DISCONTINUOUS SOLUTIONS OF STEADY STATE, VISCOUS COMPRESSIBLE NAVIER-STOKES EQUATIONS

By

Xinfu Chen

and

Weiping Xie

IMA Preprint Series # 1027

September 1992
DISCONTINUOUS SOLUTIONS OF STEADY STATE, VISCOUS COMPRESSIBLE NAVIER-STOKES EQUATIONS

XINFU CHEN AND WEIQING XIE
Department of Mathematics, University of Pittsburgh
Pittsburgh, Pennsylvania 15260, USA

Abstract. We study a steady-state, viscous, compressible Navier-Stokes flow in a rectangle \(\Omega \equiv (0,1) \times (-1,1) \) with the boundary condition \((u,v) = (1,0) \) for the velocity field \((u,v) \) and the condition \(p(0,y) = p^0(y) \) for the pressure \(p \) on \(\{0\} \times (-1,1) \) which is the part of the boundary where the stream lines emanate. Under the condition that \(p^0(y) \) has a jump at \(y = 0 \), we establish the existence and uniqueness of the solution having discontinuity along the stream line starting from the origin.

Keywords. Compressible, viscous, Navier-Stokes flow, discontinuous solutions, elliptic systems, hyperbolic equations.

1 Introduction.

The continuity equation for a viscous, compressible Navier-Stokes flow is hyperbolic, so that discontinuities of the pressure (or density) on the boundary may pass to the interior of the flow region along the characteristic curves and therefore produce solutions with interior discontinuities. However, since examples of discontinuous viscous flows are scarcely seen in physics, such existence result is few in the literature. Recently, Kellogg [3] and Chen & Kellogg [1, 2] showed that a linearized and simplified version of the system of viscous, compressible Navier-Stokes equations admits discontinuous solutions. Earlier than their work, Hoff [6, 7] has shown that the one dimensional, time dependent viscous Navier-Stokes flow has discontinuous solutions; however, he also showed that this discontinuity decays exponentially with time. Hence, the question that if there exist discontinuous solutions to the nonlinear, steady state, viscous Navier-Stokes flow is still open. The present paper is just to give an affirmative answer to this question.

Consider the two-dimensional steady-state, viscous, compressible, barotropic flow in a rectangle \(\Omega \equiv (0,1) \times (-1,1) \). The governing equations are

\[-\eta \Delta u - (\zeta + \frac{\eta}{2})(u_x + v_y)_x + \rho uu_x + \rho vu_y + p_x = 0 \quad \text{in } \Omega,
\]

\[1.1\]

The authors thank Professor R. Bruce Kellogg for introducing the problem studied in this paper at the colloquium at University of Pittsburgh and the useful discussion thereafter. The first author is partially supported by the National Science Foundation Grant DMS-9200459.
\[-\eta \Delta v - (\zeta + \frac{\eta}{3})(u_x + v_y)y + \rho u v_x + \rho v v_y + p_y = 0 \quad \text{in } \Omega, \quad (1.2)\]
\[u \rho_x + v \rho_y + (u_x + v_y) \rho = 0 \quad \text{in } \Omega \quad (1.3)\]

where \(u\) and \(v\) are the \(x\) and \(y\) components of the velocity vector fields, \(\zeta, \eta > 0\) are the viscosities, and \(p\) and \(\rho\) are, respectively, the pressure and the density. We assume that the pressure \(p\) and the density \(\rho\) are linked by the state relation

\[p = P(\rho) \quad \text{or} \quad \rho = \rho(p) \quad (1.4)\]

where both \(P(\cdot)\) and \(\rho(\cdot)\) are positive and monotone increasing functions.

We impose the following Dirichlet boundary conditions for \(u\) and \(v\):

\[u(x, y) = 1, \quad (x, y) \in \partial \Omega, \quad (1.5)\]
\[v(x, y) = 0, \quad (x, y) \in \partial \Omega \quad (1.6)\]

which means that the flow goes from the left to the right.

Since equation (1.3) is hyperbolic for the function \(\rho\), we need only to give boundary values for \(\rho\) (or \(p\)) on those part(s) of the boundary where the characteristic curves start, i.e., on the set \(\Gamma_{in} = \{(x, y) \in \partial \Omega | n \cdot (u, v) < 0\}\) where \(n\) denotes the outward unit normal to \(\partial \Omega\). From (1.5) and (1.6), we know that \(\Gamma_{in} = \{(0, y)| -1 \leq y \leq 1\}\) so we impose the following boundary condition for \(\rho\):

\[\rho(0, y) = \rho^0(y), \quad y \in [-1, 1]. \quad (1.7)\]

When \(\rho^0(\cdot)\) is small and smooth, the existence of smooth solutions (even in 3-D) has been established by Valli [8]. In this paper, we are only interested in discontinuous solutions, so we assume that \(\rho^0(\cdot)\) has the form

\[\rho^0(y) = \rho^0_c(y) + \delta_0 H(y) \quad (1.8)\]

where \(\delta_0\) is a positive constant, \(\rho^0_c(\cdot)\) is a function in \(C^\alpha[-1, 1]\) with \(\alpha \in (0, 1)\), and \(H(y)\) is the Heaviside function. We shall show that the system (1.1)–(1.7) has a solution with the property that \(p\) is discontinuous across a curve \(\Gamma\) which is the streamline of the flow emanating from the point \((0,0)\). The velocity components \(u\) and \(v\) are continuous across \(\Gamma\) but their normal derivatives have jumps which satisfy certain conditions similar to the Rankine-Hugoniot conditions. In addition, the jump of \(p\) decreases monotonically along \(\Gamma\). Under the condition that

\[\rho^0_c(y) \in C^{0,1}[-1, 1] \quad (1.9)\]

we shall show that the solution is unique in certain functional classes.

The overall strategy of the proof is to convert the solution of (1.1)–(1.7) into a fixed point of a mapping \(T\) defined in the next section and to show that the mapping \(T\) possesses a fixed point via the Schauder fixed point theorem. To do this, we have
to assume that \(\eta \) is suitably large. This condition may be replaced by the condition that either \(\rho^0(\cdot) \) is close to a constant or the width of the rectangle \(\Omega \) is small.

In [1], Chen and Kellogg studied the following simplified version of (1.1)–(1.3):

\[
-\Delta u + P_x = 0 \quad \text{in } \Omega' \equiv (0, a) \times R^1, \quad (1.10)
\]

\[
-\Delta v + P_y = 0 \quad \text{in } \Omega', \quad (1.11)
\]

\[
u \rho_x + v \rho_y = 0 \quad \text{in } \Omega' \quad (1.12)
\]

with the boundary condition (1.5)–(1.7) where \(\rho^0(\cdot) \) is of compact support on \([0, a]\). Under the assumption that \(a \) is sufficiently small, they showed the existence of a weak solution. Notice that by scaling \(\Omega' \) in (1.10)–(1.12) into \((0, 1) \times R^1\), our assumption that \(\eta \) is large is equivalent to the assumption that \(a \) is small in [1].

As pointed out in their paper, dropping the term \(\rho(u_x + v_y) \) in (1.3) to get (1.12) has no physical meaning but is only for the sake of mathematical convenience. This convenience is significant since if one does not drop it, then even with the more delicate estimate we present in this paper, it is still not enough to show the compactness of the mapping constructed in [1], so that the Schauder fixed point theorem may not be applied. To overcome this difficulty, we shall consider this problem as a free boundary problem and show that the essential singularity of \(u_x + v_y \) is the same as that of \(p/\mu \), where

\[
\mu = \frac{4}{3} \eta + \zeta; \quad (1.13)
\]

namely, the difference \(u_x + v_y - p/\mu \) has much weaker singularities than either \(u_x + v_y \) or \(p \). Hence, by writing (1.3) as

\[
u \rho_x + v \rho_y + \rho \frac{P(\rho)}{\mu} = -\rho(u_x + v_y - \frac{p}{\mu}), \quad (1.14)
\]

the singular term \(u_x + v_y \) becomes manageable.

The plan of this paper is as follows. In §2 we present our main results and the scheme of the proof. Then we study the nonlinear elliptic system (1.1), (1.2), (1.5) and (1.6) with given \(p \) and \(\rho \) in §3 and the continuity equation (1.3) and (1.7) in §4. Finally, we establish the existence and uniqueness of the solution in §5.

2 Main results.

We say that \((u, v, p, \rho)\) is a solution to (1.1)–(1.3) if

\[
(u, v) \in C(\overline{\Omega}) \cap H^1_{\text{loc}}(\Omega), \quad p \in L^\infty(\Omega) \quad \text{and (1.1)–(1.3) are satisfied in } H^{-1}(\Omega).
\]

Let \((u, v, p, \rho)\) be a solution to (1.1)–(1.7) and assume that \(u > 0 \) and \(v/u \) is Lipschitz in \(y \). Introduce a function \(f \) defined by

\[
\begin{cases}
\frac{df(x)}{dx} = \frac{v(x, f)}{u(x, f)}, & x \in (0, 1), \\
f(0) = 0.
\end{cases}
\quad (2.1)
\]
and introduce sets Γ, Ω^-, and Ω^+ defined by

$$\Gamma = \{(x, y) \in \Omega \mid y = f(x)\}, \quad \Omega^+ = \{(x, y) \in \Omega \mid y > f(x)\}, \quad \Omega^- = \{(x, y) \in \Omega \mid y < f(x)\}.$$

(2.2) \hspace{2cm} (2.3) \hspace{2cm} (2.4)

One may notice that Γ is a characteristic curve of (1.3). Since we assume that $\rho^0(\cdot)$ is smooth in $[-1, 0^-] \cup [0^+, 1]$, the solution should be smooth in both Ω^+ and Ω^-, so that we can treat Γ as a free boundary.

Assume that $(u, v) \in C^{1+\alpha}(\Omega^\pm)$ and $\rho, p \in C^\alpha(\Omega^\pm)$, then the jump conditions for a weak solution of (1.1), (1.2) can be written as

$$[u]_+^+ = [v]_+^+ = 0 \quad \text{on} \quad \Gamma,$$

(2.5) \hspace{2cm} (2.6) \hspace{2cm} (2.7)

$$\mu[\partial_n u]_+^+ = [p]_+^+ n_x \quad \text{on} \quad \Gamma,$$

$$\mu[\partial_n v]_+^+ = [p]_+^+ n_y \quad \text{on} \quad \Gamma$$

where $[\cdot]^+_-$ represents the jump across Γ, $n = (n_x, n_y) = (-\frac{f'}{\sqrt{1 + f'^2}}, \frac{1}{\sqrt{1 + f'^2}})$ is the unit normal to Γ, ∂_n is the normal derivative, and μ is given by (1.13). Since u and v are continuous, the jump condition for (1.3) is that Γ is a characteristic curve; namely, f satisfies (2.1).

Notice that the boundary conditions (1.6), (1.7) do not satisfy the jump condition (2.7) at $(0, 0)$ and $(1, f(1))$, so that we introduce a weight function

$$\omega(x, y) = \min \left\{ \sqrt{x^2 + y^2}, \sqrt{(1 - x)^2 + (y - f(1))^2} \right\}$$

(2.8)

to take care of the singularities arising from this non-compatibility. Also, it is convenient to introduce a function

$$\bar{\omega}(x, y) = \text{distance}((x, y), \partial \Omega).$$

(2.9)

In the sequel, we use the notation that

$$\|w f\|_{C^\alpha(\Omega)} \equiv \|w f\|_{C^\alpha(\Omega)}$$

$$\sup_{(x_1, y_1), (x_2, y_2) \in \Omega} \left(\min\{w(x_1, y_1), w(x_2, y_2)\} \frac{|f(x_1, y_1) - f(x_2, y_2)|}{|x_1 - x_2|^\alpha + |y_1 - y_2|^\alpha} \right)$$

where w is a weight and f is a function.

Theorem 1. Assume that $\rho^0(\cdot)$ has the form of (1.8) with $\delta_0 > 0$ and $\rho_c^0(y) \in C^\alpha[-1, 1]$ ($0 < \alpha < 1$). Then there exists a positive constant η_0 which depends only on $\rho^0(y)$ such that if $\eta \geq \eta_0$ and $\zeta \geq 0$, then (1.1)–(1.7) has a solution $(u, v, p, \rho) \in C^{1+\alpha}(\Omega^\pm) \times C^\alpha(\Omega^\pm) \times C^\alpha(\Omega^\pm)$ satisfying

$$\|u - 1\|_{C^{1/2}(\Omega)} + \|v\|_{C^{1/2}(\Omega)} + \|\omega^{1/2} \nabla u\|_{C^\alpha(\Omega^\pm)} + \|\omega^{1/2} \nabla v\|_{C^\alpha(\Omega^\pm)}$$

$$+ \frac{1}{\eta} \|p\|_{C^\alpha(\Omega^\pm)} \leq \frac{C_\alpha}{\eta} \left(\|\rho_c\|_{C^\alpha([-1, 1])} + \delta_0 \right)$$

(2.10)
where C_α depends only on α. Moreover, the jumps of u, v and p across Γ satisfy (2.5)–(2.7) and $\delta_p(x) \equiv [p]_+^\tau$ is strictly positive and monotone decreasing.

Remark 2.1. The fact that $\delta_p(x)$ is monotonically decreasing was first observed by Chen & Kellogg [1].

The proof will be given in the following sections. Here we present the idea of the proof.

To deal with the discontinuity of the pressure, we express p in terms of its jump $\delta(x)$, the location of the jump $y = f(x)$, and the continuous part p_c; more precisely, we write p as

$$p(x, y) = p_c(x, y) + \delta(x)H(y - f(x)) \tag{2.11}$$

where $H(s)$ is the Heaviside function taking value 1 when $s > 0$ and value 0 when $s \leq 0$.

We shall prove Theorem 1 by a fixed point argument. For this purpose, we introduce a Banach space B defined by

$$B \equiv C^{\alpha/2}(\Omega) \times C^{\alpha/2}([0, 1]) \times C^{1+\alpha/2}([0, 1])$$

where α is the exponent of the Hölder continuity of $\rho_0^\alpha(\cdot)$. Let $M > 0$ be a fixed constant and $K(M)$ be defined as

$$K(M) = \left\{ (p_c, \delta, f) \in B \mid \|p_c\|_{C^{\alpha/2}(\Omega)} \leq M, \|\delta\|_{C^{\alpha/2}([0, 1])} \leq M, \|f\|_{C^{1+\alpha/2}([0, 1])} \leq \frac{1}{2}, f(0) = f'(0) = f'(1) = 0 \right\} \tag{2.12}$$

Clearly, $K(M)$ is a closed convex subset of B.

For any given $(p_c, \delta, f) \in K(M)$, define p as in (2.11) and ρ by

$$\rho(x, y) = \rho(p) \tag{2.13}$$

Consider the elliptic system (1.1), (1.2), (1.5), and (1.6). We shall show that if η is large enough, then the system admits a (unique) solution $(u, v) \in C^\alpha(\Omega) \times C^\alpha(\Omega)$; in addition, both u and v are Lipschitz continuous in y.

Once we obtained (u, v) from $(p_c, \delta, f) \in K(M)$, we would like to substitute it into (1.3), solve a new \tilde{p} from (1.3), (1.7) by a characteristic method, and then obtain a new $(\tilde{p}_c, \tilde{\delta}, \tilde{f}) \in K(M)$. To do this, we need the condition that $u^2 + v^2 > 0$ and certain regularity properties of the coefficient $u_x + v_y$ of \tilde{p}. In fact, we can show that if η is large enough, then $u > 1/2$ in Ω. However, we are unable to establish the regularity for $u_x + v_y$ required by the iteration procedure defined below. Nevertheless, we discovered that the essential singularity of $u_x + v_y$ cancels with that of p/μ; more precisely, $u_x + v_y - p/\mu \in C^\beta(\Omega)$ for any $\beta \in (0, 1)$. Hence, we write (1.3) as (1.14); that is, we solve \tilde{p} from the following first order partial differential equation

$$\begin{cases}
 u\tilde{p}_x + v\tilde{p}_y + \tilde{p}P'(\tilde{p})/\mu = -\tilde{p}(u_x + v_y - p/\mu), \\
 \tilde{p}(0, y) = \rho^\beta(y). \tag{2.14}
\end{cases}$$
We shall prove in §4 that \(\bar{\rho} \in C^\alpha(\Omega \cap \overline{\Omega}^c) \).

Next, we shall retrieve \((\bar{p}_c, \bar{\delta}, \bar{f})\) from \(\bar{\rho}\). Let \(\bar{f}(x)\) be the unique solution of the following ordinary differential equation

\[
\begin{aligned}
\frac{d \bar{f}}{dx} &= \frac{v(x, \bar{f})}{u(x, \bar{f})}, & x \in (0, 1), \\
\bar{f}(0) &= 0,
\end{aligned}
\]
\text{(2.15)}

and set

\[
\begin{aligned}
\bar{p}(x, y) &= P(\bar{p}(x, y)), \\
\bar{\delta}(x) &= \bar{p}(x, \bar{f}^+(x)) - \bar{p}(x, \bar{f}^-(x)), \\
\bar{p}_c(x, y) &= \bar{p} - \bar{\delta}(x)H(y - \bar{f}(x)).
\end{aligned}
\]
\text{(2.16 - 2.18)}

Here and in the sequel, the superscripts + and - stand for the limits from above and below of \(\Gamma \equiv \{(x, y) \in \Omega \mid y = \bar{f}(x)\}\).

Now, we define a mapping \(T : K(M) \to B\) by

\[T(p_c, \delta, f) = (\bar{p}_c, \bar{\delta}, \bar{f}).\]

One can directly verify that \((p_c, \delta, f)\) is a fixed point of \(T\) if and only if \((u, v, p, \rho)\) is a solution to (1.1)–(1.7) where \((p, \rho)\) is given by (2.11), (2.13) and \((u, v)\) is the solution of (1.1), (1.2), (1.5), (1.6).

We would like to use the Schauder fixed point theorem to show that \(T\) has a fixed point and therefore establish the existence of a solution of (1.1)–(1.7). However, we would confront the difficulty of showing the compactness of \(T\), since the function \(\bar{p}_c\) is not smooth enough near the boundaries \(\{y = \pm 1\}\). To overcome this difficulty, we introduce, for each \(\lambda \in (1/2, 1)\), a mapping \(T_\lambda\) defined by

\[
T_\lambda(p_c, \delta, f) = (G_\lambda \bar{p}_c, \bar{\delta}, \bar{f})
\]

where \((\bar{p}_c, \bar{\delta}, \bar{f}) = T(p_c, \delta, f)\) and \(G_\lambda(p_c)(x, y) = p_c(x, \lambda y)\). We then can use the Schauder fixed point theorem to show that \(T_\lambda\) has a fixed point \((p_{c, \lambda}^\lambda, \delta^\lambda, f^\lambda)\) in \(K(M)\) for some \(M\), which is independent of \(\lambda\). Finally, taking a convergent subsequence \(\{(p_{c, \lambda_j}^\lambda, \delta^\lambda_j, f^\lambda_j)\}_{j=1}^\infty\) (\(\lambda_j \to 1\) as \(j \to \infty\)), we can show that the limit is a fixed point of \(T\). This completes the existence proof.

For the uniqueness, we have the following result:

Theorem 2. Assume that \(\rho_c^\theta(\cdot)\) satisfies (1.9). Then if \(\mu\) is large enough, the solution to (1.1)–(1.7) satisfying the estimates in Theorem 1 is unique. Moreover, the unique solution satisfies, for any \(\epsilon > 0\),

\[
|\nabla p(x, y)| \leq C_\epsilon \left(|y - f(x)|^{-\epsilon} + (1 - y^2)^{-\epsilon} \right), \quad (x, y) \in \Omega \setminus (\Gamma \cup \{y = \pm 1\}).
\]
\text{(2.19)}

The proof will be given in §5.
Remark 2.2. From the proof below, we shall see that the assumption that
\(\mu\) is large in Theorem 1 and Theorem 2 can be replaced by the assumption that
\(\rho^\beta(\cdot)\) is closed to a constant or by the assumption that the width of the domain \(\Omega\) is small. This, as one can recall, is equivalent to assume that the Reynolds number (\(\sim\) magnitude of the velocity \(\times\) size of the domain /viscosity) is small.

Remark 2.3. With slight modification, our results can be extended to general domains and to general boundary conditions for \((u,v)\).

Remark 2.4. One can replace the constant \(\zeta + \frac{7}{3}\) by any non-negative constant.

Remark 2.5. The Hölder exponent \(\alpha/2\) on the left hand side of (2.10) can be
replaced by any constant \(\beta \in (0,\alpha)\). Also, a more accurate estimate of (2.19) is
\[
|\nabla p(x,y)| \leq C\left(|\ln |y - f(x)|| + |\ln |1 - y^2|| \right), \quad (x,y) \in \Omega \setminus \{\Gamma \cup \{y = \pm 1\}\}.
\]
However, we shall not establish it.

3 The elliptic equations.

In this section, we shall study the nonlinear elliptic problem (1.1), (1.2), (1.5) and (1.6) with given \(p\) and \(\rho\); i.e., we shall prove the following theorem.

Theorem 3.1. Let \((p_c, \delta, f) \in K(M)\) be given and let \((p, \rho)\) be defined as in (2.11)
and (2.13). Then there exists a positive constant \(\eta_0(M)\) such that if \(\eta \geq \eta_0(M)\) and
\(\zeta \geq 0\), then the elliptic system (1.1), (1.2), (1.5) and (1.6) has a unique solution
satisfying
\[
\|u - 1\|_{H^1_2(\Omega)} + \|v\|_{H^1_2(\Omega)} + \|u - 1\|_{C^\alpha(\partial \Omega)} + \|v\|_{C^\alpha(\partial \Omega)} \leq \frac{1}{2}. \tag{3.1}
\]
In addition, we have the following estimates
\[
\|u - 1\|_{C^\beta(\Omega)} + \|v\|_{C^\beta(\Omega)} + \|\omega^{\alpha/2}\nabla u\|_{C^{\alpha/2}(\Omega^\pm)} + \|\omega^{\alpha/2}\nabla v\|_{C^{\alpha/2}(\Omega^\pm)} \leq \frac{C_{\beta M}}{\eta}, \tag{3.2}
\]
\[
\|\bar{\omega}^{\beta-\alpha/2, -\omega^{\alpha/2}} I\|_{C^\beta(\Omega)} + \|\bar{\omega}^{\beta-\alpha/2, -\omega^{\alpha/2}} I\|_{C^\beta(\Omega)} \leq \frac{C_{\epsilon, \beta M}}{\eta} \tag{3.3}
\]
for any \(\beta \in (\alpha/2, 1)\) and \(\epsilon \in (0, \alpha/2)\) where \(C_{\beta}\) is a constant depending only on \(\beta\),
\(C_{\epsilon, \beta}\) is a constant depending only on \(\beta\) and \(\epsilon\), \(\omega\) and \(\bar{\omega}\) are defined in (2.8), (2.9), and
\[
I(x,y) = u_y + v - \frac{p}{\mu}. \tag{3.4}
\]
Proof. We first establish the existence. Set \(X = \{(u, v) \mid u - 1 \in H^1_0(\Omega), v \in H^1_0(\Omega)\} \). For any \((u, v) \in X\), define
\[
\begin{align*}
g & \equiv g(u, v, \rho) \equiv \rho uu_x + \rho uu_y, \quad (3.5) \\
h & \equiv h(u, v, \rho) \equiv \rho vv_x + \rho vv_y \quad (3.6)
\end{align*}
\]
and consider the linear elliptic system
\[
\begin{align*}
\eta \Delta \bar{u} + (\zeta + \frac{\eta}{3})(\bar{u}_x + \bar{v}_y)_x &= g + px \quad \text{in } \Omega, \quad (3.7) \\
\eta \Delta \bar{v} + (\zeta + \frac{\eta}{3})(\bar{u}_x + \bar{v}_y)_y &= h + py \quad \text{in } \Omega, \quad (3.8) \\
\bar{u} - 1 \in H^1_0(\Omega), \quad \bar{v} \in H^1_0(\Omega). \quad (3.9)
\end{align*}
\]
Notice that any (local) minimizer of the functional
\[
J(\bar{u}, \bar{v}) = \int_\Omega \left[\frac{1}{2} \eta|\nabla \bar{u}|^2 + \frac{1}{2} \eta|\nabla \bar{v}|^2 + \frac{1}{2}(\zeta + \frac{\eta}{3})(\bar{u}_x + \bar{v}_y)^2 + \bar{u}g + \bar{v}h - \bar{u}_x p - \bar{v}_y p \right]
\]
in \(X \) is a solution to (3.7)–(3.9). Since \(g, h \in L^r(\Omega) \) for \(1 < r < 2 \) and \(p \in L^\infty(\Omega) \), \(J(\bar{u}, \bar{v}) \) is bounded from below. Also \(J \) is convex. Therefore \(J \) possesses a unique minimizer in \(X \). It then follows that (3.7)–(3.9) has a solution in \(X \).

Introduce
\[
Y = \{(u, v) \in X \mid \|u - 1\|_{H^1_0(\Omega)} + \|v\|_{H^1_0(\Omega)} \leq 1\}.
\]
For any \((u_i, v_i) \in X \) \((i = 1, 2) \), let \((\bar{u}_i, \bar{v}_i)\) be the solution of (3.7)–(3.9) corresponding to \((u_i, v_i)\). Multiplying the difference of equations for \(\bar{u}_1 \) and \(\bar{u}_2 \) by \(\bar{u}_1 - \bar{u}_2 \) and multiplying the difference of equations for \(\bar{v}_1 \) and \(\bar{v}_2 \) by \(\bar{v}_1 - \bar{v}_2 \), adding the resulting equations, and integrating over \(\Omega \), we obtain
\[
\begin{align*}
\eta\|\nabla(\bar{u}_1 - \bar{u}_2)\|^2_2 + \eta\|\nabla(\bar{v}_1 - \bar{v}_2)\|^2_2 + (\zeta + \frac{\eta}{3})\|((\bar{u}_1 - \bar{u}_2)_x + (\bar{v}_1 - \bar{v}_2)_y)\|^2_2 \\
\leq \|g(u_1, v_1, \rho) - g(u_2, v_2, \rho)\|_{4/3} \|\bar{u}_1 - \bar{u}_2\|_4 +
\|h(u_1, v_1, \rho) - h(u_2, v_2, \rho)\|_{4/3} \|\bar{v}_1 - \bar{v}_2\|_4 \\
\leq C\|\rho\|_{\infty}\left(\|u_1\|_{H^1} + \|u_2\|_{H^1} + \|v_1\|_{H^1} + \|v_2\|_{H^1}\right)\left(\|u_1 - u_2\|_{H^1} + \|v_1 - v_2\|_{H^1}\right) \\
\times \left(\|\bar{u}_1 - \bar{u}_2\|_4 + \|\bar{v}_1 - \bar{v}_2\|_4\right).
\end{align*}
\]
Here and also below we use the notation \(\|\cdot\|_r \equiv \|\cdot\|_{r, \Omega} \equiv \|\cdot\|_{L^r(\Omega)} \). Since \((u_i, v_i) \in Y\), it follows that there exists a positive constant \(C \) such that
\[
\|\bar{u}_1 - \bar{u}_2\|_{H^1_0(\Omega)} + \|\bar{v}_1 - \bar{v}_2\|_{H^1_0(\Omega)} \leq \frac{C\|\rho\|_{\infty}}{\eta} \left(\|u_1 - u_2\|_{H^1_0(\Omega)} + \|v_1 - v_2\|_{H^1_0(\Omega)}\right). \quad (3.10)
\]
This inequality shows that the solution to (3.7)–(3.9) is unique.

Now define a mapping \(T : Y \to X \) by \(T(u, v) = (\bar{u}, \bar{v}) \), where \((\bar{u}, \bar{v})\) is the solution of (3.7)–(3.9). One can see from (3.10) that if \(\eta \) is large enough, \(T \) is a contraction in \(Y \).
To show that T maps Y into itself, we multiply equation (3.7) by $\bar{u} - 1$ and equation (3.8) by \bar{v}, add the two resulting equations, and integrate over Ω. After integration by parts and using Sobolev’s inequality, we obtain

$$
\|\bar{u} - 1\|_{H^1_0(\Omega)} + \|\bar{v}\|_{H^1_0(\Omega)} \leq \frac{C}{\eta} \left(\|g\|_2 + \|h\|_2 + \|p\|_2 \right)
$$

$$
\leq \frac{C}{\eta} \left(\|\rho\|_\infty \|u\|_{H^1_0(\Omega)}^2 + \|\rho\|_\infty \|v\|_{H^1_0(\Omega)}^2 + \|p\|_\infty \right)
$$

$$
\leq \frac{CM}{\eta}.
$$

Hence, if η is large enough, then T maps Y into itself. It follows that T has a unique fixed point in Y. Clearly, this fixed point is a solution to the problem (1.1), (1.2), (1.5) and (1.6). This establishes the existence part of Theorem 3.1. The uniqueness follows from (3.10).

Next we study the regularity of the solution (u, v) of the equations (1.1), (1.2), (1.5) and (1.6).

Since $h, g \in L^r(\Omega)$ for any $r \in (1, 2)$ and $p \in L^\infty(\Omega)$, it follows that $u, v \in C^\beta(\overline{\Omega})$ for any $\beta \in (0, 1)$; see [4, pg. 166]. Clearly, if we take η large enough, the estimates in (3.1) hold. Consequently, $h, g \in L^2(\Omega)$.

Write u and v as

$$
u = \frac{\phi_x}{\mu} + w + 1, \quad (3.11)$$

$$
v = \frac{\phi_y}{\mu} + z \quad (3.12)$$

where ϕ, w and z are, respectively, the solutions to the following problems:

$$
\begin{cases}
-\Delta \phi + p = 0, & (x, y) \in \Omega, \\
\phi(x, \pm 1) = 0, & x \in (0, 1), \\
\phi_x(0, y) = \phi_x(1, y) = 0, & y \in (-1, 1), \\
\eta \Delta w + (\zeta + \frac{\eta}{3})(w_x + z_y)_x &= g(u, v, \rho) \quad \text{in } \Omega, \\
\eta \Delta z + (\zeta + \frac{\eta}{3})(w_x + z_y)_y &= h(u, v, \rho) \quad \text{in } \Omega, \\
w = 0 & \text{on } \partial \Omega, \\
z = -\phi_y/\mu & \text{on } \partial \Omega,
\end{cases} \quad (3.13)$$

$$
\begin{cases}
\eta \Delta w + (\zeta + \frac{\eta}{3})(w_x + z_y)_x &= g(u, v, \rho) \quad \text{in } \Omega, \\
\eta \Delta z + (\zeta + \frac{\eta}{3})(w_x + z_y)_y &= h(u, v, \rho) \quad \text{in } \Omega, \\
w = 0 & \text{on } \partial \Omega, \\
z = -\phi_y/\mu & \text{on } \partial \Omega,
\end{cases} \quad (3.14)$$

where $g(u, v, \rho)$ and $h(u, v, \rho)$ are given by (3.5) and (3.6). Since $p \in C^{\alpha/2}(\overline{\Omega})$ and $\Gamma \in C^{1+\alpha/2}([0, 1])$, one can use standard potential analysis to show that $\phi \in C^{2+\alpha/2}(\overline{\Omega} \setminus \{(0, 0), (1, f(1))\})$. Differentiating the relations $[\phi_x]^+ = 0$ and $[\phi_y]^+ = 0$ along Γ and using $[\Delta \phi]^+ = [p]^+$ yield

$$
[\phi_{xx}]^+ = \frac{(f')^2}{1 + (f')^2}[p]^+ \quad \text{on } \Gamma, \quad (3.15)
$$
\[[\phi_{xy}]_+^\perp = \frac{-f'}{1 + (f')^2} [p]_+^\perp \quad \text{on } \Gamma, \quad (3.16) \]
\[[\phi_{yy}]_+^\perp = \frac{1}{1 + (f')^2} [p]_+^\perp \quad \text{on } \Gamma. \quad (3.17) \]
Since \(f'(0) = f'(1) = 0 \), the boundary conditions for \(\phi \) satisfies the compatibility condition \([\phi_{xy}]_+^\perp = 0\) at the points \((0,0)\) and \((1,f(1))\). It then follows that there exists a constant \(C \), depending only on \(\|f\|_{C^{1+\alpha/2}([0,1])} \), such that
\[\|\phi\|_{C^{2+\alpha/2}(\overline{\Omega})} + \|\phi\|_{C^{2+\alpha/2}(\Omega^c)} \leq C\left(\|p_c\|_{C^{\alpha/2}(\Omega^c)} + \|\delta\|_{C^{\alpha/2}([0,1])}\right) \leq CM. \quad (3.18) \]
To estimate the functions \(w \) and \(z \), we notice that the functions \(h, g \in L^2(\Omega) \), and \(z\big|_{\partial\Omega} = -\frac{1}{\mu} \phi_y \big|_{\partial\Omega} \in C^{1+\alpha/2}(\partial\Omega \cap \overline{\Omega}^\pm) \); it follows from [4, pg. 186] that \(w, z \in C^{1+\alpha/2}(\Omega) \) and
\[
\begin{align*}
\|\omega^{\alpha/2} \nabla w\|_{C^{\alpha/2}(\overline{\Omega})} &+ \|\omega^{\alpha/2} \nabla z\|_{C^{\alpha/2}(\overline{\Omega})} \\
&\leq \frac{C}{\eta} \left(\|g\|_{L^2(\Omega)} + \|h\|_{L^2(\Omega)} + \|\omega^{\alpha/2} \phi_y\|_{C^{\alpha/2}(\partial\Omega)}\right) \\
&\leq \frac{C}{\eta} \left(\|p_c\|_{C^{\alpha/2}(\overline{\Omega})} + \|\delta\|_{C^{\alpha/2}([0,1])}\right) \leq \frac{C}{\eta} M.
\end{align*}
\]
This estimate, together with (3.18), (3.11) and (3.12), yields (3.2).
Finally we estimate the function \(I \) defined in (3.4). Direct calculation shows that the function \(I \) satisfies
\[
\begin{cases}
\mu \Delta I = g_x + h_y & \text{in } \Omega, \\
I = w_x + z_y & \text{on } \partial\Omega.
\end{cases}
\]
Since \(g, h \in L^2(\Omega) \) and \(\omega^{\alpha/2} I \big|_{\partial\Omega} \in C^{\alpha/2}(\partial\Omega) \), we have, for any \(\beta \in (\alpha/2,1) \),
\[
\begin{align*}
\|\tilde{\omega}^{\beta-\alpha/2} \omega^{\alpha/2} I\|_{C^\beta(\Omega)} &\leq C_\beta \left(\frac{1}{\mu} \|g\|_{L^2(\Omega)} + \frac{1}{\mu} \|h\|_{L^2(\Omega)} + \|\omega^{\alpha/2} I\|_{C^{\alpha/2}(\partial\Omega)}\right) \\
&\leq \frac{C_\beta}{\eta} \left(\|p_c\|_{C^{\alpha/2}(\overline{\Omega})} + \|\delta\|_{C^{\alpha/2}([0,1])}\right) \\
&\leq \frac{C_\beta}{\eta} M, \quad (3.19)
\end{align*}
\]
where the weight \(\tilde{\omega} \) is given by (2.9) and the weight \(\omega \) is given by (2.8). Furthermore, \(h, g \in C^{\alpha/2}(\overline{\Omega}^\pm) \) implies that \(I \in C^{1+\alpha/2}(\Omega \cap \overline{\Omega}^\pm) \). This gives (3.3) and completes the proof of Theorem 3.1.
4 The Continuity Equation.

We shall now study the continuity equation (2.14). First, we study the characteristic curves.

For each $c \in [-1, 1]$, consider the following initial value problem:

\[
\begin{cases}
\frac{dY}{dx} = \frac{v(x, Y)}{u(x, Y)} \equiv k(x, Y), & x \in (0, 1), \\
Y(0, c) = c.
\end{cases}
\]
(4.1)

Since $k(x, y)$ is continuous in $\overline{\Omega}$ and

\[
\int_0^1 \|k_y(x, \cdot)\|_{L^\infty(-1, 1)} dx \leq C \int_0^1 \sup_{y \in [-1, 1]} \omega^{-\alpha/2}(x, y) dx < \infty,
\]

there exists a unique solution $Y(x, c)$. This solution satisfies $Y(x, \pm 1) = \pm 1$ since $u = 1, v = 0$ on the boundaries $y = \pm 1$. Therefore, the mapping $S : (x, c) \to (x, Y(x, c))$ maps Ω onto Ω.

One can calculate

\[
\frac{\partial Y}{\partial c} = e^\int_0^x k_s(\xi, Y(\xi, c)) d\xi > 0.
\]

It follows that there is a unique function $c = C(x, y)$ such that

\[
y = Y(x, C(x, y)), \quad (x, y) \in \Omega.
\]
(4.2)

Using the implicit differentiation, one can compute

\[
\frac{\partial C}{\partial y} = \left(\frac{\partial Y}{\partial c}\right)^{-1} = e^{-\int_0^x k_s(\xi, Y(\xi, C(x, y))) d\xi},
\]

\[
\frac{\partial C}{\partial x} = -\frac{\partial Y}{\partial x} \left(\frac{\partial Y}{\partial c}\right)^{-1} = -k(x, y)e^{-\int_0^x k_s(\xi, Y(\xi, C(x, y))) d\xi}.
\]

In view of Theorem 3.1, we have the following lemma:

Lemma 4.1. Let $y = Y(x, c)$ and $c = C(x, y)$ be the functions defined by (4.1) and (4.2). Then the mapping $S : \Omega \to \Omega$ given by $S(x, c) = (x, Y(x, c))$ is a Lipschitz homeomorphism; Moreover, we have

\[
\left\|\frac{\partial S}{\partial x}, \frac{\partial S}{\partial c}, \frac{\partial S^{-1}}{\partial x}, \frac{\partial S^{-1}}{\partial y}\right\|_{L^\infty(\Omega)} \leq 2. \quad (4.3)
\]

Let $I(x, y)$ be the function defined in (3.4). Then the continuity equation (2.14) becomes

\[
\frac{d}{dx} \bar{\rho}(x, Y(x, c)) = \frac{\bar{\rho}}{u(x, Y(x, c))} \left(\frac{P(\bar{\rho})}{\mu} + I(x, Y(x, c))\right), \quad x \in (0, 1),
\]
(4.4)

\[
\bar{\rho}(0, Y(0, c)) = \rho^0(c), \quad c \in [-1, 0^-] \cup [0^+, 1].
\]
(4.5)
By the classical ODE theory, there is a unique solution $\tilde{\rho}$ to the problem (4.4) and (4.5). Since $P(\rho) \geq 0$, we can use a comparison principal to show that the solution $\tilde{\rho}$ satisfies $\rho_1 \leq \tilde{\rho} \leq \rho_2$, where ρ_1 and ρ_2 are the solutions of

$$
\begin{align*}
\frac{d\rho_1}{dx} &= -\frac{\rho_1}{u} \left[\frac{P(\rho^0(c))}{\mu} + |I| \right], & x \in (0,1), \\
\frac{d\rho_2}{dx} &= -\frac{\rho_2}{u} I, & x \in (0,1), \\
\rho_1(0) &= \rho_2(0) = \rho^0(c).
\end{align*}
$$

Since $u \geq 1/2$ and $\|I(x,\cdot)\|_{L^\infty(-1,1)} \in L^1(0,1)$, there exist constants m_1 and m_2 which depends only on M and $\|\rho^0\|_{L^\infty}$ such that

$$m_1 \leq \tilde{\rho}(x,y) \leq m_2, \quad (x,y) \in \Omega.$$

Lemma 4.2. Let u, v and I be given by Theorem 3.1 and assume that $\eta \geq \max\{\eta(M), C_\alpha M, C_{\alpha,\alpha} M\}$ (so that the right-hand sides of (3.2) and (3.3) are bounded by 1). Then (2.14) (or (4.4), (4.5)) admits a unique solution $\tilde{\rho}$ and there exists a constant M_0 depending only on $\|\rho^0\|_{C^\alpha[-1,0]^{-}}$ and $\|\rho^0\|_{C^\alpha[0,1]}$ such that for any $\beta \in [\alpha/2, \alpha]$,

$$\|(1-y)^{\beta-\alpha/2} \tilde{\rho}\|_{C^\beta(D^+)} + \|(1+y)^{\beta-\alpha/2} \tilde{\rho}\|_{C^\beta(D^-)} \leq M_0$$

where $D^+ = \{(x,y) \in \Omega \mid y > \tilde{f}(x)\}$, $D^- = \{(x,y) \in \Omega \mid y < \tilde{f}(x)\}$, and $\tilde{f}(x)$ is the solution of

$$
\begin{align*}
\tilde{f}'(x) &= \frac{v(x,\tilde{f}(x))}{u(x,\tilde{f}(x))}, & x \in (0,1), \\
\tilde{f}(0) &= 0.
\end{align*}
$$

In addition, the function $\tilde{\delta}(x)$ defined by

$$\tilde{\delta}(x) = P(\tilde{\rho}(x,\tilde{f}(x)^+)) - P(\tilde{\rho}(x,\tilde{f}(x)^-))$$

is positive and monotone decreasing and satisfies

$$\|\tilde{\delta}(x)\|_{C^\alpha[0,1]} \leq M_0.$$

Proof. To show (4.6), we need only show the Hölder continuity of the function $\tilde{\rho}(x, Y(x,c))$ in the variable (x,c) in the domain $[0,1] \times [0^+,1]$ and the domain $[0,1] \times [-1,0^-]$ since the mapping $(x,c) \rightarrow (x,Y(x,c))$ is a Lipschitz homeomorphism. By equation (4.4), the function $\tilde{\rho}(x, Y(x,c))$ is Lipschitz continuous in x, so that we need only show the Hölder continuity of $\tilde{\rho}(x, Y(x,c))$ in the variable c.

12
Let c_1, c_2 be any two constants with $c_1 > c_2$. Set $\rho_1(x) = \bar{\rho}(x, Y(x, c_1))$ and $\rho_2(x) = \bar{\rho}(x, Y(x, c_2))$. Subtracting the equation satisfied by ρ_1 from the equation satisfied by ρ_2 gives

\[
\begin{aligned}
\begin{cases}
\frac{d}{dx}(\rho_1(x) - \rho_2(x)) = -A(x)(\rho_1(x) - \rho_2(x)) - B(x)(c_1 - c_2)^\beta \\
\rho_1(0) - \rho_2(0) = \rho^0(c_1) - \rho^0(c_2)
\end{cases}
\end{aligned}
\tag{4.9}
\]

where

\[
A(x) = \frac{P(\rho_1) + \mu I(x, Y(x, c_1))}{\mu u(x, Y(x, c_1))} + \frac{(P(\rho_1) - P(\rho_2))\rho_2}{\mu(\rho_1 - \rho_2)u(x, Y(x, c_1))},
\tag{4.10}
\]

\[
B(x) = D(x)\frac{|Y(x, c_1) - Y(x, c_2)|^\beta}{|c_1 - c_2|^\beta},
\tag{4.11}
\]

and

\[
D(x) = \frac{\rho_2 P(\rho_1)}{\mu} \left(\frac{1}{u(x, Y(x, c_1))} - \frac{1}{u(x, Y(x, c_2))} \right) + \frac{\rho_2 (I(x, Y(x, c_1)) - I(x, Y(x, c_2)))}{|Y(x, c_1) - Y(x, c_2)|^\beta}.
\tag{4.12}
\]

Using Theorem 3.1 and Lemma 4.1, we find that for some positive constant C depending only $\rho^0(y)$,

\[
|A(x)| \leq C(1 + \|I(x, \cdot)\|_{L^\infty(-1,1)}) \leq C(x - x^2)^{-\alpha/2} \in L^1(0, 1),
\]

\[
|B(x)| \leq C\left(\|u_x(x, \cdot)\|_{L^\infty(-1,1)} + \|I(x, \cdot)\|_{L^\infty(-1,1)} + \frac{|I(x, Y(x, c_1)) - I(x, Y(x, c_2))|}{|Y(x, c_1) - Y(x, c_2)|} + \bar{\omega}^\alpha/2 - \beta(x, Y(x, c_1)) + \bar{\omega}^\alpha/2 - \beta(x, Y(x, c_2))\right)
\]

\[
\leq C(\omega^{-\alpha/2}(x, \cdot)) \|I\|_{L^\infty(-1,1)}(1 + \bar{\omega}^\alpha/2 - \beta(x, Y(x, c_1)) + \bar{\omega}^\alpha/2 - \beta(x, Y(x, c_2)))
\]

\[
\leq C\left((x - x^2)^{-\beta} + (x - x^2)^{-\alpha/2}(1 + \bar{\omega}^{-\alpha/2} + \beta)^{-\beta + \alpha/2}\right)
\]

where $\bar{\omega} = \max\{\gamma, \rho^0\}$.

It follows that either for $c_1 > c_2 \geq 0^+$ or for $c_2 < c_1 \leq 0^-$,

\[
|\rho_1 - \rho_2| \leq |\rho_0(c_1) - \rho_0(c_2)| + \int_0^\beta e^{\int_0^\beta A(\xi)d\xi} + (c_1 - c_2)^\beta \int_0^\beta e^{\int_0^\beta A(\xi)d\xi} d\xi
\]

\[
\leq \bar{C}|c_1 - c_2|^\beta \left(1 + \|\rho_0\|_{C^0([-1,0^+])} \right)(1 + (1 - \bar{\omega})^{-\beta + \alpha/2}).
\tag{4.13}
\]

The estimate (4.6) thus follows.

To prove the second assertion of the lemma, we notice that both u and I are continuous in Ω, so that taking $c_1 = 0^+$ in the equation (4.4), dividing both sides by $\bar{\rho}(x, \tilde{f}(x)^+)$, and subtracting the resulting equation from the corresponding equation resulting by taking $c = 0^-$ in (4.4), one obtains

\[
\begin{aligned}
\begin{cases}
\frac{d}{dx}\left(\ln \bar{\rho}^+(x) - \ln \bar{\rho}^-(x)\right) = -\frac{P(\bar{\rho}^+(x)) - P(\bar{\rho}^-(x))}{u(x, Y(x, 0))}, \\
\ln \bar{\rho}^+(0) - \ln \bar{\rho}^-(0) = \ln \rho^0(0^+) - \ln \rho^0(0^-),
\end{cases}
\end{aligned}
\tag{4.14}
\]
where $\tilde{\rho}(x) \equiv \tilde{\rho}(x, Y(x, 0^\pm)) = \tilde{\rho}(x, \tilde{f}(x)^\pm)$. Since $P(\rho)$ is monotone increasing, $P(\rho^+) - P(\rho^-) = \theta (\ln \rho^+ - \ln \rho^-)$ with $\theta \geq 0$, so that the function

$$\delta \rho(x) \equiv \tilde{\rho}^+(x) - \tilde{\rho}^-(x)$$

is strictly positive and monotone decreasing. The same conclusion also holds for the function $\delta(x)$.

The estimate (4.8) follows by using (4.4) with $c = 0^\pm$ and the interpolation $\|\rho^\pm\|_{C^{1-\varepsilon}([0,1])} \leq C \|(x - x^2)^\varepsilon \rho'\|_{L^\infty(0,1)} \leq C (1 + \|\tilde{\omega}I\|_{L^\infty(\Omega)})$. This completes the proof of Lemma 4.2.

5 Existence and uniqueness of the solution.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Set $M = M_0$ where M_0 is the constant given in lemma 4.2. Let B and $K(M)$ be the Banach space defined in section 2. Using Theorem 3.1 and lemma 4.2, the mapping T defined in the section 2 is well-defined. Then one sees from Theorem 3.1 and Lemma 4.2 that there exists a constant η such that if $\eta \geq \eta_0$ and $\zeta \geq 0$, then the mapping T maps $K(M_0)$ into itself.

Note that the mapping T maps $K(M_0)$ into a bounded set in the Banach space

$$\hat{K} \equiv \hat{C}^\alpha(\Omega) \times C^\alpha[0,1] \times C^{1+\alpha}[0,1]$$

where $\hat{C}^\alpha \equiv \{p_c \in C^{\alpha/2}(\bar{\Omega}) \mid \|(1 - y^2)^{\alpha/2} p_c\|_{C^\alpha(\Omega)} < \infty\}$ and

$$\|p_c\|_{\hat{C}^\alpha(\Omega)} \equiv \|p_c\|_{C^{\alpha/2}(\Omega)} + \|(1 - y^2)^{\alpha/2} p_c\|_{C^\alpha(\Omega)}.$$

Since \hat{K} may not be compact in $K(M)$, we shall use the following modification. For any $\lambda \in (1/2, 1)$, let $G_\lambda : \hat{C}^\alpha(\Omega) \to C^\alpha(\bar{\Omega})$ be defined by

$$G_\lambda(p_c)(x, y) = p_c(x, \lambda y), \quad (x, y) \in \Omega.$$

and define $T_\lambda : K(M_0) \to C^\alpha(\bar{\Omega}) \times C^\alpha([0,1]) \times C^{1+\alpha}([0,1])$ by

$$T_\lambda(p_c, \delta, f) = (G_\lambda \tilde{\rho}, \tilde{\delta}, \tilde{f})$$

where $(\tilde{\rho}, \tilde{\delta}, \tilde{f}) = T(p_c, \delta, f)$. One can check that T_λ maps $K(M_0)$ into itself (as long as $\eta \geq \tilde{\eta}_0$ where $\tilde{\eta}_0$ is a constant independent of λ). Clearly, T_λ is compact.

We now show that T_λ is continuous. Let $\{(p_c^n, \delta^n, f^n)\}_{n=1}^\infty$ be a sequence in $K(M_0)$ such that $(p_c^n, \delta^n, f^n) \to (p_c^\infty, \delta^\infty, f^\infty)$ in $C^{\alpha/2}(\bar{\Omega}) \times C^{\alpha/2}([0,1]) \times C^{1+\alpha/2}([0,1])$ as $n \to \infty$. Let (u^n, v^n) be the solutions to (1.1), (1.2), (1.5), and (1.6) corresponding to $\rho = \rho^n$ and $p = p^n$ and denote by $(\tilde{p}_c^n, \tilde{\delta}^n, \tilde{f}^n) = T(p_c^n, \delta^n, f^n)$, $n = 1, 2, \ldots, \infty$. By the
a priori estimates obtained in §3 and §4, for every subsequence of \((u^n, v^n, G_{\lambda p^n, \tilde{\rho}^n, f^n})\), there exists a subsequence which converges to certain functions \((u, v, \tilde{p}^\lambda, \tilde{\rho}, \tilde{f})\) in \(C^\alpha(\tilde{\Omega}) \times C^\alpha(\tilde{\Omega}) \times C^{\alpha-\varepsilon}(\tilde{\Omega}) \times C^{\alpha-\varepsilon}[0, 1] \times C^{1+\alpha-\varepsilon}[0, 1]\) \((0 < \varepsilon \ll 1)\). Since the solution of the elliptic system (1.1), (1.2), (1.5), and (1.6) depends continuously on \(\rho\) and \(p\), we therefore know that \(u = u^\infty\) and \(v = v^\infty\). Let \(Y^n(x, c)\) be the solution of (4.1) with the right hand side equals to \(k^n = v^n/u^n\). Since any limit point of \(\{Y^n\}\) is a solution to (4.1) with \(k = k^\infty\), which is unique, it follows that \(Y^n \to Y^\infty\). The proof of \(\rho^n(x, Y^n(x, c)) \to \rho^\infty(x, Y^\infty(x, c))\) is similar. This shows that \((\tilde{p}^\lambda, \tilde{\rho}, \tilde{f}) = (G_{\lambda p^\infty}, \tilde{\rho}, \tilde{f}^\infty)\) and therefore \(T_\lambda\) is continuous. Hence, one can apply the Schauder fixed point theorem to deduce that \(T_\lambda\) has a fixed point \((\tilde{p}^\lambda, \tilde{\rho}, \tilde{f}^\lambda) \in K(M_0)\).

Since \(\{p^\lambda, \tilde{\rho}, f^\lambda\}_{\lambda \in (1/2, 1)}\) is compact in \(C^{\alpha/2-\varepsilon}(\tilde{\Omega}) \times C^{\alpha-\varepsilon}[0, 1] \times C^{1+\alpha-\varepsilon}[0, 1]\), there exists a sequence \(\lambda_j \to 1\) such that \((p^{\lambda_j}, \tilde{\rho}^{\lambda_j}, f^{\lambda_j}) \to (p, \tilde{\rho}, f) \in K(M_0)\). Since \(T_\lambda \to T\) as \(\lambda \to 1\), we therefore know that \((p, \tilde{\rho}, f)\) is a fixed point of \(T\). After transferring back to \((u, v, p, \rho)\), this gives a solution of (1.1)–(1.7).

The estimate in Theorem 1 follows from Theorem 3.1 and Lemma 4.2. This completes the proof of Theorem 1.

We shall now assume that \(\rho^0(y)\) satisfies (1.9) and show that the solution to (1.1)–(1.7) is unique. To do this, we need the following lemma concerning the regularity of the solution given in the proof of Theorem 1.

Lemma 5.1. Assume that \(\rho^0(y) \in C^{0, \alpha}([-1, 0], C^1[0^+, 1])\), and let \((u, v, p, \rho)\) be the solution given in the proof of Theorem 1. Then for any \(\varepsilon \in (0, 1)\),

\[
|\nabla \rho(x, y)| \leq C_\varepsilon \left(|y - f(x)|^{-\varepsilon} + (1 - y^2)^{-\varepsilon} \right), \quad (x, y) \in \Omega \setminus \left(\Gamma \cup \{y = \pm 1\} \right)
\]

for some constant \(C_\varepsilon\) depending on \(\varepsilon\), \(\eta_0\) and \(\rho^0(y)\). Consequently, \(\nabla p \in L^r(\Omega)\) for any \(r > 1\).

Proof. Notice that in the proof of Theorem 1, we can take the exponent \(\alpha/2\) in defining \(K(M)\) to be any exponent less than \(\alpha\) which in the current case is 1. It follows from Theorem 3.1 that

\[
\tilde{\omega}^{2\varepsilon} \omega^{1-\varepsilon} \nabla I \in C^\varepsilon(\Omega).
\]

Taking \(\beta = 1\) in the (4.9) and using (5.2) we can estimate \(B\) in (4.11) by

\[
|B(x)| \leq C \left(\|u(x, \cdot)\|_{C^\varepsilon([0^+, 1])} + \sup_{Y(x, c_2) \leq y \leq Y(x, c_1)} \left(|\nabla u(x, y)| + |\nabla I(x, y)| \right) \right)
\]

\[
\leq C \omega^\varepsilon \omega^{-\varepsilon} (x, \tilde{c})
\]

\[
\leq C (x + \tilde{c})^{\varepsilon-1} (1 - x + c) \varepsilon^{-1} (\varepsilon - 2\varepsilon + (1 - \tilde{c})^{-2\varepsilon}),
\]

where \(c = \min\{|c_1|, |c_2|\}\) and \(\tilde{c} = \max\{|c_1|, |c_2|\}\). This implies that

\[
\int_0^1 |B(\xi)| d\xi \leq C \varepsilon (c^{-\varepsilon} + (1 - \tilde{c})^{-2\varepsilon})
\]
Noting that as \(Y(x, c_1), Y(x, c_2) \to y, c \approx |y - f(x)| \) and \(\dot{c} \approx |1 - y^2| \), the assertion of the lemma thus follows from an estimate similar to (4.13).

We shall now prove the uniqueness of the solution.

Let \((u_1, v_1, p_1, \rho_1)\) and \((u_2, v_2, p_2, \rho_2)\) be two solutions of (1.1)–(1.7) satisfying the estimate (2.10). Without loss of generality, we assume that \((u_2, v_2, p_2, \rho_2)\) is the solution given in the proof of Theorem 1 so that \(\rho_2\) satisfies the estimate (5.1).

Let \(f_i(x)(i = 1, 2)\) be the unique solution of the ordinary differential equation

\[
\frac{df_i(x)}{dx} = \frac{v_i(x, f_i(x))}{u_i(x, f_i(x))}, \quad x \in (0, 1),
\]

\[f_i(0) = 0.\]

Set \(q_i(x, y) = \ln \rho_i(x, y), f = f_1 - f_2\) and \(F(x, y) = f(x)\xi(y), \) where \(\xi = \xi(y) \in C_0^\infty(-1, 1)\) is a function satisfying \(\xi = 1\) if \(|y| \leq 1/2\) and \(\xi = 0\) if \(|y| > 3/4\). Define

\[
\bar{u}_2(x, y) = u_2(x, y - F), \quad u(x, y) = u_1(x, y) - \bar{u}_2(x, y), \quad (5.3)
\]

\[
\bar{v}_2(x, y) = v_2(x, y - F), \quad v(x, y) = v_1(x, y) - \bar{v}_2(x, y), \quad (5.4)
\]

\[
\bar{q}_2(x, y) = q_2(x, y - F), \quad q(x, y) = q_1(x, y) - \bar{q}_2(x, y), \quad (5.5)
\]

\[
\bar{p}_2(x, y) = p_2(x, y - F), \quad p(x, y) = p_1(x, y) - \bar{p}_2(x, y). \quad (5.6)
\]

Clearly, to show the uniqueness of the solution, we need only show that \(u = v = q = p = 0\).

First, we use the continuity equation to estimate \(q\) (or \(\rho\)) in terms of \(u\) and \(v\).

Since \(q_1\) and \(\bar{q}_2\) satisfies

\[
q_{1x} + \frac{v_1}{u_1} q_{1y} = -\frac{u_{1x} + v_{1y}}{u_1} u_1,
\]

\[
\bar{q}_{2x} + \frac{v_1}{u_1} \bar{q}_{2y} = \left(\frac{v_1}{u_1} - \frac{\bar{v}_2}{\bar{u}_2} - F_x - \frac{\bar{v}_2 F_y}{\bar{u}_2}\right) \bar{q}_{2y} - \frac{\bar{u}_{2x} + \bar{v}_{2y}}{\bar{u}_2} - \frac{F_x \bar{u}_{2y} + F_y \bar{v}_{2y}}{\bar{u}_2},
\]

We can subtract the second equation from the first equation to get

\[
q_x + \frac{v_1}{u_1} q_y = \left(\frac{\bar{u}_{2x} + \bar{v}_{2y}}{\bar{u}_2} - \frac{u_{1x} + v_{1y}}{u_1}\right) - \left(\frac{v_1}{u_1} - \frac{\bar{v}_2}{\bar{u}_2} - F_x\right) \bar{q}_{2y} + \left(\frac{F_x \bar{u}_{2y} + F_y \bar{v}_{2y}}{\bar{u}_2} + \frac{\bar{v}_2 F_y \bar{q}_{2y}}{\bar{u}_2}\right)
\]

\[
\equiv A + B + C. \quad (5.7)
\]

Denote by \(y = Y_1(x, c)\) the characteristic curves for the equation satisfying by \(\rho_1\). Equation (5.7) yields

\[
q(x, Y_1(x, c)) = \int_0^x (A + B + C)(\xi, Y_1(\xi, c)) \, d\xi, \quad (x, c) \in (0, 1) \times ([-1, 0^-] \cup [0^+, 1]).
\]

(Notice that the jump of \(\bar{q}_2\) also occurs at \(y = f_1(x)\).) Lemma 4.1 implies that the transformation \((x, c) \to (x, y)\) is a Lipschitz homomorphism, so that the norm
\[\|q(x, y)\|_{p, \Omega} \text{ is equivalent to the norm } \|q(x, Y(x, c))\|_{p, \Omega}. \text{ Hence, for any } p > 1, \text{ we have}
\]
\[\|q(x, y)\|_{p, \Omega} \leq C_p \|q(x, Y_1(x, c))\|_{p, \Omega} \leq \tilde{C}_p \|A + B + C\|_{p, \Omega}. \quad (5.8)\]

Since \(u_i\) and \(v_i\) satisfies the estimates in Theorem 1 and \(q_{2y} \in L^r(\Omega^\pm)\), we have
\[\|A + C\|_{p, \Omega} \leq C_p \left[\|u\|_{W^1_p(\Omega)} + \|v\|_{W^1_p(\Omega)} + \|F\|_{C^{0,1}(\Omega)}\right].\]

Noting that
\[
\frac{df(x)}{dx} = \frac{v_1(x, f_1(x)) - \tilde{v}_2(x, f_1(x))}{u_1(x, f_1(x)) - \tilde{u}_2(x, f_1(x))}, \quad (5.9)
\]
we can write \(B\) as
\[
B = \left. \left\{ \frac{(\frac{v_1}{u_1} - \frac{\tilde{v}_2}{\tilde{u}_2})(x, y) - \xi(y)(\frac{v_1}{u_1} - \frac{\tilde{v}_2}{\tilde{u}_2})(x, f_1(x))}{(y - f_1(x))\xi}\right. \right|_{y = f_1(x)} \left. (y - f_1(x))^{\varepsilon}\tilde{q}_{2y}(x, y - F)\right|_{y = f_1(x)} \]
where \(\varepsilon\) is a small positive constant. It follows by Lemma 5.1 that
\[\|B\|_{L^\infty(\Omega)} \leq C_{\varepsilon} \left\|\frac{v_1}{u_1} - \frac{\tilde{v}_2}{\tilde{u}_2}\right\|_{C^\infty(\Omega)} \leq C C_{\varepsilon} \left(\|u\|_{C^\infty(\Omega)} + \|v\|_{C^\infty(\Omega)}\right).\]

Substituting the estimates for \(A, B, \text{ and } C\) into (5.8), we get, for \(p > 2/(1 - \varepsilon)\),
\[
\|q\|_{p, \Omega} \leq C_{\varepsilon} \left\{\|u\|_{W^1_p(\Omega)} + \|v\|_{W^1_p(\Omega)} + \|F\|_{C^{0,1}(\Omega)} + \|u\|_{C^\infty(\Omega)} + \|v\|_{C^\infty(\Omega)}\right\}
\leq C \left(\|u\|_{W^1_p(\Omega)} + \|v\|_{W^1_p(\Omega)} + \|f\|_{C^{0,1}(0, 1)}\right) \quad (5.10)
\]
by the Sobolev imbedding theorem. Next we estimate \(\|u, v\|_{W^1_p(\Omega)}\). Notice that \(u_1\) and \(v_1\) satisfy (1.1), (1.2) whereas \(\tilde{u}_2\) satisfies
\[
-\eta \Delta \tilde{u}_2 - (\zeta + \frac{\eta}{3})(\tilde{u}_{2x} + \tilde{v}_{2y})x + \tilde{p}_2 \tilde{u}_2 \tilde{v}_2 \tilde{u}_2 \tilde{y} + \tilde{p}_2 \tilde{v}_2 \tilde{u}_2 \tilde{y} = \eta \left(2\tilde{u}_{2x}F_x + \tilde{u}_{2y}(2F_y + F^2_x + F^2_y) + \tilde{u}_{2y}(F_{xx} + F_{yy})\right)
\]
\[
+ (\zeta + \frac{\eta}{3})(\tilde{u}_{2y}F_x + \tilde{v}_{2y}F_y) - \tilde{p}_2 \tilde{u}_2 \tilde{v}_2 \tilde{F}_x - \tilde{p}_2 \tilde{u}_2 \tilde{v}_2 \tilde{F}_y - \tilde{p}_2 \tilde{y}_2 \tilde{F}_x
\]
\[
= -\tilde{p}_2 + \eta \left((2\tilde{u}_{2x}F_x - 2\tilde{u}_{2x}F_{xy} + [\tilde{u}_{2y}(2F_y + F^2_x + F^2_y)]_y\right)

- \tilde{p}_2 [2F_{yy} + 2Fx_{xy} + 2F_{xy}F_{yy}] + [(\tilde{u}_{2y}F_x)_{xy} + \tilde{u}_{2x}F_{xy} + \tilde{u}_{2y}F_{yy}]\right)\]
\[
+ (\zeta + \frac{\eta}{3})[\tilde{u}_{2y}F_x + \tilde{v}_{2y}F_y]_x - \tilde{p}_2 \tilde{u}_2 \tilde{v}_2 \tilde{F}_x - \tilde{p}_2 \tilde{v}_2 \tilde{u}_2 \tilde{F}_y - \tilde{p}_2 \tilde{F}_{xy} = -\tilde{p}_2 + G_1 + (G_2)_x + (G_3)_y.
\]

Subtracting this equation from the equation satisfied by \(u_1\) yields
\[
-\eta \Delta u - (\zeta + \frac{\eta}{3})(u_x + v_y)x + \rho_1 u_1 u_x + \rho_1 v_1 u_y + \rho_1 u \tilde{u}_2 + \rho_1 v \tilde{u}_2
= -\rho_1 - \tilde{G}_1 + (G_2)_x - (G_3)_y
\]

17
where $\tilde{G}_1 = G_1 - (\rho_1 - \rho_2)(\tilde{u}_2 \tilde{u}_{2x} + \tilde{v}_2 \tilde{u}_{2y})$. Similarly, one can obtain an equation for $v = v_1 - \tilde{v}_2$.

$$-\eta \Delta v - (\zeta + \frac{\eta}{3})(u_x + v_y) + \rho_1 u_1 v_x + \rho_1 v_1 v_y + \rho_1 u v_{2x} + \rho_1 v v_{2y}$$

$$\equiv - (p)_y - H_1 + (H_2)_x - (H_3)_y.$$

We then obtain from L^p-estimate

$$\eta \left(\|u\|_{W^1_p(\Omega)} + \|v\|_{W^1_p(\Omega)} \right) \leq C \left(\|p\|_{L^p(\Omega)} + \|\tilde{G}_1\|_{L^p(\Omega)} + \|G_2\|_{L^p(\Omega)} + \|G_3\|_{L^p(\Omega)} + \|H_1\|_{L^p(\Omega)} + \|H_2\|_{L^p(\Omega)} + \|H_3\|_{L^p(\Omega)} + \|F\|_{C^{0,1}(\Omega)} \right)$$

since $\rho_i \in L^\infty(\Omega)$ and $\|u_i, v_i\|_{W^1_1(\Omega)} \leq C_r / \eta$ for all $r > 1$. Substituting the estimate for $q = \ln p(p)$ in (5.10) into the right-hand side of the last inequality and using (5.9), we obtain

$$\|u\|_{W^1_p(\Omega)} + \|v\|_{W^1_p(\Omega)} \leq \frac{C}{\eta} \left(\|u\|_{W^1_p(\Omega)} + \|v\|_{W^1_p(\Omega)} + \|f\|_{C^{0,1}(\Omega)} \right)$$

$$\leq \frac{C}{\eta} \left(\|u\|_{W^1_p(\Omega)} + \|v\|_{W^1_p(\Omega)} \right).$$

It follows that $u = v = 0$ if η is large enough. Theorem 2 thus follows.

References

<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>960</td>
<td>Richard A. Brualdi, Shmuel Friedland and Alex Pothen</td>
<td>Sparse bases, elementary vectors and nonzero minors of compound matrices</td>
</tr>
<tr>
<td>961</td>
<td>J.W. Demmel</td>
<td>Open problems in numerical linear algebra</td>
</tr>
<tr>
<td>962</td>
<td>James W. Demmel and William Gragg</td>
<td>On computing accurate singular values and eigenvalues of acyclic matrices</td>
</tr>
<tr>
<td>963</td>
<td>James W. Demmel</td>
<td>The inherent inaccuracy of implicit tridiagonal QR</td>
</tr>
<tr>
<td>964</td>
<td>J.J.L. Velázquez</td>
<td>Estimates on the ((N-1))-dimensional Hausdorff measure of the blow-up set for a semilinear heat equation</td>
</tr>
<tr>
<td>965</td>
<td>David C. Dobson</td>
<td>Optimal design of periodic antireflective structures for the Helmholtz equation</td>
</tr>
<tr>
<td>966</td>
<td>C.J. van Duijn and Joseph D. Fehribach</td>
<td>Analysis of planar model for the molten carbonate fuel cell</td>
</tr>
<tr>
<td>967</td>
<td>Yongzhi Xu, T. Craig Poling and Trent Brundage</td>
<td>Source localization in a waveguide with unknown large inclusions</td>
</tr>
<tr>
<td>968</td>
<td>J.J.L. Velázquez</td>
<td>Higher dimensional blow up for semilinear parabolic equations</td>
</tr>
<tr>
<td>969</td>
<td>E.G. Kalnins and Willard Miller, Jr.</td>
<td>Separable coordinates, integrability and the Niven equations</td>
</tr>
<tr>
<td>970</td>
<td>John M. Chadam and Hong-Ming Yin</td>
<td>A diffusion equation with localized chemical reactions</td>
</tr>
<tr>
<td>971</td>
<td>A. Greenbaum and L. Gurvits</td>
<td>Max-min properties of matrix factor norms</td>
</tr>
<tr>
<td>972</td>
<td>Bei Hu</td>
<td>A free boundary problem arising in smoulder combustion</td>
</tr>
<tr>
<td>973</td>
<td>C.M. Elliott and A.M. Stuart</td>
<td>The global dynamics of discrete semilinear parabolic equations</td>
</tr>
<tr>
<td>974</td>
<td>Avner Friedman and Jianhua Zhang</td>
<td>Swelling of a rubber ball in the presence of good solvent</td>
</tr>
<tr>
<td>975</td>
<td>Avner Friedman and Juan J.L. Velázquez</td>
<td>A time-dependence free boundary problem modeling the visual image in electrophotography</td>
</tr>
<tr>
<td>976</td>
<td>Richard A. Brualdi, Hyung Chan Jung and William T. Trotter, Jr.</td>
<td>On the poset of all posets on (n) elements</td>
</tr>
<tr>
<td>977</td>
<td>Ricardo D. Fierro and James R. Bunch</td>
<td>Multicollinearity and total least squares</td>
</tr>
<tr>
<td>978</td>
<td>Adam W. Bojanczyk, James G. Nagy and Robert J. Plemmons</td>
<td>Row householder transformations for rank-k Cholesky inverse modifications</td>
</tr>
<tr>
<td>979</td>
<td>Chaocheng Huang</td>
<td>An age-dependent population model with nonlinear diffusion in (\mathbb{R}^n)</td>
</tr>
<tr>
<td>980</td>
<td>Emad Fatemi and Farouk Odeh</td>
<td>Upwind finite difference solution of Boltzmann equation applied to electron transport in semiconductor devices</td>
</tr>
<tr>
<td>981</td>
<td>Esmond G. Ng and Barry W. Peyton</td>
<td>A tight and explicit representation of (Q) in sparse (QR) factorization</td>
</tr>
<tr>
<td>982</td>
<td>Robert J. Plemmons</td>
<td>A proposal for (FFT)-based fast recursive least-squares</td>
</tr>
<tr>
<td>983</td>
<td>Anne Greenbaum and Zdenek Strakos</td>
<td>Matrices that generate the same Krylov residual spaces</td>
</tr>
<tr>
<td>984</td>
<td>Alan Edelman and G.W. Stewart</td>
<td>Scaling for orthogonality</td>
</tr>
<tr>
<td>985</td>
<td>G.W. Stewart</td>
<td>Note on a generalized sylvester equation</td>
</tr>
<tr>
<td>986</td>
<td>G.W. Stewart</td>
<td>Updating URV decompositions in parallel</td>
</tr>
<tr>
<td>987</td>
<td>Angelika Bunse-Gerstner, Volker Mehrmann and Nancy K. Nichols</td>
<td>Numerical methods for the regularization of descriptor systems by output feedback</td>
</tr>
<tr>
<td>988</td>
<td>Ralph Byers and N.K. Nichols</td>
<td>On the stability radius of generalized state-space systems</td>
</tr>
<tr>
<td>989</td>
<td>David C. Dobson</td>
<td>Designing periodic structures with specified low frequency scattered in far-field data</td>
</tr>
<tr>
<td>990</td>
<td>C.-T. Pan and Kermit Sigmon</td>
<td>A bottom-up inductive proof of the singular value decomposition</td>
</tr>
<tr>
<td>991</td>
<td>Ricardo D. Fierro and James R. Bunch</td>
<td>Orthogonal projection and total least squares</td>
</tr>
<tr>
<td>992</td>
<td>Chiu-Ming Huang and Dianne P. O'Leary</td>
<td>A Krylov multisplitting algorithm for solving linear systems of equations</td>
</tr>
<tr>
<td>993</td>
<td>A.C.M Ran and L. Rodman</td>
<td>Factorization of matrix polynomials with symmetries</td>
</tr>
<tr>
<td>994</td>
<td>Mike Boyle</td>
<td>Symbolic dynamics and matrices</td>
</tr>
<tr>
<td>995</td>
<td>A. Novick-Cohen and L.A. Peletier</td>
<td>Steady states of the one-dimensional Cahn-Hilliard spaces</td>
</tr>
<tr>
<td>996</td>
<td>Zhangxin Chen</td>
<td>Large-scale averaging analysis of single phase flow in fractured reservoirs</td>
</tr>
<tr>
<td>997</td>
<td>Boris Mordukhovich</td>
<td>Stability theory for parametric generalized equations and variational inequalities via nonsmooth analysis</td>
</tr>
<tr>
<td>998</td>
<td>Yongzhi Xu</td>
<td>CW mode structure and constraint beamforming in a waveguide with unknown large inclusions</td>
</tr>
<tr>
<td>999</td>
<td>R.P. Gilbert and Yongzhi Xu</td>
<td>Acoustic waves and far-field patterns in two dimensional oceans with porous-elastic seabeds</td>
</tr>
<tr>
<td>1000</td>
<td>M.A. Herrero and J.J.L. Velázquez</td>
<td>Some results on blow up for semilinear parabolic problems</td>
</tr>
<tr>
<td>1001</td>
<td>Pierre-Alain Gremaud</td>
<td>Numerical analysis of a nonconvex variational problem related to solid-solid phase transitions</td>
</tr>
<tr>
<td>1002</td>
<td>Izchak Lewkowicz</td>
<td>Stability robustness of state space systems inter-relations between the continuous and discrete time cases</td>
</tr>
<tr>
<td>1003</td>
<td>Kenneth R. Driessell and Wasin So</td>
<td>Linear operators on matrices: Preserving spectrum and displacement structure</td>
</tr>
</tbody>
</table>
Carolyn Eschenbach, Idempotence for sign pattern matrices
Carolyn Eschenbach, Frank J. Hall and Charles R. Johnson, Self-inverse sign patterns
Marc Moonen, Paul Van Dooren and Filipe Vanpoucke, On the QR algorithm and updating the SVD and
URV decomposition in parallel
Paul Van Dooren, Upcoming numerical linear algebra issues in systems and control theory
Avner Friedman and Juan J.L. Velázquez, The analysis of coating flows near the contact line
Stephen J. Kirkland and Michael Neumann, Convexity and concavity of the Perron root and vector of
Leslie matrices with applications to a population model
Stephen J. Kirkland and Bryan L. Shader, Tournament matrices with extremal spectral properties
E.G. Kalnins, Willard Miller, Jr. and Sanchita Mukherjee, Models of q-algebra representations:
Matrix Elements of $U_q(su_2)$
Zhangxin Chen and Bernardo Cockburn, Error estimates for a finite element method for the
drift-diffusion semiconductor device equations
Chaocheng Huang, Drying of gelatin asymptotically in photographic film
Richard E. Ewing and Hong Wang, Eulerian-Lagrangian localized adjoint methods for reactive transport
in groundwater
Bing-Yu Zhang, Taylor series expansion for solutions of the Korteweg-de Vries equation with respect
to their initial values
Kenneth R. Driessel, Some remarks on the geometry of some surfaces of matrices associated with
Toeplitz eigenproblems
C.J. Van Duijn and Peter Knabner, Flow and reactive transport in porous media induced by well
injection: Similarity solution
Wasin So, Rank one perturbation and its application to the Laplacian spectrum of a graph
G. Baccarani, F. Odeh, A. Gnudi and D. Ventura, A critical review of the fundamental semiconductor
equations
T.R. Hoffend Jr., Magnetostatic interactions for certain types of stacked, cylindrically symmetric
magnetic particles
IMA Summer Program for Graduate Students, Mathematical Modeling
Wayne Barrett, Charles R. Johnson, and Pablo Tarazaga, The real positive definite completion problem
for a simple cycle
Charles A. McCarthy, Fourth order accuracy for a cubic spline collocation method
Martin Hanke, James Nagy, and Robert Plemmens, Preconditioned iterative regularization for ill-posed
problems
John R. Gilbert, Esmond G. Ng, and Barry W. Peyton, An efficient algorithm to compute row and column
counts for sparse Cholesky factorization
Xinfu Chen, Existence and regularity of solutions of a nonlinear nonuniformly elliptic system arising from a
thermistor problem
Xinfu Chen and Weiqing Xie, Discontinuous solutions of steady state, viscous compressible Navier-Stokes
equations
E.G. Kalnins, Willard Miller, Jr., and Sanchita Mukherjee, Models of q-algebra representations: Matrix
elements of the q-oscillator algebra
W. Miller, Jr. and Lee A. Rubel, Functional separation of variables for Laplace equations in two dimensions
I. Goberg and I. Koltracht, Structured condition numbers for linear matrix structures
Xinfu Chen, Hele-Shaw problems and area preserved curve shortening motion
Zhangxin Chen and Jim Douglas, Jr. Modelling of compositional flow in naturally fractured reservoirs
Harald K. Wimmer, On the existence of a least and negative-semidefinite solution of the discrete-time algebraic
Riccati equation
Harald K. Wimmer, Monotonicity and parametrization results for continuous-time algebraic Riccati equations
and Riccati inequalities
Bart De Moor, Peter Van Overschee, and Geert Schelphout, H_2 model reduction for SISO systems
Bart De Moor, Structured total least squares and L_2 approximation problems
Chjan Lim, Nonexistence of Lyapunov functions and the instability of the Von Karman vortex streets
David C. Dobson and Fadil Santosa, Resolution and stability analysis of an inverse problem in electrical
impedance tomography – dependence on the input current patterns
C.N. Dawson, C.J. van Duijn, and M.F. Wheeler, Characteristic-Galerkin methods for contaminant
transport with non-equilibrium adsorption kinetics
Bing-Yu Zhang, Analyticity of solutions of the generalized Korteweg-de Vries equation with respect to their
initial values
Neerchal K. Nagaraj and Wayne A. Fuller, Least squares estimation of the linear model with autoregressive
errors
H.J. Sussman & W. Liu, A characterization of continuous dependence of trajectories with respect to the input
for control-affine systems