_2 + 1/q_2 + 1/r_2 = 1 \). Furthermore
\[
E^{1/r_2}|w_{N,s}|r_2'' \leq 2m \cdot E^{1/r_2'}|x_{N,s}|^{(2m-1)r_2'}E|x_{n-2,s}|^{r_2''}
\]
with any \(r_2', r_2'' > 0 \) such that \(1/r_2' + 1/r_2'' = 1/r_2 \). Choosing
\[
r_2' = 2m/(2m - 1) \quad \text{i.e.} \quad 1/r_2' = 1 - 1/2m
\]
and using the inductive hypothesis we get
\[
|E_{u_{N,t}} \cdot u_{N-1,s} \cdot w_{N,s}| \leq 4m \cdot \gamma_{p_2}(t - s, u_N) \cdot M_{q_2}(u_{N-1}) \cdot F_{N,s}^{1-1/2m} \cdot C_{N-2,r_2''} \varphi_{N-2,r_2'''}s
\]
with any \(p_2, q_2, r_2'' > 0 \) such that \(1/p_2 + 1/q_2 + 1/r_2'' = 1 - 1/r_2' = 1/2m \). Note again that \(r_2'' > 2 \) hence the use of the inductive hypothesis is justified. Substituting into (2.3) we get
\[
E|x_{N,T}|^{2m} \leq \int_0^T \int_0^t f_{N,t} f_{N,s} \cdot 4m(2m - 1) \cdot \gamma_{p_1}(t - s, u_N) \cdot M_{q_1}(u_N) \cdot F_{N,s}^{1-1/m} \cdot \varphi_{N-1,2r_1''}^2 s dt + \int_0^T \int_0^t f_{N,t} f_{N-1,s} \cdot 4m \cdot \gamma_{p_2}(t - s, u_N) \cdot M_{q_2}(u_{N-1}) \cdot F_{N,s}^{1-1/2m} \cdot \varphi_{N-2,r_2'''} s dt.
\]
Interchanging the order of integration and introducing the notations
\[
h_{1,s} = \int_s^T f_{N,t} \cdot \gamma_{p_1}(t - s, u_N) dt \quad \text{and} \quad h_{2,s} = \int_s^T f_{N,t} \cdot \gamma_{p_2}(t - s, u_N) dt
\]
we get
\[
E|x_{N,T}|^{2n} \leq \int_0^T f_{N,s} h_{1,s} \cdot 4m(2m - 1) \cdot M_{q_1}(u_N) \cdot F_{N,s}^{1-1/m} \cdot \varphi_{N-1,2r_1''}^2 s ds + \int_0^T f_{N-1,s} h_{2,s} \cdot 4m \cdot M_{q_2}(u_{N-1}) \cdot F_{N,s}^{1-1/2m} \cdot \varphi_{N-2,r_2'''} s ds
\]
and here
\[
1/p_1 + 1/q_1 + 1/r_1'' = 1/m
\]
and
\[
1/p_2 + 1/q_2 + 1/r_2'' = 1/2m.
\]
Setting $\psi_s = E^{1/2m}|x_{N,s}|^{2m}$ we get the inequality

$$\psi_T^{2m} \leq \int_0^T (a_s \psi_s^{2m-2} + b_s \psi_s^{2m-1})ds$$ \hspace{1cm} (2.10)

with

$$a_s = C_a^2 f_N h_{1,s}^2 \phi_{n-1,s}^2 \text{ and } b_s = C_b^2 f_{N-1,s} h_{2,s} \phi_{N-2,s}$$

where

$$C_a^2 = 4m(2m-1)M_{q_1}(u_N) \text{ and } C_b^2 = 4mM_{q_2}(u_{N-1})$$

We need the following lemma below:

Lemma 2.1. Let (ψ_t), $t \geq 0$ be a nonnegative monotone increasing measurable function satisfying

$$\psi_T^{2m} \leq \int_0^T (a_s \psi_s^{2m-2} + b_s \psi_s^{2m-1})ds$$ \hspace{1cm} (2.11)

where (a_s), (b_s) are nonnegative locally integrable functions and $n \geq 1$. Then we have

$$\psi_T \leq \sqrt{2} \left(\int_0^T a_s ds \right)^{1/2} + \frac{\sqrt{2} + 1}{2} \left(\int_0^T b_s ds \right).$$

Proof: Increase the right hand side of (2.11) replacing ψ_s by ψ_T and then divide both sides by ψ_T^{2m-2}. (If $\psi_T = 0$ then the proposition is trivial). Then we get

$$\psi_T^2 \leq \left(\int_0^T a_s ds \right) + \left(\int_0^T b_s ds \right) \psi_T = A + B\psi_T.$$

from which we get

$$\psi_T \leq \frac{1}{2} (B + (B^2 + 4A)^{1/2}).$$ \hspace{1cm} (2.12)

Now $B^2 + 4A \leq 2\max(B^2, 4A)$, hence $(B^2 + 4A)^{1/2} \leq 2^{1/2}\max(B, 2A^{1/2}) \leq 2^{1/2}(B + 2A^{1/2})$, and substituting into (2.12) we get the proposition of the lemma.

Applying Lemma (2.1) to (2.10) and using $(\sqrt{2} + 1)/2 \leq 2$ we get

$$E^{1/2m}|x_{N,t}|^{2m} \leq 4mM_{q_1}^{1/2}(u_N) \left(\int_0^T f_N h_{1,s}^2 \phi_{N-1,2r_{1,s}}^{2m-1} ds \right)^{1/2}$$

$$+ 8mM_{q_2}(u_{N-1}) \left(\int_0^T f_{N-1,s} h_{2,s} \phi_{N-2,2r_{2,s}} ds \right).$$ \hspace{1cm} (2.13)
Let us now choose $p_1 = q_1 = p_2 = q_2 = 2nN$. Then we get from (2.8) that $r_1'' = mN/(N - 1)$ and from (2.10) that $r_2'' = 2nN/(N - 2)$, and the proposition of the theorem follows.

3. REFERENCES

<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>618</td>
<td>L.E. Fraenkel</td>
<td>On a linear, partly hyperbolic model of viscoelastic flow past a plate</td>
</tr>
<tr>
<td>619</td>
<td>Stephen Schechter and Michael Shearer</td>
<td>Undercompressive shocks for nonstrictly hyperbolic conservation laws</td>
</tr>
<tr>
<td>620</td>
<td>Xinfu Chen</td>
<td>Axially symmetric jets of compressible fluid</td>
</tr>
<tr>
<td>621</td>
<td>J. David Logan</td>
<td>Wave propagation in a qualitative model of combustion under equilibrium conditions</td>
</tr>
<tr>
<td>622</td>
<td>M.L. Zeeman</td>
<td>Hopf bifurcations in competitive three-dimensional Lotka-Volterra Systems</td>
</tr>
<tr>
<td>623</td>
<td>Allan P. Fordy</td>
<td>Isospectral flows: their Hamiltonian structures, Miura maps and master symmetries</td>
</tr>
<tr>
<td>624</td>
<td>Daniel D. Joseph, John Nelson, Michael Renardy, and Yuriko Renardy</td>
<td>Two-Dimensional cusped interfaces</td>
</tr>
<tr>
<td>625</td>
<td>Avner Friedman and Bei Hu</td>
<td>A free boundary problem arising in electrophotography</td>
</tr>
<tr>
<td>626</td>
<td>Hamid Bellout, Avner Friedman and Victor Isakov</td>
<td>Stability for an inverse problem in potential theory</td>
</tr>
<tr>
<td>627</td>
<td>Barbara Lee Keyfitz</td>
<td>Shocks near the sonic line: A comparison between steady and unsteady models for change of type</td>
</tr>
<tr>
<td>628</td>
<td>Barbara Lee Keyfitz and Gerald G. Warnecke</td>
<td>The existence of viscous profiles and admissibility for transonic shocks</td>
</tr>
<tr>
<td>629</td>
<td>P. Szmolyan</td>
<td>Transversal heteroclinic and homoclinic orbits in singular perturbation problems</td>
</tr>
<tr>
<td>630</td>
<td>Philip Boyland</td>
<td>Rotation sets and monotone periodic orbits for annulus homeomorphisms</td>
</tr>
<tr>
<td>631</td>
<td>Kenneth R. Meyer</td>
<td>Apollonius coordinates, the N-body problem and continuation of periodic solutions</td>
</tr>
<tr>
<td>632</td>
<td>Chjan C. Lim</td>
<td>On the Poincare–Whitney circuitspace and other properties of an incidence matrix for binary trees</td>
</tr>
<tr>
<td>634</td>
<td>Stanley Minkowitz and Matthew Witten</td>
<td>Periodicity in cell proliferation using an asynchronous cell population</td>
</tr>
<tr>
<td>635</td>
<td>M. Chipot and G. Dal Maso</td>
<td>Relaxed shape optimization: The case of nonnegative data for the Dirichlet problem</td>
</tr>
<tr>
<td>636</td>
<td>Jeffery M. Franke and Harlan W. Stech</td>
<td>Extensions of an algorithm for the analysis of nongeneric Hopf bifurcations, with applications to delay-difference equations</td>
</tr>
<tr>
<td>637</td>
<td>Xinfu Chen</td>
<td>Generation and propagation of the interface for reaction–diffusion equations</td>
</tr>
<tr>
<td>638</td>
<td>Philip Korman</td>
<td>Dynamics of the Lotka–Volterra systems with diffusion</td>
</tr>
<tr>
<td>639</td>
<td>Harlan W. Stech</td>
<td>Generic Hopf bifurcation in a class of integro-differential equations</td>
</tr>
<tr>
<td>640</td>
<td>Stephane Laederich</td>
<td>Periodic solutions of non linear differential difference equations</td>
</tr>
<tr>
<td>641</td>
<td>Peter J. Olver</td>
<td>Canonical Forms and Integrability of BiHamiltonian Systems</td>
</tr>
<tr>
<td>642</td>
<td>S.A. van Gils, M.P. Krupa and W.F. Langford</td>
<td>Hopf bifurcation with nonsemisimple 1:1 Resonance</td>
</tr>
<tr>
<td>643</td>
<td>R.D. James and D. Kinderlehrer</td>
<td>Frustration in ferromagnetic materials</td>
</tr>
<tr>
<td>644</td>
<td>Carlos Rocha</td>
<td>Properties of the attractor of a scalar parabolic P.D.E.</td>
</tr>
<tr>
<td>645</td>
<td>Debra Lewis</td>
<td>Lagrangian block diagonalization</td>
</tr>
<tr>
<td>646</td>
<td>Richard C. Churchill and David L. Rod</td>
<td>On the determination of Ziglin monodromy groups</td>
</tr>
<tr>
<td>647</td>
<td>Xinfu Chen and Avner Friedman</td>
<td>A nonlocal diffusion equation arising in terminally attached polymer chains</td>
</tr>
<tr>
<td>648</td>
<td>Peter Gritzmann and Victor Klee</td>
<td>Inner and outer j- Radii of convex bodies in finite-dimensional normed spaces</td>
</tr>
<tr>
<td>649</td>
<td>P. Szmolyan</td>
<td>Analysis of a singularly perturbed traveling wave problem</td>
</tr>
<tr>
<td>650</td>
<td>Stanley Reiter and Carl P. Simon</td>
<td>Decentralized dynamic processes for finding equilibrium</td>
</tr>
<tr>
<td>651</td>
<td>Fernando Reitich</td>
<td>Singular solutions of a transmission problem in plane linear elasticity for wedge-shaped regions</td>
</tr>
<tr>
<td>652</td>
<td>Russell A. Johnson</td>
<td>Cantor spectrum for the quasi-periodic Schrödinger equation</td>
</tr>
<tr>
<td>653</td>
<td>Wenzhong Liu</td>
<td>Singular solutions for a convection diffusion equation with absorption</td>
</tr>
<tr>
<td>654</td>
<td>Deborah Brandon and William J. Hrusa</td>
<td>Global existence of smooth shearing motions of a nonlinear viscoelastic fluid</td>
</tr>
<tr>
<td>655</td>
<td>James F. Reineck</td>
<td>The connection matrix in Morse–Smale flows II</td>
</tr>
<tr>
<td>656</td>
<td>Claude Baesens, John Guckenheimer, Seunghwan Kim and Robert Mackay</td>
<td>Simple resonance regions of torus diffeomorphisms</td>
</tr>
<tr>
<td>657</td>
<td>Willard Miller, Jr.</td>
<td>Lecture notes in radar/sonar: Topics in Harmonic analysis with applications to radar and sonar</td>
</tr>
</tbody>
</table>
Calvin H. Wilcox, Lecture notes in radar/sonar: Sonar and Radar Echo Structure
Richard E. Blahut, Lecture notes in radar/sonar: Theory of remote surveillance algorithms
D.V. Anosov, Hilbert's 21st problem (according to Bolibruch)
Stephane Laederich, Ray-Singer torsion for complex manifolds and the adiabatic limit
Geneviève Raugel and George R. Sell, Navier-Stokes equations in thin 3d domains: Global regularity of solutions I
Emanuel Parzen, Time series, statistics, and information
Andrew Majda and Kevin Lamb, Simplified equations for low Mach number combustion with strong heat release
Ju. S. Il'yashenko, Global analysis of the phase portrait for the Kuramoto-Sivashinsky equation
James F. Reineck, Continuation to gradient flows
Mohamed Sami Elbialy, Simultaneous binary collisions in the collinear N-body problem
John A. Jacquez and Carl P. Simon, Aids: The epidemiological significance of two different mean rates of partner-change
Carl P. Simon and John A. Jacquez, Reproduction numbers and the stability of equilibria of SI models for heterogeneous populations
Matthew Stafford, Markov partitions for expanding maps of the circle
Ciprian Foias and Edriss S. Titi, Determining nodes, finite difference schemes and inertial manifolds
M.W. Smiley, Global attractors and approximate inertial manifolds for abstract dissipative equations
M.W. Smiley, On the existence of smooth breathers for nonlinear wave equations
Hitay Özbaş and Janos Turi, Robust stabilization of systems governed by singular integro-differential equations
Mary Silber and Edgar Knobloch, Hopf bifurcation on a square lattice
Christophe Golé, Ghost circles for twist maps
Christophe Golé, Ghost tori for monotone maps
Christophe Golé, Monotone maps of $T^n \times \mathbb{R}^n$ and their periodic orbits
E.G. Kalnins and W. Miller, Jr., Hypergeometric expansions of Heun polynomials
Victor A. Pliss and George R. Sell, Perturbations of attractors of differential equations
Avner Friedman and Peter Knabner, A transport model with micro- and macro-structure
E.G. Kalnins and W. Miller, Jr., A note on group contractions and radar ambiguity functions
George R. Sell, References on dynamical systems
Shui-Nee Chow, Kening Lu and George R. Sell, Smoothness of inertial manifolds
Shui-Nee Chow, Xiao-Biao Lin and Kening Lu, Smooth invariant foliations in infinite dimensional spaces
Kening Lu, A Hartman–Grobman theorem for scalar reaction-diffusion equations
Christophe Golé and Glen R. Hall, Poincaré's proof of Poincaré's last geometric theorem
Mario Taboada, Approximate inertial manifolds for parabolic evolutionary equations via Yosida approximati- mations
Peter Rejto and Mario Taboada, Weighted resolvent estimates for Volterra operators on unbounded intervals
Joel D. Avrin, Some examples of temperature bounds and concentration decay for a model of solid fuel combustion
Susan Friedlander and Misha M. Vishik, Lax pair formulation for the Euler equation
H. Scott Dumas, Ergodization rates for linear flow on the torus
A. Eden, A.J. Milani and B. Nicolaenko, Finite dimensional exponential attractors for semilinear wave equations with damping
A. Eden, C. Foias, B. Nicolaenko & R. Temam, Inertial sets for dissipative evolution equations
A. Eden, C. Foias, B. Nicolaenko & R. Temam, Hölder continuity for the inverse of Mañé's projection
Michel Chipot and Charles Collins, Numerical approximations in variational problems with potential wells
Huanan Yang, Nonlinear wave analysis and convergence of MUSCL schemes
László Gerencsér and Zsuzsanna Vágó, A strong approximation theorem for estimator processes in continuous time
László Gerencsér, Multiple integrals with respect to L-mixing processes
David Kinderlehrer and Pablo Pedregal, Weak convergence of integrands and the Young measure representation
Bo Deng, Symbolic dynamics for chaotic systems
Charles Collins and Mitchell Luskin, Optimal order error estimates for the finite element approximation of the solution of a nonconvex variational problem
Peter Gritzmann and Victor Klee, Computational complexity of inner and outer j-radii of polytopes in finite-dimensional normed spaces