FINITE DIMENSIONAL EXPONENTIAL ATTRACTORS
FOR SEMILINEAR WAVE EQUATIONS WITH DAMPING

By

A. Eden
A.J. Milani
and
B. Nicolaenko

IMA Preprint Series # 693
September 1990
Finite Dimensional Exponential Attractors for Semilinear Wave Equations with Damping

by A. Eden, A. J. Milani and B. Nicolaenko

ABSTRACT. We consider the initial value problem for a class of second order evolution equations that includes, among others, the 3D sine-Gordon equation with damping and the 3D Klein-Gordon type equations with damping. We show the existence of a set with finite fractal dimension that contains the global attractor and attracts all smooth solutions at an exponential rate.

1. INTRODUCTION. In this paper we study the initial value problem for a class of semilinear wave equations with damping that includes the 3D sine-Gordon equation with damping, the 3D Klein-Gordon type equations with damping as well as systems of sine-Gordon type equations. The purpose of our work is to characterize the long time behaviour of the solutions for these equations with the help of a finite dimensional set that contains the global attractor and at the same time attracts all smooth solutions at an exponential rate. Such sets are called inertial sets (see [EFNT1] and [EFNT2]). In order to lay the conceptual groundwork for inertial sets, we first recall some of the basic definitions from the theory of (infinite dimensional) dynamical systems. The existence of a bounded set that absorbs all solutions in finite time, i.e. an absorbing set, seems to be the starting point for all the studies of dissipative differential equations. The omega limit set of such an absorbing set is called the global attractor and for most of the dissipative equations the global attractor is known to be compact. However, the manner in which the global attractor becomes compact changes drastically from the first order dissipative evolution equations to the second order damped evolution equations (see [T], [BV] and [H]). The same difference also effects the way one proves the finite dimensionality of the global attractor (see [T]). We will come back to this point later on. Although the attractor is the most obvious set to study the long time dynamics of the underlying evolution equations on, it is not easy to track. The theory of inertial
manifolds is proposed in order to partially resolve this problem ([FST], [CFNT1], [CFNT2] and [FSTi]). An inertial manifold is a Lipschitz manifold that is invariant under the solution operator and attracts all solutions at an exponential rate. At this stage, the existence of inertial manifolds hinges upon a gap condition that is imposed on the eigenvalues of the linear part of the evolution equation. On the one hand, this condition makes the dimension estimates for the inertial manifolds for equations in higher space dimension unreasonably high. On the other hand, for equations like 2D Navier-Stokes equations it leaves the problem of the existence of an inertial manifold open.

By relaxing some of the conditions in the definition of the inertial manifold one can arrive to a more general concept, that of an inertial set. An inertial set is a set of finite fractal dimension which attracts all solutions at an exponential rate (see [EFNT1], [EFNT2]). The existence of inertial sets for a large class of dissipative evolution equations that includes the 2D Navier-Stokes equations with periodic boundary conditions, Kuramoto-Sivashinsky equation, Kolmogorov-Sivashinsky-Spiegel equation, Chaffee-Infante equation in any space dimension and Original Burgers' equations has already been proven ([EFNT1] and [EFNT2]). However, all the equations mentioned above take the form of a first order evolution equation where the linear part is a positive, self-adjoint operator. In contrast, the equations we consider are of the form

\[\varepsilon u_{tt} + u_t + Au + g(u) = f, \]

\[u(0) = u_0 \text{ and } u_t(0) = u_1, \]

where \(\varepsilon > 0, A \) is a positive, self-adjoint operator and the non-linearity \(g(u) \) satisfies the appropriate conditions (see [T]). When written as a first order evolution equation, in a suitable product of Hilbert spaces, the evolution equation (1.1) can be transformed into

\[U_t + AU + \mathcal{G}(U) = F, \]

\[U(0) = U_0 = \begin{bmatrix} u_t \\ u_0 \end{bmatrix}^T, \]

where
\[U = [u_1, u]^T; \quad \mathcal{A} = \epsilon^{-1} \begin{bmatrix} I & A \\ 0 & \epsilon I \end{bmatrix} \]

and

\[\mathcal{G}(U) = [g(u), 0]^T; \quad F = [f, 0]^T. \]

Clearly, the linear part of the evolution equation (1.3), that is \(\mathcal{A} \), is no longer self-adjoint. Moreover, the spectrum of \(\mathcal{A} \) contains infinitely many eigenvalues on a vertical line in the complex plane (see [MS]). In terms of the existence of a smooth inertial manifold this particular distribution of eigenvalues causes insurmountable difficulty. Even in one space dimension, for \(\epsilon \) large enough the generic situation is the nonexistence of \(C^1 \)-inertial manifolds (see [MS]). In contrast, the existence of the compact global attractor is independent of the size of \(\epsilon \) (see [T], [H] and [BV]). At the other extreme, that is when \(\epsilon \) is very small, at least in one space dimension one can show the existence of \(C^1 \)-inertial manifolds under some assumptions on \(g(u) \) and \(f \) (see [MS] also [CL]). In spite of the difficulties of this set-up we will show that inertial sets still exist. After reviewing the basic result on the existence of inertial sets from [EFNT1] we proceed to verify the key property that allows a construction of an inertial set, that is the squeeving property. We only need a simple Lipschitz condition on the non-linearity \(g(u) \) to obtain this result. In the final section we give a few equations to which the theory applies.

2. INERTIAL SETS AND SQUEEZING PROPERTY.

Let \(\mathbb{H} \) be a separable Hilbert space and \(B \) be a compact subset of \(\mathbb{H} \). Let \(\{S(t)\}_{t \geq 0} \) be a non-linear continuous semi-group that leaves the set \(B \) invariant and set \(\mathcal{A} = \cap \{S(t)B: t \geq 0\} \), that is \(\mathcal{A} \) is the global attractor for \(\{S(t)\}_{t \geq 0} \) on \(B \).

Definition 2.1. A set \(\mathcal{M} \) is called an inertial set for \(\{S(t)\}_{t \geq 0}, B \) if (i) \(\mathcal{A} \subseteq \mathcal{M} \subseteq B \), (ii) \(S(t)\mathcal{M} \subseteq \mathcal{M} \) for every \(t \geq 0 \), (iii) for every \(u_0 \) in \(B \), \(\text{dist}_\mathbb{H}(S(t)u_0, \mathcal{M}) \leq c_1 \exp\{-c_2 t\} \) for all \(t \geq 0 \), where \(c_1 \) and \(c_2 \) are independent of \(u_0 \); and (iv) \(\mathcal{M} \) has finite fractal dimension.
A sufficient condition for the existence of inertial sets was furnished in [EFNT1] (see also [EFNT2]). It depends on a dichotomy principle called the squeezing property, we recall this property for flows.

Definition 2.2. A continuous semi-group \(\{S(t)\}_{t\geq 0} \) is said to satisfy the squeezing property on \(B \) if there exists \(t_* > 0 \) such that \(S_{*} = S(t_*) \) satisfies: there exists an orthogonal projection \(P \) of rank \(N_0 \) such that if for every \(u \) and \(v \) in \(B \)

\[
\|P(S_{*}u - S_{*}v)\|_{\mathcal{H}} \leq \|(I - P)(S_{*}u - S_{*}v)\|_{\mathcal{H}}
\]

(2.1)

then

\[
\|S_{*}u - S_{*}v\|_{\mathcal{H}} \leq \frac{1}{8}\|u - v\|_{\mathcal{H}}.
\]

(2.2)

Remark 2.2. An implicit assumption that we will make from now on is the Lipschitz condition on the map \((t, u_0) \rightarrow S(t)u_0 \) on \([0, t_*] \times B\), which is easy to check for the equations under consideration.

Theorem 2.1. [EFNT1] If \(\{\{S(t)\}_{t\geq 0}, B\} \) satisfies the squeezing property on \(B \) and if \(S_{*} = S(t_*) \) is Lipschitz on \(B \) with Lipschitz constant \(L \) then there exists an inertial set \(\mathcal{M} \) for \(\{\{S(t)\}_{t\geq 0}, B\} \) such that

\[
d_F(\mathcal{M}) \leq N_0 \max\{1, \ln(16L + 1)/\ln 2\}
\]

(2.3)

and

\[
\text{dist}_{\mathcal{H}}(S(t)u_0, \mathcal{M}) \leq c_1 \exp\left\{\left(-c_2/t_*\right)t\right\}
\]

(2.4)

Clearly, we only need to find the time \(t_* \) and the projection \(P \) of rank \(N_0 \) in order to evaluate the right hand sides of the inequalities (2.3) and (2.4). That is what we proceed to do.
3. SEMILINEAR WAVE EQUATIONS WITH DAMPING: FUNCTIONAL SET-UP AND SQUEEZING PROPERTY.

A. PRELIMINARIES.

We consider the initial value problem for a class of semilinear wave equations on a separable Hilbert space H,

\[
(H^0) \quad \varepsilon u_{tt} + u_t + Au + g(u) = f,
\]

\[
(IV) \quad u(0) = u_0 \quad \text{and} \quad u_t(0) = u_t.
\]

where $\varepsilon > 0$, A is a positive, self-adjoint unbounded operator with compact inverse. Let $V = D\left(A^{1/2}\right)$ and let $\| \cdot \|_V$, $| \cdot |_H$ and $\| \cdot \|_*$ denote the norms in V, H and V' (dual of V) respectively. We also set $(\cdot, \cdot)_H$ for the inner product on H and $\langle \cdot, \cdot \rangle_{V' \times V}$ for the duality product between V' and V. We denote the eigenvalues of A by

\[
0 < \lambda_1 \leq \lambda_2 \leq \ldots \leq \ldots \to \infty \quad \text{(3.1)}
\]

and the corresponding eigenvectors by w_1, w_2, \ldots. As for the non-linearly $g(u)$, we assume that g is C^1-continuous from V into H and satisfies either

\[
(N1) \quad \| g(u) - g(v) \|_H \leq L_1 \| u - v \|_V \quad \text{for all} \quad u, v \text{ in } B^V(0; R)
\]

or

\[
(N2) \quad \| g(u) - g(v) \|_V \leq L_2 \| u - v \|_V \quad \text{for all} \quad u, v \text{ in } B^{D(A)}(0; R),
\]

where $B^V(0; R)$ and $B^{D(A)}(0; R)$ stand for R-balls in the spaces V and $D(A)$ respectively and $L_1 = L_1(R)$ and $L_2 = L_2(R)$ are the corresponding Lipschitz constants.

In order to check the squeezing properties we will take as \mathbb{H} the product space $E_0 = V \times H$; let us recall other related spaces as well. Let

\[
E_0 = V \times H \quad \text{furnished with the norm} \quad \| w \|_{E_0}^2 = \| u \|_V^2 + \varepsilon \| v \|_H^2, \quad \text{where} \quad w = (u, v), \quad \text{(3.2)}
\]

\[
E_1 = D(A) \times V \quad \text{furnished with the norm} \quad \| w \|_{E_1}^2 = \| u \|_{D(A)}^2 + \varepsilon \| v \|_V^2, \quad \text{(3.3)}
\]

and finally,

\[
E_{-1} = H \times V' \quad \text{furnished with the norm} \quad \| w \|_{E_{-1}}^2 = \| u \|_H^2 + \varepsilon \| v \|_{V'}^2. \quad \text{(3.4)}
\]
Classical existence and regularity results ensure the existence of a solution operator $S^\varepsilon(t)$ for the initial value problem $\left(H^\varepsilon \right)$ and (IV) on E_i for $i = -1, 0, 1$. (See [T] or [BV].)

Theorem 3.1. (i) For $\varepsilon > 0$, if $f \in \mathcal{C}_b(\mathbb{R}^+; H)$ then for every $\{u_0, u_1\}$ in E_0 there exists a unique solution $u(t)$ for the initial value problem $\left(H^\varepsilon \right)$ and (IV). Moreover, $u \in \mathcal{C}_b(\mathbb{R}^+; V) \cap \mathcal{C}_b^1(\mathbb{R}^+; H)$.

(ii) If $\{u_0, u_1\}$ is in E_1 and $f \in \mathcal{C}_b^1(\mathbb{R}^+; H)$ then the unique solution $u(t)$ belongs to $\mathcal{C}_b(\mathbb{R}^+; D(A)) \cap \mathcal{C}_b^1(\mathbb{R}^+; V) \cap \mathcal{C}_b^2(\mathbb{R}^+; H)$.

B. The Squeezing Property for Semilinear Wave Equations

Now we can proceed to show the squeezing property for the solution operator $\{S^\varepsilon(t)\}_{t \geq 0}$ of $\left(H^\varepsilon \right)$ on a bounded subset B of E_1 with respect to E_0-norm. In effect, we take as B the absorbing ball in E_1, that is guaranteed to exist for all the equations under consideration (see [T] and [BV]), and as our Hilbert space \mathcal{H} we take E_0.

As before, see 3.1, let $\{\lambda_N; N = 1, 2, \ldots\}$ denote the sequence of eigenvalues of A and $\{w_N; N = 1, 2, \ldots\}$ be the corresponding eigenvectors, i.e., $Aw_N = \lambda_N w_N$. Let $H_N = \text{span} \{w_1, w_2, \ldots, w_N\}$. Then we set

$$p_N: H \rightarrow H_N$$

be the orthogonal projection onto H_N; \hspace{1cm} (3.5)

and

$$q_N = I - p_N.$$ \hspace{1cm} (3.6)

Note that the projections p_N and q_N are orthogonal both in H and in V. It follows easily from the definition of the projection q_N that

$$\frac{1}{\lambda_{N+1}} \|u\|^2_V \leq \|u\|^2_H \quad \text{for all } u \text{ in } q_N V.$$ \hspace{1cm} (3.7)

Next we define corresponding product projections on E_0, namely,

$$P_N: E_0 \rightarrow (p_N V) \times (p_N H) \quad \text{and} \quad Q_N = I - P_N \hspace{1cm} (3.8)$$
in the canonical way by

\[P_N(u, v)^T = (p_N u, p_N v)^T \text{ for } (u, v)^T \text{ in } E_0. \]

(3.9)

We propose to show the squeezing property, Definition 2.2, via these orthogonal projections; let us emphasize once again that \(B \) is a bounded set in \(E_1 \). The main theorem is the following.

Theorem 3.2. For any \(\varepsilon > 0 \), there exists \(t_\varepsilon = t_\varepsilon(\varepsilon) > 0 \) and \(N_0 = N_0(\varepsilon, t_\varepsilon) \) such that the squeezing property is satisfied for \(\{S^\varepsilon(t)\}_{t \geq 0}, B \) in the Hilbert space \(E_0 \) with \(P = P_{N_0} \), as given in (3.9).

Once \(t_\varepsilon \) and \(N_0 \) is specified, the existence of an inertial set follows directly from Theorem 2.1. Moreover, both the fractal dimension of \(\mathcal{M} \) and the exponential rate of convergence to \(\mathcal{M} \) can be estimated explicitly. We divide the proof of Theorem 3.2 into three steps. First we discuss the equivalency of some norms in \(E_0 \) and in \(Q_N E_0 \). Then considering the difference of two solutions to \((H^\varepsilon) \), we derive some estimates in terms of the norms discussed earlier. The final step involves the correct specification of \(t_\varepsilon \) and \(N_0 \) so that the squeezing property is verified. Without loss of generality, we assume that \(\varepsilon \leq 1 \), otherwise by rescaling the equation \((H^\varepsilon) \) we can reduce it to the case \(\varepsilon \leq 1 \).

Proof (of Theorem 3.2).

Step 1. Some Equivalent Norms on \(E_0 \) and \(Q_N E_0^* \):

For \(z = (u, v)^T \) in \(E_0 \) and \(\varepsilon > 0 \), define the function \(N_\varepsilon(z) \) by

\[N_\varepsilon(z) = \frac{1}{2} |u|^2_H + \varepsilon |u, v|^2_H + \varepsilon |v|^2_H + \|u\|_V^2. \]

(3.10)

Lemma 3.1. Let \(k = \max\{1 + \lambda_1^{-1}, 3/2\} \). If \(\varepsilon \leq 1 \) then \(N_\varepsilon \) is an equivalent norm in \(E_0 \); in fact for all \(z \) in \(E_0 \),

\[N_\varepsilon(z) \geq \|z\|_{E_0}^2 \text{ and } \frac{1}{2} \|z\|_{E_0}^2 \leq N_\varepsilon(z) \leq k \|z\|_{E_0}^2. \]

(3.11)
Proof. Follows directly from the Schwartz inequality. Note that in this argument, the case $\varepsilon > 1$ can also be treated by modifying $\frac{1}{2}$, 1 and k with constants depending on ε.

Again for $z = \{u, v\}^T$ in E_0 we define another function by

$$M^\varepsilon(z) = (u, v)_H + \|z\|_{E_0}^2 = \|u\|_V^2 + (u, v)_H + \varepsilon \|v\|_H^2.$$ \hspace{1cm} (3.12)

Lemma 3.2. If $\varepsilon \leq 1$ and N is large enough so that $\lambda_{N+1} \geq \varepsilon^{-1}$ (which is possible since $\lambda_N \to \infty$) then for all z in Q_NE_0 we have

$$\|z\|_{E_0}^2 \leq 2M^\varepsilon(z) \leq 3\|z\|_{E_0}^2.$$ \hspace{1cm} (3.13)

Hence $M^\varepsilon(z)$ is equivalent to the usual E_0-norm on Q_NE_0.

Proof. This result is a consequence of Schwartz inequality: note that by (3.6) we have

$$(u, v)_H \leq \frac{1}{2\varepsilon} \|u\|_H^2 + \frac{\varepsilon}{2} \|v\|_H^2 \leq \frac{1}{2\varepsilon \lambda_{N+1}} \|u\|_V^2 + \frac{\varepsilon}{2} \|v\|_H^2 \leq \frac{1}{2} \|z\|_{E_0}^2.$$ \hspace{1cm} ■

Step 2. Estimates on the difference of solutions to (H^ε):

Let u and \bar{u} be two solutions of (H^ε) in the space $C_b^1(\mathbb{R}^+; \mathcal{V}) \cap C_b(\mathbb{R}^+; H)$ and let

$$w = u - \bar{u} \text{ and } W = \{w, w_i\}^T,$$ \hspace{1cm} (3.14)

so that $W \in C_b(\mathbb{R}^+; E_0)$. By Gronwall's inequality we can control the growth of $W(t)$:

Lemma 3.3. Let $k = \max\{1 + \lambda^{-1}, 3/2\}$ and $\alpha = L_1^2 + L_1 \lambda^{-1}$, where L_1 is as given in (N1), then for all $t > 0$,

$$\|W(t)\|_{E_0}^2 \leq 2\varepsilon k^\alpha \|W(0)\|_{E_0}^2.$$ \hspace{1cm} (3.15)

Proof. Since w solves the equation

$$\varepsilon w_{tt} + w_t + Aw = g(u) - g(\bar{u}),$$ \hspace{1cm} (3.16)

by multiplying (3.16) in H by $2w_t$ and w, we obtain that

$$\frac{d}{dt} \|W(t)\|_{E_0}^2 + (2 - \varepsilon) \|w_t\|_H^2 + \|w\|_V^2 = \left(g(\bar{u}) - g(u), 2w_t + w\right)_H \leq$$
\[\leq 2L_2 \|w\|_V \|w_i\|_H + L_1 \|w\|_V \|w_i\|_H \leq \left(L_1^2 + \frac{L_1}{\lambda_1} \right) \|w\|_V^2 + \|w_i\|_H^2, \]

where we have used (N1) and the definition of \(N^\varepsilon(W) \) as given in (3.10). Recalling from (3.10) that \(N^\varepsilon(W) \leq \|w\|_V^2 \), we deduce from (3.17) that

\[\frac{d}{dt} N^\varepsilon(W) + (1 - \varepsilon) \|w_i\|_H^2 + \|w\|_V^2 \leq \alpha N^\varepsilon(W), \]

whence (3.15) follows from the Gronwall's lemma and from (3.11).

\[\text{Lemma 3.4.} \]

Let \(N \) be as given in Lemma 3.2, that is \(\varepsilon \lambda_{N+1} \geq 1 \); also let \(w = u - \bar{u} \) as in Lemma 3.3, \(\varphi = q_N w \) and \(\Phi = \{\varphi, \varphi_i\}^T = Q_N W \). Then \(M^\varepsilon(\Phi(t)) \) satisfies, for all \(t \geq 0 \), the differential inequality

\[\frac{d}{dt} M^\varepsilon(\Phi(t)) + \frac{1}{2\varepsilon} M^\varepsilon(\Phi(t)) \leq \frac{6L_2^2}{\lambda_{N+1}} \|w(t)\|_V^2. \]

\[(3.18) \]

Proof. We apply \(q_N \) to (3.16) and note that \(q_N \) commutes with \(A \), hence \(\varphi = q_N w \) satisfies

\[\varepsilon \varphi_{tt} + \varphi_t + A \varphi = q_N (g(\bar{u}) - g(u)) \equiv \Gamma. \]

(3.19)

Multiplying the above equation in \(H \) by \(2\varphi_i \) and \(\frac{1}{\varepsilon} \varphi \), we obtain

\[\frac{d}{dt} M^\varepsilon(\Phi) + \|\varphi_i\|_H^2 + \frac{1}{\varepsilon} \|\varphi\|_V^2 + \frac{1}{2\varepsilon}(\varphi, \varphi_i)_H = - \frac{1}{2\varepsilon}(\varphi, \varphi_i)_H + \left(\Gamma, 2\varphi_i + \frac{1}{\varepsilon} \varphi \right)_H \]

\[\leq \frac{1}{2\varepsilon} \|\varphi\|_H \|\varphi_i\|_H + \|\Gamma\|_H \left(2\|\varphi_i\|_H + \frac{1}{\varepsilon} \|\varphi\|_H \right) \equiv S \]

(3.20)

On the other hand, by (3.7) and (N2)

\[\|\Gamma\|_H = \left| q_N (g(u) - g(\bar{u})) \right|_H \leq \frac{1}{\lambda_{N+1}^2} \|g(\bar{u}) - g(u)\|_V \leq L_2 \lambda_{N+1}^{-\frac{3}{2}} \|w\|_V. \]

(3.21)

so that \(S \), as defined in (3.20), can be estimated by

\[S \leq \frac{1}{2\varepsilon} \|\varphi\|_H \|\varphi_i\|_H + L_2 \lambda_{N+1}^{-\frac{3}{2}} \|w\|_V \left(2\|\varphi_i\|_H + \frac{1}{\varepsilon} \|\varphi\|_H \right) \]

\[\leq \frac{1}{2} \|\varphi_i\|_H^2 + \frac{3}{8\varepsilon^2} \|\varphi\|_H^2 + 6L_2^2 \lambda_{N+1}^{-1} \|w\|_V^2. \]

(3.22)
Consequently, returning back to (3.20) and using \(\varepsilon \lambda_{N+1} \geq 1\) combined with the definition of \(M^e(\Phi)\) in (3.12) we obtain the desired result. ■

Step 3. Choosing \(t_*\) and \(N_0\).

Let \(U = \{u_0, u_1\}\) and \(\bar{U} = \{\bar{u}_0, \bar{u}_1\}\) be in \(E_0\) and set \(W(t) = S^e(t)U - S^e(t)\bar{U}\). We will show that there exists \(t_*\) such that if

\[
\left\| P_{N_0} W(t_*) \right\|_{E_0} \leq \left\| Q_{N_0} W(t_*) \right\|_{E_0}
\]

holds, then \(\left\| W(t_*) \right\|_{E_0} \leq \frac{1}{8} \left\| W(0) \right\|_{E_0}\) holds as well. To this end, we apply Lemma 3.4 to \(W(t)\) so that (3.18) implies that

\[
\frac{d}{dt} M^e(\Phi) + \frac{1}{2\varepsilon} M^e(\Phi) \leq 6L_2^2 \lambda_{N_0+1}^{-1} \left\| w(t) \right\|_{V}^2 \leq 6L_2^2 \lambda_{N_0+1}^{-1} \left\| W(t) \right\|_{E_0}^2
\]

\[
\leq 12kL_2^2 \lambda_{N_0+1}^{-1} e^{\alpha t} \left\| W(0) \right\|_{E_0}^2.
\]

(3.24)

From the above inequality, it follows that

\[
M^e(\Phi(t)) \leq M^e(\Phi(0)) e^{-\frac{1}{2\varepsilon}} + 12kL_2^2 \lambda_{N_0+1}^{-1} \left\| W(0) \right\|_{E_0}^2 e^{-\frac{1}{2\varepsilon}} \int_0^t \exp \left(\left(\alpha + \frac{1}{2\varepsilon} \right)s \right) ds
\]

\[
\leq M^e(\Phi(0)) e^{-\frac{1}{2\varepsilon}} + 24kL_2^2 \lambda_{N_0+1}^{-1} \left\| W(0) \right\|_{E_0}^2 e^{\alpha t}
\]

so that, if \(N_0\) is such that \(\varepsilon \lambda_{N_0+1} \geq 1\) then by (3.13), since \(\Phi(t)\) is in \(Q_N E_0\), we have

\[
\left\| \Phi(t) \right\|_{E_0}^2 \leq 6e^{-\frac{1}{2\varepsilon}} \left\| \Phi(0) \right\|_{E_0}^2 + 48kL_2^2 \lambda_{N_0+1}^{-1} e^{\alpha t} \left\| W(0) \right\|_{E_0}^2.
\]

Consequently, using that \(Q_N\) is a projection on \(E_0\), we obtain

\[
\left\| Q_N W(t) \right\|_{E_0}^2 \leq 6\left\| W(0) \right\|_{E_0}^2 \left(e^{-\frac{1}{2\varepsilon}} + 8kL_2^2 \lambda_{N_0+1}^{-1} e^{\alpha t} \right).
\]

(3.25)

Now we are ready to choose the values of \(t_*\) and \(N_0\). First, we choose \(t_*\) such that

\[
12 \exp \left(-\frac{t_0}{2\varepsilon} \right) = \frac{1}{2} \left(\frac{1}{8} \right)^2,
\]

then we choose \(N_0\) large enough so that

\[
96kL_2^2 \lambda_{N_0+1}^{-1} e^{\alpha t_*} \leq \frac{1}{2} \left(\frac{1}{8} \right)^2.
\]

(3.26)
Assume that for this particular choice of t_* (3.23) holds then from (3.25) and (3.26) we deduce that

$$
\| W(t_*) \|_{E_0}^2 = \| P_N W(t_*) \|_{E_0}^2 + \| Q_N W(t_*) \|_{E_0}^2 \leq 2 \| Q_N W(t_*) \|_{E_0}^2
$$

$$
\leq 12 \| W(0) \|_{E_0}^2 \left(e^{-t_*/2\varepsilon} + 8kL_2^2 \lambda_{N+1}^{-1} e^{|t_*|} \right)
$$

$$
\leq \left(\frac{1}{8} \right)^2 \| W(0) \|_{E_0}^2.
$$

With this the proof of Theorem 3.2 is complete: we have chosen

$$
t_* = 2\varepsilon \ln \left(\frac{3}{8} \right)
$$

and $N_0 = N_0(\varepsilon, t_*)$ so large that

$$
\lambda_{N_0+1} \geq \max \left\{ \frac{1}{\varepsilon}, 3kL_2^2 e^{\alpha |t_*|} \right\}.
$$

(3.27)

(3.28)

4. APPLICATIONS

The results obtained in the previous section on the abstract equation $\left(H^\varepsilon \right)$ can be applied to a wide variety of equations. In particular, we mention the sine-Gordon equation and the nonlinear wave equation of relativistic quantum mechanics, i.e. Klein-Gordon type equations, as well as systems of sine-Gordon equations. All these examples are described in [T], chapter IV, to which we refer for further details. As for the non-linearity of type $g(u) = u^3 + p(u)$ in three space dimension we refer the reader to [BV]. In all the examples, Ω is an open bounded subset of \mathbb{R}^3 with a smooth boundary.

1. Sine-Gordon equation:

 In this case $\left(H^\varepsilon \right)$ has the form

 $$
 \varepsilon u_{tt} + u_t - \Delta u + \beta \sin u = f;
 $$

 11
for the Dirichlet boundary conditions, we choose \(H = L^2(\Omega) \) and \(V = H^1_0(\Omega) \) with the usual norms \(\| u \|_V = \| \nabla u \| \) and \(|u|_{H^1} = |u|_{L^2(\Omega)} \). The verification of the Lipschitz conditions (N1) and (N2) for \(g(u) = \sin u \) is immediate on the absorbing set in \(E_1 \) and we obtain that
\[
L_1 = \beta \lambda_1^{-\frac{1}{2}} \quad \text{and} \quad L_2 = \beta (1 + R)
\]
where \(R \) is the \(E_1 \)-radius of the ball containing the \(E_1 \)-absorbing set whose existence is guaranteed, see [T] p. 189.

2. An equation from Quantum Mechanics:
\[
(H^\varepsilon) \text{ now has the form}
\]
\[\varepsilon u_{tt} + u_t - \Delta u + u^3 + p(u) = f\]
with \(p(u) \) a quadratic polynomial; we choose \(H \) and \(V \) as before, for Dirichlet boundary conditions. Verification of the Lipschitz conditions (N1) and (N2) is straightforward; in the particular case \(g(u) = u^3 \) we have
\[
\| u^3 - v^3 \|_H \leq |u - v|_{L^6} \| u^2 + uv + v^2 \|_{L^3} \leq 3R^2 \| u - v \|_V,
\]
where \(R \) is the radius of a ball containing the absorbing set now in \(E_0 \). Likewise, we have
\[
\| u^3 - v^3 \|_V \leq 3 \left(\| u^2 - v^2 \|_H \| \nabla u \|_H + 3 \| v^2 (\nabla (u - v)) \|_H \right)
\]
\[
\leq 3 \left\{ \left(|u|_{L^6} + |v|_{L^6} \right) \| \nabla u \|_{L^3} |u - v|_{L^6} + |v|_{L^6}^2 \| u - v \| \right\}
\]
\[
\leq 3 \left\{ \left(\| u \|_{H^2} + \| v \|_{H^2} \right) \| \nabla u \|_V \| u - v \|_V + \| v \|_{H^2}^2 \| u - v \|_V \right\}.
\]
So that we can choose, in (N2), \(L_2 = 9R^2 \), where \(R \) is the radius of an absorbing ball in \(E_1 \) (see [BV] and [T]).

3. Systems of Sine-Gordon equations:
We can also treat systems like those considered in [T], chap. IV, examples 4.2 and 4.3. In these cases, \((H^\varepsilon)\) have the form, respectively,
\[(A) \quad \begin{align*}
\varepsilon u_{tt} + u_t - \Delta u + \sin u + (u-v) &= f_1, \\
\varepsilon u_{tt} + v_t - \Delta v + \sin v + (v-u) &= f_2;
\end{align*}\]

and

\[(B) \quad \begin{align*}
\varepsilon u_{tt} + u_t - \Delta u + \sin(u+v) &= f_1, \\
\varepsilon u_{tt} + v_t - \Delta v + \sin(u-v) &= f_2.
\end{align*}\]

In both cases, we choose \(V = \left(H_0^1(\Omega) \right)^2 \) and \(H = \left(L^2(\Omega) \right)^2 \); the non-linear terms

\[G_1\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \sin u + u - v \\ \sin v + v - u \end{pmatrix}\]

and

\[G_2\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \sin(u+v) \\ \sin(u-v) \end{pmatrix}\]

can also be shown to satisfy both of the Lipschitz conditions (N1) and (N2) in a straightforward way, analogously to the case of the sine-Gordon equation; we obtain respectively

\[L_1 = 6\lambda_1^{-\frac{1}{2}} \text{ and } L_2 = 2(3 + R) \quad \text{for (A)}\]

and

\[L_1 = 4\lambda_1^{-\frac{1}{2}} \text{ and } L_2 = 4(1 + R) \quad \text{for (B)}.\]

REFERENCES

<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>618</td>
<td>L.E. Fraenkel</td>
<td>On a linear, partly hyperbolic model of viscoelastic flow past a plate</td>
</tr>
<tr>
<td>619</td>
<td>Stephen Schecter and Michael Shearer</td>
<td>Undercompressive shocks for nonstrictly hyperbolic conservation laws</td>
</tr>
<tr>
<td>620</td>
<td>Xinfu Chen</td>
<td>Axially symmetric jets of compressible fluid</td>
</tr>
<tr>
<td>621</td>
<td>J. David Logan</td>
<td>Wave propagation in a qualitative model of combustion under equilibrium conditions</td>
</tr>
<tr>
<td>622</td>
<td>M.L. Zeeman</td>
<td>Hopf bifurcations in competitive three-dimensional Lotka-Volterra Systems</td>
</tr>
<tr>
<td>623</td>
<td>Allan P. Fordy</td>
<td>Isospectral flows: their Hamiltonian structures, Miura maps and master symmetries</td>
</tr>
<tr>
<td>624</td>
<td>Daniel D. Joseph, John Nelson, Michael Renardy, and Yuriko Renardy</td>
<td>Two-Dimensional cusped interfaces</td>
</tr>
<tr>
<td>625</td>
<td>Avner Friedman and Bei Hu</td>
<td>A free boundary problem arising in electrophotography</td>
</tr>
<tr>
<td>626</td>
<td>Hamid Bellout, Avner Friedman and Victor Isakov</td>
<td>Stability for an inverse problem in potential theory</td>
</tr>
<tr>
<td>627</td>
<td>Barbara Lee Keyfitz</td>
<td>Shocks near the sonic line: A comparison between steady and unsteady models for change of type</td>
</tr>
<tr>
<td>628</td>
<td>Barbara Lee Keyfitz and Gerald G. Warnecke</td>
<td>The existence of viscous profiles and admissibility for transonic shocks</td>
</tr>
<tr>
<td>629</td>
<td>P. Szmolyan</td>
<td>Transversal heteroclinic and homoclinic orbits in singular perturbation problems</td>
</tr>
<tr>
<td>630</td>
<td>Philip Boyland</td>
<td>Rotation sets and monotone periodic orbits for annulus homeomorphisms</td>
</tr>
<tr>
<td>631</td>
<td>Kenneth R. Meyer</td>
<td>Apollonius coordinates, the N-body problem and continuation of periodic solutions</td>
</tr>
<tr>
<td>632</td>
<td>Chjan C. Lim</td>
<td>On the Poincare–Whitney circuitspace and other properties of an incidence matrix for binary trees</td>
</tr>
<tr>
<td>634</td>
<td>Stanley Minkowitz and Matthew Witten</td>
<td>Periodicity in cell proliferation using an asynchronous cell population</td>
</tr>
<tr>
<td>635</td>
<td>M. Chipot and G. Dal Maso</td>
<td>Relaxed shape optimization: The case of nonnegative data for the Dirichlet problem</td>
</tr>
<tr>
<td>636</td>
<td>Jeffery M. Franke and Harlan W. Stech</td>
<td>Extensions of an algorithm for the analysis of nongeneric Hopf bifurcations, with applications to delay-difference equations</td>
</tr>
<tr>
<td>637</td>
<td>Xinfu Chen</td>
<td>Generation and propagation of the interface for reaction–diffusion equations</td>
</tr>
<tr>
<td>638</td>
<td>Philip Korman</td>
<td>Dynamics of the Lotka–Volterra systems with diffusion</td>
</tr>
<tr>
<td>639</td>
<td>Harlan W. Stech</td>
<td>Generic Hopf bifurcation in a class of integro-differential equations</td>
</tr>
<tr>
<td>640</td>
<td>Stephane Laederich</td>
<td>Periodic solutions of non linear differential difference equations</td>
</tr>
<tr>
<td>641</td>
<td>Peter J. Olver</td>
<td>Canonical Forms and Integrability of BiHamiltonian Systems</td>
</tr>
<tr>
<td>642</td>
<td>S.A. van Gils, M.P. Krupa and W.F. Langford</td>
<td>Hopf bifurcation with nonsemisimple 1:1 Resonance</td>
</tr>
<tr>
<td>643</td>
<td>R.D. James and D. Kinderlehrner</td>
<td>Frustration in ferromagnetic materials</td>
</tr>
<tr>
<td>644</td>
<td>Carlos Rocha</td>
<td>Properties of the attractor of a scalar parabolic P.D.E.</td>
</tr>
<tr>
<td>645</td>
<td>Debra Lewis</td>
<td>Lagrangian block diagonalization</td>
</tr>
<tr>
<td>646</td>
<td>Richard C. Churchill and David L. Rod</td>
<td>On the determination of Ziglin monodromy groups</td>
</tr>
<tr>
<td>647</td>
<td>Xinfu Chen and Avner Friedman</td>
<td>A nonlocal diffusion equation arising in terminally attached polymer chains</td>
</tr>
<tr>
<td>648</td>
<td>Peter Gritzmann and Victor Klee</td>
<td>Inner and outer j- Radii of convex bodies in finite-dimensional normed spaces</td>
</tr>
<tr>
<td>649</td>
<td>P. Szmolyan</td>
<td>Analysis of a singularly perturbed traveling wave problem</td>
</tr>
<tr>
<td>650</td>
<td>Stanley Reiter and Carl P. Simon</td>
<td>Decentralized dynamic processes for finding equilibrium</td>
</tr>
<tr>
<td>651</td>
<td>Fernando Reitich</td>
<td>Singular solutions of a transmission problem in plane linear elasticity for wedge-shaped regions</td>
</tr>
<tr>
<td>652</td>
<td>Russell A. Johnson</td>
<td>Cantor spectrum for the quasi-periodic Schrödinger equation</td>
</tr>
<tr>
<td>653</td>
<td>Wenxiong Liu</td>
<td>Singular solutions for a convection diffusion equation with absorption</td>
</tr>
<tr>
<td>654</td>
<td>Deborah Brandon and William J. Hrusa</td>
<td>Global existence of smooth shearing motions of a nonlinear viscoelastic fluid</td>
</tr>
<tr>
<td>655</td>
<td>James F. Reineck</td>
<td>The connection matrix in Morse–Smale flows II</td>
</tr>
<tr>
<td>656</td>
<td>Claude Baesens, John Guckenheimer, Seunghwan Kim and Robert Mackay</td>
<td>Simple resonance regions of torus diffeomorphisms</td>
</tr>
<tr>
<td>657</td>
<td>Willard Miller, Jr.</td>
<td>Lecture notes in radar/sonar: Topics in Harmonic analysis with applications to radar and sonar</td>
</tr>
</tbody>
</table>
Calvin H. Wilcox, Lecture notes in radar/sonar: Sonar and Radar Echo Structure
Richard E. Blahut, Lecture notes in radar/sonar: Theory of remote surveillance algorithms
D.V. Anosov, Hilbert's 21st problem (according to Bolibruch)
Stephane Laederich, Ray–Singer torsion for complex manifolds and the adiabatic limit
Geneviève Raugel and George R. Sell, Navier-Stokes equations in thin 3D domains: Global regularity of solutions I
Emanuel Parzen, Time series, statistics, and information
Andrew Majda and Kevin Lamb, Simplified equations for low Mach number combustion with strong heat release
Ju. S. Il'yashenko, Global analysis of the phase portrait for the Kuramoto–Sivashinsky equation
James F. Reineck, Continuation to gradient flows
Mohamed Sami Elbialy, Simultaneous binary collisions in the collinear N-body problem
John A. Jacquez and Carl P. Simon, Aids: The epidemiological significance of two different mean rates of partner-change
Carl P. Simon and John A. Jacquez, Reproduction numbers and the stability of equilibria of SIR models for heterogeneous populations
Matthew Stafford, Markov partitions for expanding maps of the circle
Ciprian Foias and Edriss S. Titi, Determining nodes, finite difference schemes and inertial manifolds
M.W. Smiley, Global attractors and approximate inertial manifolds for abstract dissipative equations
M.W. Smiley, On the existence of smooth breathers for nonlinear wave equations
Hitay Özbay and Janos Turi, Robust stabilization of systems governed by singular integro-differential equations
Mary Silber and Edgar Knobloch, Hopf bifurcation on a square lattice
Christophe Golé, Ghost circles for twist maps
Christophe Golé, Ghost tori for monotone maps
Christophe Golé, Monotone maps of $T^n \times R^n$ and their periodic orbits
E.G. Kalnins and W. Miller, Jr., Hypergeometric expansions of Heun polynomials
Victor A. Pliss and George R. Sell, Perturbations of attractors of differential equations
Avner Friedman and Peter Knabner, A transport model with micro- and macro-structure
E.G. Kalnins and W. Miller, Jr., A note on group contractions and radar ambiguity functions
George R. Sell, References on dynamical systems
Shui-Nee Chow, Kening Lu and George R. Sell, Smoothness of inertial manifolds
Shui-Nee Chow, Xiao-Biao Lin and Kening Lu, Smooth invariant foliations in infinite dimensional spaces
Kening Lu, A Hartman–Grobman theorem for scalar reaction-diffusion equations
Christophe Golé and Glen R. Hall, Poincaré's proof of Poincaré's last geometric theorem
Mario Taboada, Approximate inertial manifolds for parabolic evolutionary equations via Yosida approximations
Peter Rejto and Mario Taboada, Weighted resolvent estimates for Volterra operators on unbounded intervals
Joel D. Avrin, Some examples of temperature bounds and concentration decay for a model of solid fuel combustion
Susan Friedlander and Misha M. Vishik, Lax pair formulation for the Euler equation
H. Scott Dumas, Ergodization rates for linear flow on the torus
A. Eden, A.J. Milani and B. Nicolaenko, Finite dimensional exponential attractors for semilinear wave equations with damping
A. Eden, C. Foias, B. Nicolaenko & R. Temam, Inertial sets for dissipative evolution equations
A. Eden, C. Foias, B. Nicolaenko & R. Temam, Hölder continuity for the inverse of Mañé's projection
Michel Chipot and Charles Collins, Numerical approximations in variational problems with potential wells
Huanan Yang, Nonlinear wave analysis and convergence of MUSCL schemes
László Gerencsér and Zsuzsanna Vágó, A strong approximation theorem for estimator processes in continuous time
László Gerencsér, Multiple integrals with respect to L-mixing processes
David Kinderlehrer and Pablo Pedregal, Weak convergence of integrands and the Young measure representation
Bo Deng, Symbolic dynamics for chaotic systems
Charles Collins and Mitchell Luskin, Optimal order error estimates for the finite element approximation of the solution of a nonconvex variational problem
Peter Gritzmann and Victor Klee, Computational complexity of inner and outer j-radii of polytopes in finite-dimensional normed spaces