A STRONG APPROXIMATION THEOREM FOR ESTIMATOR PROCESSES IN CONTINUOUS TIME

By

László Gerencsér

and

Zsuzsanna Vágó

IMA Preprint Series # 698

September 1990
A STRONG APPROXIMATION THEOREM
FOR
ESTIMATOR PROCESSES IN CONTINUOUS TIME

László Gerencsér*, Zsuzsanna Vágó**

Department of Electrical Engineering,
McGill University,
Montréal, Québec, Canada.

Abstract

We prove that the parameter estimation error of continuous time linear stochastic system can be written as the mean of a stochastic integral plus a residual term, the moments of which decay as T^{-1} where $[0, T]$ is the observation period.

* On leave from the Computer and Automation Institute of the Hungarian Academy of Sciences, Budapest.
** Technical University of Budapest, Hungary
1. Introductions and the main theorem

Let us consider a linear time-invariant stochastic system given by the state space equations

\[
dx_t(\theta^*) = A(\theta^*)x_t(\theta^*)dt + K(\theta^*)dw_t
\]

(1.1)

\[
dy_t(\theta^*) = C(\theta^*)x_t(\theta^*)dt + dw_t
\]

(1.2)

where \(dw_t \) is a standard Gaussian white noise process in \(\mathbb{R}^m \). The process \((y_t(\theta^*)) \) is called the output process, while \((x_t(\theta^*)) \) is the state-vector. We need the following conditions:

Condition 1.1 The matrices \(A(\theta^*), K(\theta^*), C(\theta^*) \) are defined for \(\theta^* \in D \subseteq \mathbb{R}^p \) where \(D \) is an open domain and they are \(C^\infty \) function of \(\theta^* \). Moreover \(A(\theta^*) \) and \(A(\theta^*) - K(\theta^*)C(\theta^*) \) are stable for \(\theta^* \in D \).

The last part of the condition means that \(A(\theta^*) \) and \(A(\theta^*) - K(\theta^*)C(\theta^*) \) have all their eigenvalues in the left half-plane. It follows that \(dy_t \) is stationary process the innovation process of which \(dw_t \).

To estimate \(\theta^* \) on the basis of the observation process \(y_t \) we proceed as follows: fix a \(\theta \in D \) and invert the system (1.1), (1.2) assuming that \(\theta = \theta^* \) to get \(dw_t \). The inverse system is given by the equations:

\[
dx_t(\theta^*) = (A(\theta^*) - K(\theta^*)C(\theta^*))x_t(\theta^*)dt + K(\theta^*)dy_t(\theta^*)
\]

(1.5)

\[
dw_t = dy_t(\theta^*) - C(\theta^*)dt
\]

(1.6)

Now if \(\theta \) is chosen arbitrarily we still can use the equation above to generate a process \(dx_t \) which is an estimation of \(dw_t \). The governing equations are

\[
dx_t(\theta, \theta^*) = (A(\theta) - K(\theta)C(\theta))x_t(\theta, \theta^*)dt + K(\theta)dy_t(\theta^*).
\]

(1.7)

\[
dx_t(\theta, \theta^*) = dy_t(\theta^*) - C(\theta)x_t(\theta, \theta^*)dt.
\]

(1.8)

In practice we set zero initial state, i.e. \(x_0(\theta, \theta^*) = 0 \). However for analysis purposes we assume that \((x_t(\theta, \theta^*)) \) is the stationary solution of (1.7) (1.8). Since the difference between
the zero-initial state and the stationary solution is known to be $O_M(e^{-\lambda t})$ with some $\lambda > 0$

it is easy to check that all the results we derive using the latter process will hold if we use
the former one.

Here we used the following convention: if ξ_n is a sequence of random variables and c_n
is a sequence of positive numbers then we write $\xi_n = O_M(c_n)$ if $\xi_n/c_n = O_M(1)$, which in
turn means that the sequence ξ_n/c_n is M-bounded, as defined in the Appendix.

It is well known that the negative log-likelihood function can be written as

$$V_T(\theta, \theta^*) = \frac{1}{2} \int_0^T |C(\theta) x_t(\theta, \theta^*)|^2 dt - \int_0^T x_t^T(\theta, \theta^*) C^T(\theta) dw_t$$ \hspace{1cm} (1.10)

(c.f e.g. Arató (1984)), and from this we get

$$\frac{\partial}{\partial \theta} V_T(\theta, \theta^*) = \int_0^T \frac{d}{dt} \frac{\partial}{\partial \theta} \epsilon_t(\theta, \theta^*).d\epsilon_t(\theta, \theta^*)$$ \hspace{1cm} (1.11)

(c.f. e.g. Gerencsér, Gyöngy, Michaletzky (1984)). Here $\frac{\partial}{\partial \theta}$ means differentiation both in
the M-sense and almost surely (c.f. the Appendix).

Let $D^0 \subset D$ be a compact domain such that $\theta^* \in \text{int}D^0$. Then the maximum-likelihood
estimator $\hat{\theta}_T$ of θ^* is defined as the solution of the equation

$$\frac{\partial}{\partial \theta} V_T(\theta, \theta^*) = 0$$ \hspace{1cm} (1.12)

if the solution is unique in D^0. Otherwise we define $\hat{\theta}_T$ arbitrarily subject to the condition
that $\hat{\theta}_T \in D^0$ a.s. and $\hat{\theta}_T$ must be a random variable.

Let us define the asymptotic cost function $W(\theta, \theta^*)$

$$W(\theta, \theta^*) = \frac{1}{T} EV_T(\theta, \theta^*).$$ \hspace{1cm} (1.13)

It is known and easily proved that

$$\frac{\partial}{\partial \theta} W(\theta, \theta^*)|_{\theta=\theta^*} = 0.$$ \hspace{1cm} (1.14)
2. The proof of the theorem

Condition 1.2 We assume that the asymptotic log-likelihood equation (1.14) has a unique solution $\theta = \theta^*$ in D. Moreover we assume that $R^* = \left. \frac{\partial^2}{\partial \theta^2} W(\theta, \theta^*) \right|_{\theta = \theta^*}$ is positive definite.

This may seem a slightly restrictive condition, however without this we can not hope to get anything close to a consistent estimator. For discrete time ARMA-systems this condition was verified by Åström and Söderström (1974). For multivariate MA-processes Condition 1.2 was verified in Söderström and Stoica (1982). For both discrete and continuous-time systems a partial result was given in G. Vágó and Gerencsér (1985). To make the notations simpler we shall use θ subscript to denote derivative w.r.t. θ.

The main result of the paper is that the analysis of $\hat{\theta}_T - \theta^*$ can be reduced to that of a stochastic integral as described by the following theorem:

Theorem 1.1. Under Conditions 1.1.-1.2. we have

$$
\hat{\theta}_T - \theta^* = -(R^*^{-1})^{1/2} \int_0^T \epsilon_{\theta t}(\theta^*, \theta^*) d\omega_t + O_M(T^{-1/2}).
$$

This theorem is an extension of an earlier result of Gerencsér(1989b), and has many interesting corollaries. E.g. using this theorem and another result on the strong approximation of multidimensional integrals we derived the following result in Gerencsér(1989c):

Theorem A. Assume that the underlying probability space is sufficiently rich. Then under Conditions 1.1.-1.2. we have for every $\epsilon > 0$

$$
\hat{\theta}_T - \theta^* = \frac{1}{T}(R^*)^{1/2} \bar{w}_T + O_M(T^{-3/5+\epsilon})
$$

where (\bar{w}_T) is a standard Wiener-process in \mathbb{R}^p.

2. The proof of the theorem

A basic tool in the analysis of the maximum-likelihood estimator is the following theorem.

Theorem 2.1. We have

$$
\sup_{\theta \in \mathcal{D}_0} \left| \frac{1}{T} V_T(\theta, \theta^*) - W(\theta, \theta^*) \right| = O_M(T^{-\frac{1}{2}})
$$

(2.1)
and similar estimates hold for all derivatives of $V_T(\theta, \theta^*)$.

Proof: In the proofs we shall use the properties of L-mixing processes, derived in Gerencsér(1989a).

We shall summarize some of the more important properties in the Appendix.

Since $y_t(\theta^*)$ is the output of a stable linear state-space system, it is L-mixing w.r.t. $(\mathcal{F}_t, \mathcal{F}_t^+)$ by Theorem 3.2 where

$$\mathcal{F}_t = \sigma\{w_s : s \leq t\}, \quad \mathcal{F}_t^+ = \sigma\{w_s - w_{s'} : s, s' > t\}.$$

I.e. the σ-algebras $(\mathcal{F}_t, \mathcal{F}_t^+)$ represent the past and the future of the Gaussian white noise process dw_t, respectively. Also since the system-matrices are smooth in θ^* it follows that all derivatives of $y_t(\theta^*)$ w.r.t. θ^* are L-mixing. Furthermore it is easy to see that $y_t(\theta^*)$ and its derivatives are uniformly L-mixing w.r.t. θ^* when $\theta^* \in D$. Similarly $x_t(\theta, \theta^*)$ and its derivatives w.r.t. θ and θ^* are uniformly L-mixing. Let us now introduce the notation

$$\delta V_T(\theta, \theta^*) = \frac{1}{T} V_T(\theta, \theta^*) - W(\theta, \theta^*)$$

which can also be written as

$$\delta V_T(\theta, \theta^*) = \frac{1}{2T} \int_0^T \left(|C(\theta)x_t(\theta, \theta^*)|^2 - E|C(\theta)x_t(\theta, \theta^*)|^2 \right) dt - \frac{1}{T} \int_0^T x_t^T(\theta, \theta^*)C^T(\theta)dw_t$$

$$\Delta \frac{1}{2T} \int_0^T u_t(\theta, \theta^*)dt - \frac{1}{T} \int_0^T v_t(\theta, \theta^*)dw_t.$$

Here $u_t(\theta, \theta^*), v_t(\theta, \theta^*)$ are L-mixing processes uniformly in θ, θ^*, and the same holds true for all their derivatives w.r.t. θ and θ^*. Therefore we can apply Theorems 3.1.-3.3. to get that

$$\sup_{\theta \in D^o} \frac{1}{\sqrt{T}} \int_0^T u_t(\theta, \theta^*)dt = O_M(1), \quad \text{and} \quad \sup_{\theta \in D^o} \frac{1}{\sqrt{T}} \int_0^T v_t(\theta, \theta^*)dw_t = O_M(1)$$

which implies that

$$\sup_{\theta \in D^o} T^{1/2} \delta V_T(\theta, \theta^*) = O_M(1).$$
2. The proof of the theorem

For the derivatives of $\delta V_T(\theta, \theta^*)$ we can use similar arguments, thus the proof of Theorem 2.1. is complete.

Lemma 2.2. For any $d > 0$ the equation $V_{\theta T}(\theta, \theta^*) = 0$ has a unique solution in $\{\theta : |\theta - \theta^*| \leq d\}$ with probability at least $1 - O(T^{-s})$ for any $s > 0$.

Proof: We shall apply a simple analytic lemma which we present in the Appendix (Lemma 3.4). Choose

$$G(\theta) = W_\theta(\theta, \theta^*),$$

$$\delta G(\theta) = \delta V_\theta(\theta, \theta^*) \triangleq \frac{1}{T} V_\theta(\theta, \theta^*) - W_\theta(\theta, \theta^*),$$

and let us consider the set A_T defined by

$$A_T = \{\omega : \sup_{\theta \in D^o} |\delta V_\theta(\theta, \theta^*)| < d' \text{ and } \sup_{\theta \in D^o} |\delta V_{\theta_0}(\theta, \theta^*)| < d''\}$$

where d', d'' are sufficiently small positive numbers. Then by Lemma 3.4. equation (1.12) has a unique solution $\widehat{\theta}_T$ in D^o and $|\widehat{\theta}_T - \theta^*| \leq d$, where d is any fixed positive number. To estimate the probability of the event A_T we can apply Theorem 2.1., from which we get using Chebishev's inequality that $P(A_T^c) = O(T^{-s})$ for any $s > 0$.

Proof of Theorem 1.1. Let us now consider equation (1.12) and write it as

$$0 = V_{\theta T}(\widehat{\theta}_T, \theta^*) = V_{\theta T}^*(\theta^*, \theta^*) + V_{\theta T}^*(\widehat{\theta}_T - \theta^*) \quad (2.2)$$

where

$$\widehat{V}_{\theta T} = \int_0^1 \left[V_{\theta T}^*((1 - \lambda)\theta^* + \lambda \widehat{\theta}_T, \theta^*) \right] d\lambda$$

After a simple rearrangement we get from (2.2):

$$R^*(\widehat{\theta}_T - \theta^*) = -\frac{1}{T} V_{\theta T}(\theta^*, \theta^*) + (R^* - \frac{1}{T} \widehat{V}_{\theta T})(\widehat{\theta}_T - \theta^*). \quad (2.3)$$

Thus it is enough to prove that the second term on the right hand side is $O_M(T^{-1})$.

Lemma 2.3. We have

$$\widehat{\theta}_T - \theta^* = O_M(T^{-1/2}). \quad (2.4)$$
2. The proof of the theorem

Proof: Let us investigate $\overline{W}_{0\theta T}$. Define

$$\overline{W}_{0\theta T} = \int_0^1 W_{0\theta T}((1 - \lambda)\theta^* + \lambda \overline{\theta}_T, \theta^*) d\lambda. \quad (2.5)$$

We show that $\overline{W}_{0\theta T} > c'$ with some positive c' on A_T if d is sufficiently small. Indeed since W is smooth we have for $0 \leq \lambda \leq 1$

$$\|W_{0\theta}((1 - \lambda)\theta^* + \lambda \overline{\theta}_T, \theta^*) - W_{0\theta}(\theta^*, \theta^*)\| \leq |\overline{\theta}_T - \theta^*| < Cd. \quad (2.6)$$

where C is a system constant. Hence if d is sufficiently small then the positive definiteness of $W_{0\theta}(\theta^*, \theta^*)$ and (2.4) imply that $\overline{W}_{0\theta T} > c' I$ with some positive c'. Since we have on A_T

$$\|\frac{1}{T} \overline{W}_{0\theta T} - \overline{W}_{0\theta T}\| < d''$$

it follows that if d'' is sufficiently small then

$$\lambda_{\text{min}}(\frac{1}{T} \overline{W}_{0\theta T}) > c > 0 \quad (2.7)$$

on A_T where in general $\lambda_{\text{min}}(B)$ denotes the minimal eigenvalue of the matrix B. Then by (2.2) we get

$$\chi_{A_T}|\overline{\theta}_T - \theta^*| \leq c^{-1} T^{-1} \|V_{0T}(\theta^*, \theta^*)\|. \quad (2.8)$$

It is easy to see that $V_{0T}(\theta^*, \theta^*) = O_M(T^{-1/2})$. Indeed we have $d \epsilon_t (\theta^*, \theta^*) = dw_t + O_M(e^{-\lambda t}) dt$ where the second term is due to nonstationary initial conditions, the contribution of which to $V_{0T}(\theta^*, \theta^*)$ is obviously $O_M(1)$. On the other hand we have for any $q \geq 1$ that

$$E^{1/2q} \left| \int_0^T \epsilon_{0t}(\theta^*, \theta^*) dw_t \right|^{2q} \leq C_q E^{1/2q} \left(\int_0^T \epsilon_{0t}(\theta^*, \theta^*) dt \right)^q. \quad (2.9)$$

(c.f. Krylov (1977)). Using Hölder’s inequality we can continue (2.9) as

$$\leq C_q \left(\int_0^T E^{1/q} |\epsilon_{0t}(\theta^*, \theta^*)|^2 dt \right)^{1/2} = O(T^{1/2}).$$
Substituting into (2.8) we get

\[\chi_{A_T^c}(\cdot_T - \theta^*) = O_M(T^{-1/2}). \]

(2.10)

Combining this inequality with the previous inequality \(P(A_T^c) = O(T^{-s}) \) where \(A_T^c \) denotes the complement of \(A_T \) and using the fact that \(|\cdot_T - \theta^*|\) is bounded we get for any \(s > 0 \) that

\[\chi_{A_T^c}(\cdot_T - \theta^*) = O_M(T^{-s}). \]

(2.11)

Adding this equality to (2.10) we get the lemma.

Now we can complete the analysis of (2.5) as follows: First we can write

\[\|W_{\theta\theta}(\theta^*, \theta^*) - \frac{1}{T} \overline{V}_{\theta\theta T}\| \leq \|W_{\theta\theta}(\theta^*, \theta^*) - \overline{V}_{\theta\theta T}\| + \|\overline{V}_{\theta\theta T} - \frac{1}{T} \overline{V}_{\theta\theta T}\|. \]

(2.12)

Using the previous lemma we get

\[\|W_{\theta\theta}(\theta^*, \theta^*) - \overline{V}_{\theta\theta T}\| \leq \int_0^1 \|W_{\theta\theta}(\theta^*, \theta^*) - W_{\theta\theta}((1 - \lambda)\theta^* + \lambda \cdot_T, \theta^*)\| d\lambda \leq \]

\[\leq C \int_0^1 |(1 - \lambda)\theta^* + \lambda \cdot_T - \theta^*| d\lambda \leq C|\cdot_T - \theta^*| = O_M(T^{-1/2}). \]

(2.13)

On the other hand we have by Theorem 2.1.

\[\|\overline{V}_{\theta\theta T} - \frac{1}{T} \overline{V}_{\theta\theta T}\| \leq \int_0^1 W_{\theta\theta}((1 - \lambda)\theta^* + \lambda \cdot_T, \theta^*) - \frac{1}{T} V_{\theta\theta}((1 - \lambda)\theta^* + \lambda \cdot_T, \theta^*)\| d\lambda \leq \]

\[\leq \sup_{\theta \in D^0} \|W_{\theta\theta}(\theta, \theta^*) - \frac{1}{T} V_{\theta\theta}(\theta, \theta^*)\| = O_M(T^{-1/2}). \]

(2.14)

Summarizing (2.13) and (2.14) we get that

\[(W_{\theta\theta}(\theta^*, \theta^*) - \frac{1}{T} \overline{V}_{\theta\theta T}) = O_M(T^{-1}). \]

Together with (2.4) it yields that

\[R^*(\cdot_T - \theta^*) = -\frac{1}{T} V_{\theta T}(\theta^*, \theta^*) + O_M(T^{-1}). \]
3. Appendix

In this section we summarize a few definitions and theorems we need for this paper. A detailed exposition is given in Gerencsér (1989a).

Let $D \subset \mathbb{R}^p$ be a compact domain and let the stochastic process $(x_t(\theta))$ be defined on the parameter set $\mathbb{R}^+ \times D$.

Let $(\mathcal{F}_s), s \geq 0$ be a family of monotone increasing σ-algebras, and $(\mathcal{F}_s^+) s \geq 0$ be a monotone decreasing family of σ-algebras. We assume that (\mathcal{F}_s^+) is continuous from the right, i.e. $\mathcal{F}_s^+ = \sigma\{\cup_{0 < \epsilon} \mathcal{F}_{s+\epsilon}\}$. Furthermore assume that for all $s \geq 0, \mathcal{F}_s$ and \mathcal{F}_s^+ are independent. For $s < 0 \mathcal{F}_s^+ = \mathcal{F}_0^+$. A typical example is provided by the σ-algebras

$$\mathcal{F}_s = \sigma\{w_t : t \leq s\} \quad \mathcal{F}_s^+ = \sigma\{w_t - w_{t'} : t, t' > s\}$$

where $(w_t, t \geq 0)$ is a standard Wiener-process.

Definition 3.1. A stochastic process $(x_t), t \geq 0$ is L-mixing with respect to $(\mathcal{F}_t, \mathcal{F}_t^+)$ if it is \mathcal{F}_t-progressively measurable, M-bounded and with any q such that $1 \leq q < \infty$ and with

$$\gamma_q(\tau, x) = \gamma_q(\tau) = \sup_{t \geq \tau} \mathbb{E}^{1/q}[|x_t - \mathbb{E}(x_t|\mathcal{F}_{t-\tau})|^q] \quad \tau \geq 0$$

we have

$$\Gamma_q = \Gamma_q(x) = \int_0^\infty \gamma_q(\tau) d\tau < \infty. \quad (3.1)$$

It can be shown that $\gamma_q(\tau)$ is measurable and thus the integral (3.1) makes sense.

Example 1. The process (x_t) given by

$$dx_t = Ax_t dt + Bdw_t \quad x_0 = 0$$

where w_t is an m-dimensional Wiener-process, A is $n \times n$, B is $n \times m$ matrix and A is stable is L-mixing with respect to $(\mathcal{F}_t, \mathcal{F}_t^+)$ given in (3.1).
The above definition extends to discrete-time processes in a natural way.

An important property of L-mixing processes is that if $(x_t), (y_t)$ are L-mixing then (z_t) with $z_t = x_t y_t$ is also L-mixing. This is seen by direct calculations.

Theorem 3.1 Let $u_t(\theta)$ be a parameter dependent stochastic process such that itself and the process $\Delta u/\Delta^\alpha \theta$ are both L-mixing and $E u_t(\theta) = 0$ for all $\theta \in D$. Let

$$x_t^* = \sup_{\theta \in Do} \frac{1}{\sqrt{t}} \int_0^t u_s(\theta) ds.$$

Then the process x_t^* is M-bounded, and we have for all $1 \leq q < \infty$ and $s > p$

$$M_{2q}(x^*) \leq C(M_{2qs}(u) + M_{2qs}(\Delta u/\Delta^\alpha \theta))(\Gamma_{2qs}(u) + \Gamma_{2qs}(\Delta u/\Delta^\alpha \theta))$$

where C depends only on p, q, s, D and Do.

Let us consider a linear filter described by

$$x_t = \int_0^t \phi(t - s) u_s ds$$

where $\phi(\tau)$ is locally integrable.

We say that the filter is stable if

$$\Phi^* = \int_0^\infty \phi(\tau) d\tau < \infty.$$

The definition extends to vector valued processes in an obvious way.

Theorem 3.2 Let us consider a stable linear filter described above. Assume that

$$\Phi^{**} = \int_0^\infty \tau \phi(\tau) d\tau < \infty.$$

Then if the input process u_t is L-mixing then the output process x_t is also L-mixing.

Theorem 3.3. Let $u_t(\theta)$ be a progressively measurable \mathbb{R}^p- valued stochastic process which satisfies the conditions of the conditions of Theorem 3.1 and let

$$x_t(\theta) = \frac{1}{\sqrt{t}} \int_0^t u_s(\theta) dw_s$$
and take a separable version of $x_t(\theta)$. Then

$$x_t^* = \sup_{\theta \in D^o} |x_t(\theta)|$$

is M-bounded, and we have for $q \geq 1, s > p/\alpha$

$$M_{2q}(x^*) \leq C(M_{2qs}(u) + M_{2qs}(\Delta u / \Delta^\alpha \theta))$$

where C depends only on p, q, s, D and D^o.

Lemma 3.4. Let $G(\theta)$ and $\delta G(\theta)$ be \mathbb{R}^p-valued continuously differentiable functions, $\theta \in D \subset \mathbb{R}^p$. Let for some $\theta^* \in D^o \ G(\theta^*) = 0$, where D^o is a compact subset of D. Assume that $G_{\theta}(\theta^*)$ is nonsingular. Then for any $d > 0$ there exist d', d'' positive numbers such that if

$$|\delta G(\theta)| < d' \quad \text{and} \quad |G_{\theta}(\theta)| < d''$$

for all $\theta \in D^0$ then

$$G(\theta) + \delta G(\theta) = 0$$

has a unique solution $\hat{\theta} \in D^o$, moreover $|\theta^* - \hat{\theta}| < d$.

REFERENCES

<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>618</td>
<td>L.E. Fraenkel</td>
<td>On a linear, partly hyperbolic model of viscoelastic flow past a plate</td>
</tr>
<tr>
<td>619</td>
<td>Stephen Schechter and Michael Shearer</td>
<td>Undercompressive shocks for nonstrictly hyperbolic conservation laws</td>
</tr>
<tr>
<td>620</td>
<td>Xinfu Chen</td>
<td>Axially symmetric jets of compressible fluid</td>
</tr>
<tr>
<td>621</td>
<td>J. David Logan</td>
<td>Wave propagation in a qualitative model of combustion under equilibrium conditions</td>
</tr>
<tr>
<td>622</td>
<td>M.L. Zeeman</td>
<td>Hopf bifurcations in competitive three-dimensional Lotka-Volterra Systems</td>
</tr>
<tr>
<td>623</td>
<td>Allan P. Fordy</td>
<td>Isospectral flows: their Hamiltonian structures, Miura maps and master symmetries</td>
</tr>
<tr>
<td>624</td>
<td>Daniel D. Joseph, John Nelson, Michael Renardy, and Yuriko Renardy</td>
<td>Two-Dimensional cusped interfaces</td>
</tr>
<tr>
<td>625</td>
<td>Avner Friedman and Bei Hu</td>
<td>A free boundary problem arising in electrophotography</td>
</tr>
<tr>
<td>626</td>
<td>Hamid Bellout, Avner Friedman and Victor Isakov</td>
<td>Stability for an inverse problem in potential theory</td>
</tr>
<tr>
<td>627</td>
<td>Barbara Lee Keyfitz</td>
<td>Shocks near the sonic line: A comparison between steady and unsteady models for change of type</td>
</tr>
<tr>
<td>628</td>
<td>Barbara Lee Keyfitz and Gerald G. Warnecke</td>
<td>The existence of viscous profiles and admissibility for transonic shocks</td>
</tr>
<tr>
<td>629</td>
<td>P. Szmolyan</td>
<td>Transversal heteroclinic and homoclinic orbits in singular perturbation problems</td>
</tr>
<tr>
<td>630</td>
<td>Philip Boyland</td>
<td>Rotation sets and monotone periodic orbits for annulus homeomorphisms</td>
</tr>
<tr>
<td>631</td>
<td>Kenneth R. Meyer</td>
<td>Apollonius coordinates, the N-body problem and continuation of periodic solutions</td>
</tr>
<tr>
<td>632</td>
<td>Chjan C. Lim</td>
<td>On the Poincare–Whitney circuit-space and other properties of an incidence matrix for binary trees</td>
</tr>
<tr>
<td>634</td>
<td>Stanley Minkowitz and Matthew Witten</td>
<td>Periodicity in cell proliferation using an asynchronos cell population</td>
</tr>
<tr>
<td>635</td>
<td>M. Chipot and G. Dal Maso</td>
<td>Relaxed shape optimization: The case of nonnegative data for the Dirichlet problem</td>
</tr>
<tr>
<td>636</td>
<td>Jeffery M. Franke and Harlan W. Stech</td>
<td>Extensions of an algorithm for the analysis of nongeneric Hopf bifurcations, with applications to delay-difference equations</td>
</tr>
<tr>
<td>637</td>
<td>Xinfu Chen</td>
<td>Generation and propagation of the interface for reaction–diffusion equations</td>
</tr>
<tr>
<td>638</td>
<td>Philip Korman</td>
<td>Dynamics of the Lotka–Volterra systems with diffusion</td>
</tr>
<tr>
<td>639</td>
<td>Harlan W. Stech</td>
<td>Generic Hopf bifurcation in a class of integro-differential equations</td>
</tr>
<tr>
<td>640</td>
<td>Stephane Laederich</td>
<td>Periodic solutions of non linear differential difference equations</td>
</tr>
<tr>
<td>641</td>
<td>Peter J. Olver</td>
<td>Canonical Forms and Integrability of BiHamiltonian Systems</td>
</tr>
<tr>
<td>642</td>
<td>S.A. van Gils, M.P. Krupa and W.F. Langford</td>
<td>Hopf bifurcation with nonsemisimple 1:1 Resonance</td>
</tr>
<tr>
<td>643</td>
<td>R.D. James and D. Kinderlehrer</td>
<td>Frustration in ferromagnetic materials</td>
</tr>
<tr>
<td>644</td>
<td>Carlos Rocha</td>
<td>Properties of the attractor of a scalar parabolic P.D.E.</td>
</tr>
<tr>
<td>645</td>
<td>Debra Lewis</td>
<td>Lagrangian block diagonalization</td>
</tr>
<tr>
<td>646</td>
<td>Richard C. Churchill and David L. Rod</td>
<td>On the determination of Ziglin monodromy groups</td>
</tr>
<tr>
<td>647</td>
<td>Xinfu Chen and Avner Friedman</td>
<td>A nonlocal diffusion equation arising in terminally attached polymer chains</td>
</tr>
<tr>
<td>648</td>
<td>Peter Gritzmann and Victor Kloe</td>
<td>Inner and outer j- Radii of convex bodies in finite-dimensional normed spaces</td>
</tr>
<tr>
<td>649</td>
<td>P. Szmolyan</td>
<td>Analysis of a singularly perturbed traveling wave problem</td>
</tr>
<tr>
<td>650</td>
<td>Stanley Reiter and Carl P. Simon</td>
<td>Decentralized dynamic processes for finding equilibrium</td>
</tr>
<tr>
<td>651</td>
<td>Fernando Reitich</td>
<td>Singular solutions of a transmission problem in plane linear elasticity for wedge-shaped regions</td>
</tr>
<tr>
<td>652</td>
<td>Russell A. Johnson</td>
<td>Cantor spectrum for the quasi-periodic Schrödinger equation</td>
</tr>
<tr>
<td>653</td>
<td>Wenxiong Liu</td>
<td>Singular solutions for a convection diffusion equation with absorption</td>
</tr>
<tr>
<td>654</td>
<td>Deborah Brandon and William J. Hrusa</td>
<td>Global existence of smooth shearing motions of a nonlinear viscoelastic fluid</td>
</tr>
<tr>
<td>655</td>
<td>James F. Reineck</td>
<td>The connection matrix in Morse–Smale flows II</td>
</tr>
<tr>
<td>656</td>
<td>Claude Baesens, John Guckenheimer, Seunghwan Kim and Robert Mackay</td>
<td>Simple resonance regions of torus diffeomorphisms</td>
</tr>
<tr>
<td>657</td>
<td>Willard Miller, Jr.</td>
<td>Lecture notes in radar/sonar: Topics in Harmonic analysis with applications to radar and sonar</td>
</tr>
</tbody>
</table>
Calvin H. Wilcox, Lecture notes in radar/sonar: Sonar and Radar Echo Structure
Richard E. Blahut, Lecture notes in radar/sonar: Theory of remote surveillance algorithms
D.V. Anosov, Hilbert’s 21st problem (according to Bolibruch)
Stephane Laederich, Ray–Singer torsion for complex manifolds and the adiabatic limit
Geneviève Raugel and George R. Sell, Navier-Stokes equations in thin 3d domains: Global regularity of solutions I
Emanuel Parzen, Time series, statistics, and information
Andrew Majda and Kevin Lamb, Simplified equations for low Mach number combustion with strong heat release
Ju. S. Il’yaschenko, Global analysis of the phase portrait for the Kuramoto-Sivashinsky equation
James F. Reineck, Continuation to gradient flows
Mohamed Sami Elbialy, Simultaneous binary collisions in the collinear N–body problem
John A. Jacquez and Carl P. Simon, AIDS: The epidemiological significance of two different mean rates of partner-change
Carl P. Simon and John A. Jacquez, Reproduction numbers and the stability of equilibria of SI models for heterogeneous populations
Matthew Stafford, Markov partitions for expanding maps of the circle
Ciprian Foias and Edriss S. Titi, Determining nodes, finite difference schemes and inertial manifolds
M.W. Smiley, Global attractors and approximate inertial manifolds for abstract dissipative equations
M.W. Smiley, On the existence of smooth breathers for nonlinear wave equations
Hitay Özbay and Janos Turi, Robust stabilization of systems governed by singular integro-differential equations
Mary Silber and Edgar Knobloch, Hopf bifurcation on a square lattice
Christophe Golé, Ghost circles for twist maps
Christophe Golé, Ghost tori for monotone maps
Christophe Golé, Monotone maps of $T^n \times R^n$ and their periodic orbits
E.G. Kalnins and W. Miller, Jr., Hypergeometric expansions of Heun polynomials
Victor A. Pliss and George R. Sell, Perturbations of attractors of differential equations
Avner Friedman and Peter Knabner, A transport model with micro- and macro-structure
E.G. Kalnins and W. Miller, Jr., A note on group contractions and radar ambiguity functions
George R. Sell, References on dynamical systems
Shui-Nee Chow, Kening Lu and George R. Sell, Smoothness of inertial manifolds
Shui-Nee Chow, Xiao-Biao Lin and Kening Lu, Smooth invariant foliations in infinite dimensional spaces
Kening Lu, A Hartman-Grobman theorem for scalar reaction-diffusion equations
Christophe Golé and Glen R. Hall, Poincaré’s proof of Poincaré’s last geometric theorem
Mario Taboada, Approximate inertial manifolds for parabolic evolutionary equations via Yosida approximations
Peter Rejto and Mario Taboada, Weighted resolvent estimates for Volterra operators on unbounded intervals
Joel D. Avrin, Some examples of temperature bounds and concentration decay for a model of solid fuel combustion
Susan Friedlander and Misha M. Vishik, Lax pair formulation for the Euler equation
H. Scott Dumas, Ergodization rates for linear flow on the torus
A. Eden, A.J. Milani and B. Nicolaenko, Finite dimensional exponential attractors for semilinear wave equations with damping
A. Eden, C. Foias, B. Nicolaenko & R. Temam, Inertial sets for dissipative evolution equations
A. Eden, C. Foias, B. Nicolaenko & R. Temam, Hölder continuity for the inverse of Mañé’s projection
Michel Chipot and Charles Collins, Numerical approximations in variational problems with potential wells
Huanan Yang, Nonlinear wave analysis and convergence of MUSCL schemes
László Gerencsér and Zsuzsanna Vágó, A strong approximation theorem for estimator processes in continuous time
László Gerencsér, Multiple integrals with respect to L-mixing processes
David Kinderlehrer and Pablo Pedregal, Weak convergence of integrands and the Young measure representation
Bo Deng, Symbolic dynamics for chaotic systems
Charles Collins and Mitchell Luskin, Optimal order error estimates for the finite element approximation of the solution of a nonconvex variational problem
Peter Gritzmann and Victor Klee, Computational complexity of inner and outer j-radii of polytopes in finite-dimensional normed spaces