SOME APPLICATIONS OF ASYMPTOTIC METHODS IN SEMICONDUCTOR DEVICE MODELING

By

Leonid V. Kalachev

IMA Preprint Series # 881
October 1991
Some Applications of Asymptotic Methods in Semiconductor Device Modeling

Leonid V. Kalachev
Department of Applied Mathematics, FS-20
University of Washington
Seattle, WA 98195
Some Applications of Asymptotic Methods in Semiconductor Device Modeling*

Leonid V. Kalachev**

This short survey of results concerning the applications of perturbation analysis in semiconductor device modeling is devoted mostly to problems that were solved using the method of composite asymptotic expansions or the, so-called, boundary function method. Thorough description of this approach can be found in Vasil'eva and Butuzov [17], [18], [19] and in O'Malley [13], [14]. The main ideas of the method are illustrated below on the example of the singularly perturbed problem for the Gunn diode. Here the construction of the leading order terms of the asymptotic solution is discussed. This gives the opportunity to obtain the main characteristics of the device to the zeroth order. More detailed analysis of the asymptotic approximation for the solution of the Gunn diode problem, including the construction of higher order terms, will be published later. To make the presentation more compact some cumbersome details of the solution algorithm have been omitted.

§1. The statement of the problem for the Gunn diode

For the Gunn diode, consisting of a homogeneously doped piece of semiconductor (typically, gallium azsenide (GaAs)), we consider a spatially one-dimensional model for which the nondimensionalized system of equations can be written in a form:

\[(1.1) \quad \frac{\partial E}{\partial x} = n - 1 \quad \text{(Poisson equation)},\]
\[(1.2) \quad \frac{\partial}{\partial t} = - \frac{\partial}{\partial x} J_n \quad \text{(continuity equation)},\]
\[(1.3) \quad J = J_n + \frac{\partial E}{\partial t} \quad \text{(total current density)},\]
\[(1.4) \quad J_n = nv(E) - \epsilon \frac{\partial n}{\partial x} \quad \text{(electron current density)}.

Here \(v(E)\), the charge carries velocity, is represented in Figure 1; \(E_{cr}\), a critical value of the field, is such that for \(E > E_{cr}\), the bulk differential conductivity of the device becomes

* This research was supported in part by the Institute for Mathematics and its Applications with funds provided by the National Science Foundation.

** Department of Applied Mathematics, FS-20, University of Washington.
negative; the saturation velocity v_{sat} and E_{min} are defined so that $v_{\text{sat}} = v(\infty) = v(E_{\text{min}})$,
v is scaled by v_{sat}; the electric field density E, the charge carriers density n and the currents J and J_n are scaled by E_{cr}, constant donor concentration n_0 and $v_{\text{sat}} \cdot n_0$ respectively; the characteristic time is given by ℓ/v_{sat}, where ℓ is a characteristic length.

The following additional conditions are imposed:

\begin{equation}
(1.5) \quad n(0) = n(1) = 1 \quad \text{(ohmic contacts)},
\end{equation}

\begin{equation}
(1.6) \quad \int_0^1 E(x) dx = U \quad \text{(bias voltage)}.
\end{equation}

The applied voltage U is scaled by $E_{cr} \cdot \ell$.

There are two characteristic parameters in the problem:

$$
\lambda = \sqrt{\frac{\epsilon_s E_{cr}}{qn_0 \ell}} \quad \text{(the scaled Debye length)},
$$

and

$$
\gamma = \frac{D}{v_{\text{sat}} \cdot \ell},
$$

where ϵ_s is the permittivity of the semiconductor, q is the charge of electron, and D is a diffusivity. The case when both parameters λ and γ are small is considered in Markowich et al. [12], while discussion of the case where the diffusion term is omitted can be found in Shaw et al. [15]. We consider only the case when $\lambda \sim 0(1), 0 < \gamma \ll 1$. Without loss of generality we assume that $\lambda = 1$, and $\gamma = \epsilon$, where $0 < \epsilon \ll 1$ is a small parameter.

It is known that for applied voltages exceeding some threshold value, two working regimes with different currents exist for the Gunn diode, with the regime corresponding to the larger current being unstable (see, e.g. Shaw et al. [15], Szmolyan [16]). The so-called, trivial solution of the problem (1.1)-(1.6) corresponding to this unstable regime can be easily written out as

$$
n = 1, \quad E_{\text{triv}} = U = \text{const},
$$

$$
J_n = n \cdot v(E_{\text{triv}}) = v(U),
$$

$$
J = J_n.
$$
The other (stable) solution is known to have a pulse-line form (see Figure 2), with the pulses for E (and n) moving with velocity v. We will construct the asymptotic approximation for this solution when the pulse lies entirely within the domain $x \in (0, 1)$ (we will not here discuss the transition processes of formation or disappearance of such pulses).

Let us introduce the new independent variable z associated with the moving structure:

$$z = x - ct,$$

where c is unknown velocity of the structure. We seek functions E and n depending on variable z:

$$E = E(z), \quad n = n(z).$$

Taking into account (1.7), (1.8), the system (1.1)-(1.4) can be rewritten in a form:

$$c \frac{\partial n}{\partial z} = \frac{\partial}{\partial z} (nv(E) - \epsilon \frac{\partial n}{\partial z}),$$

$$J = nv(E) - \epsilon \frac{\partial n}{\partial z} - c \frac{\partial E}{\partial z},$$

$$\frac{\partial E}{\partial z} = n - 1.$$

Condition (1.6) changes very little; on the moving boundaries $z = z'(t)$ and $z = z''(t)$ (in the new coordinates) we have conditions for n similar to (1.5):

$$n(z') = n(z'') = 1,$$

$$\int_{z'}^{z''} E(x)dx = U,$$

where $z' = z'(t)$, $z'' = z''(t)$, $z'' - z' = 1$.

3
§2. Asymptotic algorithm

For any fixed instant of time (when the pulse is entirely within the domain), we subdivide the interval \(z \in [z', z''] \) into three subintervals \([z', 0], [0, \Delta z], [\Delta z, z'']\) (without loss of generality, we associate \(z = 0 \) with the point where the maximal value of \(E \) is observed) and seek a uniform asymptotic approximation for the solution of the problem (1.8)-(1.12) in the form (cf. the notations for \(E \)-functions in Figure 3; similar for \(n \)-functions):

\[
E(z) = \begin{cases}
\overline{E}^1(z) + \Pi^* E(\xi), & z \in [z', 0], \xi \leq 0; \\
\overline{E}^2(z) + \Pi E(\xi) + Q^* E(\eta), & z \in [0, \Delta z], \xi \geq 0, \eta \leq 0; \\
\overline{E}^3(z) + Q E(\eta), & z \in [\Delta z, z''], \eta \geq 0;
\end{cases}
\]

\[
n(z) = \begin{cases}
\overline{n}^1(z) + \frac{1}{\epsilon} \Pi^* n(\xi), & z \in [z', 0], \xi \leq 0; \\
\overline{n}^2(z) + \frac{1}{\epsilon} \Pi n(\xi) + Q^* n(\eta), & z \in [0, \Delta z], \xi \geq 0, \eta \leq 0; \\
\overline{n}^3(z) + Q n(\eta), & z \in [\Delta z, z''], \eta \geq 0.
\end{cases}
\]

\[
J = J_0 + \sqrt{\epsilon} J_1 + \epsilon J_2 + \ldots,
\]

\[
c = c_0 + \sqrt{\epsilon} c_1 + \epsilon c_2 + \ldots.
\]

Here \(\xi = z/\epsilon \) and \(\eta = (z - \Delta z)/\epsilon \) are stretched variables; \(\overline{E}^i, \overline{n}^i (i = 1, 2, 3) \) are regular functions; boundary functions \(\Pi^*, \Pi \) and \(Q^*, Q \) depend on the variables \(\xi \) and \(\eta \) respectively. Each term in the sums (2.1), (2.2) is, in turn, a power series expansion in powers of \(\sqrt{\epsilon} \) (the appearance of such an asymptotic sequence is connected with the construction of higher order terms of the asymptotic solution in the vicinity of the point \(z = \Delta z \)); for example

\[
\overline{E}^1(z, \epsilon) = \sum_{i=0}^{\infty} (\sqrt{\epsilon})^i \overline{E}^1_i(z), \quad \Pi^* E(\xi, \epsilon) = \sum_{i=0}^{\infty} (\sqrt{\epsilon})^i \Pi^*_i E(\xi), \text{ etc.}
\]

We require that boundary functions decay when corresponding stretched variables tend to \(+\infty \) or \(-\infty \); for example

\[
\Pi^*_i E(-\infty) = 0, \quad \Pi_i E(+\infty) = 0, \text{ etc.}
\]
The expansion (2.3) for J does not contain any boundary terms or any dependence on z. This simply reflects the fact that for a one-dimensional device without internal sources and drains the current is constant. For a nonlinear function $v(E)$ we must use an asymptotic representation similar to (2.1), (2.2):

$$(2.5) \quad v(E) = \begin{cases} \overline{v}^1(\overline{E}^1) + \Pi^*v(\xi), z \in [z', 0], \xi \leq 0; \\ \overline{v}^2(\overline{E}^2) + \Pi v(\xi) + Q^*v(\eta), z \in [0, \Delta z], \xi \geq 0, \eta \leq 0; \\ \overline{v}^3(\overline{E}^3) + Qv(\eta), z \in [\Delta z, z''], \eta \geq 0, \\
\end{cases}$$

where

$$\Pi^*v(\xi) = v(\overline{E}^1(\epsilon \xi) + \Pi^*E(\xi)) - v(\overline{E}^1(\epsilon \xi)), \xi \leq 0;$$

$$\Pi v(\xi) = v(\overline{E}^2(\epsilon \xi) + \Pi E(\xi)) - v(\overline{E}^2(\epsilon \xi)), \xi \geq 0;$$

and analogous expressions hold for $Q^*v(\eta), Qv(\eta)$. It can be easily shown that for exponentially decaying Π_i^*E-functions the functions $\Pi_i^*v(\xi)$ will also be exponentially decaying.

Substituting (2.1)-(2.5) into (1.8)-(1.12) we can determine the terms of the asymptotic approximation by a standard procedure (note that Δz must be determined along with the construction of the asymptotic solution).

In the present discussion, the most important aspect is the construction of the zeroth order terms for the function E, because they define at the zeroth order the main characteristics of the Gunn diode: the velocity of the structure and therefore the current, the amplitude of the pulse, etc. In the following we will take into account that the density of electrons satisfies $n \geq 0$, and that for applied voltages satisfying $U \geq 1$, the difference between $E = U$ and E_0 (see Figure 2) is of the order $O(1)$.

The determination of the regular functions to the zeroth order can be easily obtained by putting $\epsilon = 0$ in the original system (1.8)-(1.10). For the solutions on the subintervals $[z', 0]$ and $[\Delta z, z'']$ (the boundary conditions for \overline{n}_i^1 are $\overline{n}_i^1(z') = 1, \overline{n}_i^1(z'' = 1)$ we write $(i = 1, 3)$:

$$\overline{n}_i^1 = 1, \frac{\partial \overline{E}_0^i}{\partial z} = \overline{n}_i^1 - 1 = 0 \quad \text{and hence } \overline{E}_0^i = \text{const},$$

$$(2.6) \quad J_0 = \overline{n}_0^i \cdot v(\overline{E}_0^i) - c_0 \frac{\partial \overline{E}_0^i}{\partial z} = v(\overline{E}_0^i) = \text{const}.$$
By virtue of (2.6) and (1.12)

\[(2.7)\] \[E_0^1 = E_0^3 \equiv E_0,\]

where \(E_0\) is some unknown constant (see Figure 2). (the discussion of equality (2.7) can be also found in Markowich et al. [12].)

For the subinterval \([0, \Delta x]\) the only other solution of the degenerate system that will make it possible to satisfy the integral condition (1.12) is

\[\Pi_0^2 = 0,\]

\[\frac{\partial E_0^2}{\partial z} = \Pi_0^2 - 1 = -1\] and hence \(E_0^2 = -z + K,\)

\[(2.8)\] \[J_0 = \Pi_0^2 \cdot v(E_0^2) - c_0 \frac{\partial E_0^2}{\partial z} = c_0,\]

(here, \(K\) is some unknown constant).

From (2.6), (2.7), (2.8) (with \(J_0 = \text{const throughout the device}\)) it follows that

\[(2.9)\] \[c_0 = v(E_0)\]

It can be easily shown that the boundary functions \(\Pi_0 E, Q_0^* E, Q_0 E \equiv 0.\) In the subinterval \([z', 0]\) we must construct the boundary function \(\Pi_0^* E\) to give us the transition from \(E_{\text{max}} = \max_{[0, \Delta x]} E_0^2\) to the solution \(E_0^1 = E_0\) (see Figure 4). The equations for \(\Pi_0^* E, \Pi_0^* n\) can be written out as follows (\(\xi \leq 0\)):

\[(2.10)\] \[0 = \Pi_0^* n \cdot v(E_0 + \Pi_0^* E) - \frac{\partial \Pi_0^* n}{\partial \xi} - c_0 \frac{\partial \Pi_0^* E}{\partial \xi},\]

\[(2.11)\] \[\frac{\partial \Pi_0^* E}{\partial \xi} = \Pi_0^* n.\]

Eliminating \(\Pi_0^* n\) from (2.10) and adding the decay conditions at \(-\infty\), we obtain

\[(2.12)\] \[\frac{\partial^2 \Pi_0^* E}{\partial \xi^2} = [v(E_0 + \Pi_0^* E) - v(E_0)] \frac{\partial \Pi_0^* E}{\partial \xi},\]
(2.13) \[\Pi_0^*E(-\infty) = \frac{\partial \Pi_0^*E}{\partial \xi}(-\infty) = 0. \]

Taking into account (2.13) we can integrate (2.12) once to obtain

(2.14) \[\frac{\partial \Pi_0^*E}{\partial \xi} = \int_0^{\Pi_0^*E} [v(E_0 + s) - v(E_0)]ds. \]

The value \(\Pi_0^*E_{\max} = \max_{\xi \leq 0}(\Pi_0^*E) \) is then defined by the well-known "equal area rule" (see Markowich et al. [12], etc.) following (2.14) (Figure 5):

(2.15) \[0 = \int_0^{\Pi_0^*E_{\max}} [v(E_0 + s) - v(E_0)]ds, \quad \Pi_0^*E_{\max} \neq 0. \]

This relation gives the implicit function \(\Pi_0^*E_{\max}(E_0) \).

At the point \(z = 0 \) equality takes place (see Figure 4):

(2.16) \[\max(\overline{E}_0^2) = E_0 + \Pi_0^*E_{\max}(E_0) \]

As soon as \(\Pi_0^*E_{\max} \) is known (it depends on the still unknown constant \(E_0 \)) the expression for the implicit function \(\Pi_0^*E(\xi) \) can be easily written out:

(2.17) \[\int_{\Pi_0^*E_{\max}}^{\Pi_0^*E} \frac{dz}{\int_0^{\xi}(v(E_0 + s) - v(E_0))ds} = -\xi. \]

It follows from (2.11) that the expression for \(\Pi_0^*n \) is given by (2.14). It can be easily shown that \(\Pi_0^*E(\xi) \) and \(\Pi_0^*n(\xi) \) decay exponentially as \(\xi \to -\infty \).

To find \(E_0 \) and therefore all the other characteristics of the device to the zeroth order, we need to obtain one more relation between \(\Pi_0^*E_{\max} \) and \(E_0 \) in addition to (2.15). Let us consider the integral condition (1.12). We can rewrite it (to the zeroth order) in the form:

(2.18) \[U = \int_{z'}^{z''} \overline{E}_0 dz = \int_0^{0} E_0 dz + \int_0^{\Delta z} \overline{E}_0^2(z)dz + \int_{\Delta z}^{z''} E_0 dz. \]

The boundary function \(\Pi_0^*E \) does not enter (2.18) because its impact to the integral is of the order \(0(\epsilon) \). From (2.16) and the relation \(\overline{E}_0^2 = -z + K \), the following expressions can be easily derived:

\[K = E_0 + \Pi_0^*E_{\max}(E_0), \quad \Delta z = \Pi_0^*E_{\max}(E_0). \]
Substituting \(E_0^2 \), \(K \) and \(\Delta z \) into (2.18) we get

\[
(2.19) \quad \Pi_0^* E_{\text{max}}(E_0) = +\sqrt{2(U - E_0)}.
\]

Substituting (2.19) into (2.15) we obtain

\[
(2.20) \quad \int_0^\infty \frac{\sqrt{2(U - E_0)}}{(v(E_0 + s) - v(E_0))} ds = 0.
\]

The solution \(E_0 \) of the equation (2.20) can be found numerically. For known \(E_0 \) the values \(J_0 = v(E_0) \), \(c_0 = v(E_0) \), \(\Pi_0^* E_{\text{max}}(E_0) \), \(\Pi_0^* E(\xi) \), \(\Pi_0^* n(\xi) \), \(\Delta z(E_0) \) will also be known.

Let us consider different possibilities that might occur for the solution of (2.20). The trivial solution \(E_0 = U \) always exists, it corresponds to the trivial solution of the whole problem that is stable for \(U < 1 \) and unstable for \(U > 1 \). For \(U > 1 \) the nontrivial solution \(E_0' \) corresponds to the point \(A \) in the Figure 6 where the curves \(F \) and \(G \) intersect (\(F = \Pi_0^* E_{\text{max}}(E_0) \) is defined implicitly by (2.14) and \(G = \Pi_0^* E_{\text{max}}(E_0) \) is defined by (2.19)). This solution is known to be stable. For \(U < \alpha < 1 \), where \(\alpha \sim 0(1) \) is a constant that can be found, no nontrivial solution exists (Figure 7). For \(\alpha = U \lesssim 1 \) the situation shown in Figure 8 is possible (we take into account that \(\frac{\partial F}{\partial E_0}(1) = -1 \), \(\frac{\partial G}{\partial E_0}(U) = -\infty \)): two nontrivial solutions \(E_0' \) and \(E_0'' \) of (2.20) exist corresponding to the intersection points \(A \) and \(B \) respectively. The trivial solution of the original problem with \(U \lesssim 1 \) is stable (Szmolyan [16]), the solution of the problem with \(E_0 = E_0' \) is expected to be stable and the solution with \(E_0 = E_0'' \) to be unstable. The fact that three solutions exist (including the trivial one) can be used to explain the hysteresis effects that were experimentally observed for the Gunn diode: for increasing and decreasing applied bias voltages, different paths of voltage-current characteristics were obtained (Shaw et al. [15]). Other terms of the asymptotic solution (including higher order terms) can be constructed likewise.

§3. Other problems

In this section some other applications of the asymptotic analysis to semiconductor device modeling will be briefly discussed.

1. The most widespread model that is now used for numerical simulations of the processes in the semiconductor devices is still a drift-diffusion model. When Gummel-type
iteration schemes are applied to solve the drift-diffusion equations numerically the speed of convergence and sometimes the convergence itself depend crucially on the successfully chosen initial iterate. In Kalachev and Obukhov [9] the singularly perturbed Poisson equation (one of the drift-diffusion equations) was considered (in dimensionless form) as:

\begin{equation}
(3.1) \quad \alpha^2 \Delta \Psi = n - p - N,
\end{equation}

\begin{equation}
(3.2) \quad n = \exp(\Psi - \varphi_n), p = (\varphi_p - \Psi).
\end{equation}

Here \(\alpha = L_0/L\), where \(L_0\) is the Debye length, \(L\) is characteristic length; the electrostatic potential \(\Psi\) and the Fermi quasilevels \(\varphi_n, \varphi_p\) are measured in units of \(kT/q\) (\(k\) is Boltzmann's constant, \(T\) is the absolute temperature, \(q\) is the charge of the electron); \(n, p\) and \(N\) are the concentrations of electrons, holes, and the dopant concentration in units of intrinsic concentration \(n_i\). The small parameter \(\epsilon = \alpha/\sqrt{m}\), for \(m = \max|N|\), enters the equation (3.1) making the problem for the Poisson equation singularly perturbed. For contemporary semiconductor devices, \(\epsilon \sim 10^{-1} - 10^{-4}\). This problem has to be solved by successive approximations at each step of the iterative Gummel-type process of obtaining the solution for the full drift-diffusion model. In [9] the boundary function method was used to construct the initial iterate to solve the Poisson equation in a rectangular domain modeling the two-dimensional semiconductor structure when some voltages were applied to the contacts. Some segments of the boundary modeled the ohmic contacts, while on the rest of the boundary the homogeneous Neumann conditions were prescribed.

The solution of (3.1), (3.2) is conveniently sought in the form

\[\Psi = \Psi_0 + \varphi, \]

where \(\Psi_0\) is the solution of the quasineutrality equation

\[n - p - N = 0 \]

satisfying the boundary conditions at the ohmic contacts. Then we have the singularly perturbed boundary value problem for the potential \(\varphi\):

\begin{equation}
(3.3) \quad \epsilon^2 \Delta \varphi = A(x, z) \sinh \varphi + B(x, z)(\cosh \varphi - 1) - g(x, z, \epsilon),
\end{equation}
\(\varphi |_{r_i} = 0 \) \hspace{1em} \text{(ohmic contacts)},

\[\frac{\partial \varphi}{\partial \nu} |_{r_i} = - \frac{\partial \Psi_0}{\partial \nu} |_{r_i} \sim 0(1) \] \hspace{1em} \text{(rest of the boundary)}.

Here \(x, z \) are spatial coordinates; \(A(x, z), B(x, z), g(x, z, \epsilon) \) are known, sufficiently smooth functions; \(A > B \) for all \((x, z) \); and \(\partial / \partial \nu \) is the outward normal derivative.

Under certain conditions the full asymptotic approximation for the solution of (3.3)-(3.5) is constructed. It happens that the boundary functions appear only to the order \(O(\epsilon) \) and the explicit expressions for them can be easily obtained. This fact simplifies the use of the asymptotic solution in a numerical algorithm. Numerical computations have shown that, when the asymptotic solution is used as the initial iterate, the convergence of the numerical process for the drift-diffusion model is speeded up by a factor of 5-10. In Kalachev et al. [8] the case of a gate contact is considered and the estimation of the asymptotic remainder is presented. Problems for the singularly perturbed Poisson equation in a three-dimensional semiconductor structure and in the case of large outer electric field are solved in [10], [11] respectively.

2. The boundary function method was used to construct asymptotic solutions of the full drift-diffusion models for one-dimensional devices by Belyanin [1], [2], [3], etc., in these papers the ratio of Debye length to the length of the device was considered as small parameter. In [1] the asymptotic approximation is constructed for the solution of the system modeling a diode in a nonstationary case. The nonlinear parabolic equation for the electron concentration \(\overline{n}_0 \) (a regular function to zeroth order) is solved numerically, hole concentration \(\overline{p}_0 \) and electric field \(\overline{E}_0 \) are expressed algebraically through \(\overline{n}_0 \), and the formulae for the boundary functions and higher order terms are written out explicitly. In [2] the stationary problems for the diode in the cases of moderate and large applied currents are considered. In [3] the stationary problem is solved for a one-dimensional device containing an arbitrary number of \(p - n \) junctions and bias contacts; and a theorem on estimating of the remainder is proved.

It is worthwhile to mention the paper by Vasil'eva et al. [6], where the one dimensional problem for the diode (thyristor structure) is posed as the optimal control problem.
given voltage-current characteristics, the synthesis of the device with such characteristics is discussed, when a doping level $N (-1 \leq N \leq 1)$ is considered to be the control function.

3. Some other asymptotic problems of the semiconductor device modeling concerning the asymptotic solution of the stationary drift-diffusion model in the case of large generation-recombination terms in a two-dimensional domain, the internal transition layers in a thin semiconductor films, the asymptotic derivation of the ambipolar diffusion equation for the intrinsic semiconductors with the discussion of the correct boundary conditions for this equation, are presented in [4], [5], [7].

It is my pleasure to thank Robert O’Malley, Harold Grubin, Christian Schmeiser and Peter Szmolyan for numerous and fruitful discussions concerning the Gunn diode problem during the IMA Workshops on Semiconductors, July 15-August 9, 1991, where this paper was written.
References

8. L.V. Kalachev, S.V. Kruchkov, I.A. Obukhov (1989), Asymptotic analysis of the Poisson equation in semiconductors (Russian), *Mat. Model* 1, No. 9, 129-140.

11. L.V. Kalachev, I.A. Obukhov, Asymptotic solution of the Poisson equation in the case
of a large outer field, submitted for publication in Mat. Model.

Figure 1. Dependence $v = v(E)$ for GaAs.
Figure 2. The structure of the solution.
Figure 3. Notations for E-functions.
Figure 4. The structure of the zeroth order approximation for function E.
Figure 5. Equal area rule.
Figure 6. Unique solution exists for $U > 1$.
Figure 7. No solutions for $U < \alpha < 1$
Figure 8. The case when $\alpha < U \leq 1$.
<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>801</td>
<td>Hi Jun Choe, Peter Shi and Yongzhi Xu</td>
<td>Regularity for solutions of nonlinear variational inequalities with gradient constraints</td>
</tr>
<tr>
<td>802</td>
<td>Peter Shi and Yongzhi Xu</td>
<td>Quasistatic linear thermoelasticity on the unit disk</td>
</tr>
<tr>
<td>803</td>
<td>Satyanad Kichenassamy and Peter J. Olver</td>
<td>Existence and non-existence of solitary wave solutions to higher order model evolution equations</td>
</tr>
<tr>
<td>804</td>
<td>Dening Li</td>
<td>Regularity of solutions for a two-phase degenerate Stefan Problem</td>
</tr>
<tr>
<td>805</td>
<td>Marek Fila, Bernhard Kawohl and Howard A. Levine</td>
<td>Quenching for quasilinear equations</td>
</tr>
<tr>
<td>806</td>
<td>Yoshikazu Giga, Shun’ichi Goto and Hitoshi Ishii</td>
<td>Global existence of weak solutions for interface equations coupled with diffusion equations</td>
</tr>
<tr>
<td>807</td>
<td>Mark J. Friedman and Eusebius J. Doedel</td>
<td>Computational methods for global analysis of homoclinic and heteroclinic orbits: a case study</td>
</tr>
<tr>
<td>808</td>
<td>Mark J. Friedman</td>
<td>Numerical analysis and accurate computation of heteroclinic orbits in the case of center manifolds</td>
</tr>
<tr>
<td>809</td>
<td>Peter W. Bates and Songmu Zheng</td>
<td>Inertial manifolds and inertial sets for the phase-field equations</td>
</tr>
<tr>
<td>810</td>
<td>J. López Gómez, V. Márquez and N. Wolanski</td>
<td>Global behavior of positive solutions to a semilinear equation with a nonlinear flux condition</td>
</tr>
<tr>
<td>811</td>
<td>Xinfu Chen, Fahuai Yi</td>
<td>Regularity of the free boundary of a continuous casting problem</td>
</tr>
<tr>
<td>812</td>
<td>Eden, A., Foias, C., Nicolaenko, B. and Temam, R.,</td>
<td>Inertial sets for dissipative evolution equations Part I: Construction and applications</td>
</tr>
<tr>
<td>813</td>
<td>Jose–Francisco Rodrigues and Boris Zaltzman</td>
<td>On classical solutions of the two-phase steady-state Stefan problem in strips</td>
</tr>
<tr>
<td>814</td>
<td>Viorel Barbu and Srdjan Stojanovic</td>
<td>Controlling the free boundary of elliptic variational inequalities on a variable domain</td>
</tr>
<tr>
<td>815</td>
<td>Viorel Barbu and Srdjan Stojanovic</td>
<td>A variational approach to a free boundary problem arising in electrophotography</td>
</tr>
<tr>
<td>816</td>
<td>B.H. Gilding and R. Kersner</td>
<td>Diffusion-convection-reaction, free boundaries, and an integral equation</td>
</tr>
<tr>
<td>817</td>
<td>Shoshana Kamin, Lambertus A. Peletier and Juan Luis Vazquez</td>
<td>On the Barenblatt equation of elastoplastic filtration</td>
</tr>
<tr>
<td>818</td>
<td>Avner Friedman and Bei Hu</td>
<td>The Stefan problem with kinetic condition at the free boundary</td>
</tr>
<tr>
<td>819</td>
<td>M.A. Grinfeld</td>
<td>The stress driven instabilities in crystals: mathematical models and physical manifestations</td>
</tr>
<tr>
<td>820</td>
<td>Bei Hu and Lihe Wang</td>
<td>A free boundary problem arising in electrophotography: solutions with connected toner region</td>
</tr>
<tr>
<td>821</td>
<td>Yongzhi Xu, T. Craig Poling and Trent Brundage</td>
<td>Direct and inverse scattering of time harmonic acoustic waves in an inhomogeneous shallow ocean</td>
</tr>
<tr>
<td>822</td>
<td>Steven J. Altschuler</td>
<td>Singularities of the curve shrinking flow for space curves</td>
</tr>
<tr>
<td>823</td>
<td>Steven J. Altschuler and Matthew A. Grayson</td>
<td>Shortening space curves and flow through singularities</td>
</tr>
<tr>
<td>824</td>
<td>Tong Li</td>
<td>On the Riemann problem of a combustion model</td>
</tr>
<tr>
<td>825</td>
<td>L.A. Peletier & W.C. Troy</td>
<td>Self-similar solutions for diffusion in semiconductors</td>
</tr>
<tr>
<td>827</td>
<td>Minkyu Kwak</td>
<td>Finite dimensional description of convective reaction-diffusion equations</td>
</tr>
<tr>
<td>828</td>
<td>Minkyu Kwak</td>
<td>Finite dimensional inertial forms for the 2D Navier–Stokes equations</td>
</tr>
<tr>
<td>829</td>
<td>Victor A. Galaktionov and Sergey A. Posashkov</td>
<td>On some monotonicity in time properties for a quasilinear parabolic equation with source</td>
</tr>
<tr>
<td>830</td>
<td>Victor A. Galaktionov</td>
<td>Remark on the fast diffusion equation in a ball</td>
</tr>
<tr>
<td>831</td>
<td>Hi Jun Choe and Lihe Wang</td>
<td>A regularity theory for degenerate vector valued variational inequalities</td>
</tr>
<tr>
<td>832</td>
<td>Vladimir I. Oliker and Nina N. Uraltseva</td>
<td>Evolution of nonparametric surfaces with speed depending on curvature, II. The mean curvature case</td>
</tr>
<tr>
<td>833</td>
<td>S. Kamin and W. Liu</td>
<td>Large time behavior of a nonlinear diffusion equation with a source</td>
</tr>
<tr>
<td>834</td>
<td>Shoshana Kamin and Juan Luis Vazquez</td>
<td>Singular solutions of some nonlinear parabolic equations</td>
</tr>
<tr>
<td>835</td>
<td>Bernhard Kawohl and Robert Kersner</td>
<td>On degenerate diffusion with very strong absorption</td>
</tr>
<tr>
<td>836</td>
<td>Avner Friedman and Fernando Reitich</td>
<td>Parameter identification in reaction-diffusion models</td>
</tr>
<tr>
<td>837</td>
<td>E.G. Kalnins, H.L. Manocha and Willard Miller, Jr.</td>
<td>Models of q-algebra representations I. Tensor products of special unitary and oscillator algebras</td>
</tr>
<tr>
<td>838</td>
<td>Robert J. Sacker and George R. Sell</td>
<td>Dichotomies for linear evolutionary equations in Banach spaces</td>
</tr>
<tr>
<td>839</td>
<td>Oscar P. Bruno and Fernando Reitich</td>
<td>Numerical solution of diffraction problems: a method of variation of boundaries</td>
</tr>
<tr>
<td>840</td>
<td>Oscar P. Bruno and Fernando Reitich</td>
<td>Solution of a boundary value problem for Helmholtz equation via variation of the boundary into the complex domain</td>
</tr>
<tr>
<td>841</td>
<td>Victor A. Galaktionov and Juan L. Vazquez</td>
<td>Asymptotic behaviour for an equation of superslow diffusion. The Cauchy problem</td>
</tr>
<tr>
<td>842</td>
<td>Josephus Halvshof and Juan Luis Vazquez</td>
<td>The Dipole solution for the porous medium equation in several regions</td>
</tr>
</tbody>
</table>
space dimensions

843 Shoshana Kamin and Juan Luis Vazquez, The propagation of turbulent bursts
844 Miguel Escobedo, Juan Luis Vazquez and Enrike Zuazua, Source-type solutions and asymptotic behaviour for a diffusion-convection equation
845 Marco Biroli and Umberto Mosco, Discontinuous media and Dirichlet forms of diffusion type
846 Stathis Filippas and Jong-Shenq Guo, Quenching profiles for one-dimensional semilinear heat equations
847 H. Scott Dumas, A Nekhoroshev-like theory of classical particle channeling in perfect crystals
848 R. Natalini and A. Tesei, On a class of perturbed conservation laws
849 Paul K. Newton and Shinya Watanabe, The geometry of nonlinear Schrödinger standing waves
850 S.S. Sritharan, On the nonsmooth verification technique for the dynamic programming of viscous flow
851 Mario Taboada and Yuncheng You, Global attractor, inertial manifolds and stabilization of nonlinear damped beam equations
852 Shigeru Sakaguchi, Critical points of solutions to the obstacle problem in the plane
853 F. Abergel, D. Hilhorst and F. Issard-Roch, On a dissolution-growth problem with surface tension in the neighborhood of a stationary solution
854 Erasmus Langer, Numerical simulation of MOS transistors
855 Haim Brezis and Shoshana Kamin, Sublinear elliptic equations in \mathbb{R}^n
856 Johannes C.C. Nitsche, Boundary value problems for variational integrals involving surface curvatures
857 Chao–Nien Chen, Multiple solutions for a semilinear elliptic equation on \mathbb{R}^N with nonlinear dependence on the gradient
858 D. Brochet, X. Chen and D. Hilhorst, Finite dimensional exponential attractor for the phase field model
859 Joseph D. Fehribach, Mullins-Sekerka stability analysis for melting-freezing waves in helium-4
860 Walter Schempp, Quantum holography and neurocomputer architectures
861 D.V. Anosov, An introduction to Hilbert’s 21st problem
862 Herbert E Huppert and M Grae Worster, Vigorous motions in magma chambers and lava lakes
863 Robert L. Pego and Michael I. Weinstein, A class of eigenvalue problems, with applications to instability of solitary waves
864 Mahmoud Affouf, Numerical study of a singular system of conservation laws arising in enhanced oil reservoirs
865 Darin Beigie, Anthony Leonard and Stephen Wiggins, The dynamics associated with the chaotic tangles of two dimensional quasiperiodic vector fields: theory and applications
866 Gui–Qiang Chen and Tai–Ping Liu, Zero relaxation and dissipation limits for hyperbolic conservation laws
867 Gui–Qiang Chen and Jian–Guo Liu, Convergence of second–order schemes for isentropic gas dynamics
868 Aleksander M. Simon and Zbigniew J. Grzywna, On the Larché–Cahn theory for stress-induced diffusion
869 Jerzy Luczka, Adam Gadomski and Zbigniew J. Grzywna, Growth driven by diffusion
870 Mitchell Luskin and Tsorng-Whay Pan, Nonplanar shear flows for nonaligning nematic liquid crystals
871 Mahmoud Affouf, Unique global solutions of initial-boundary value problems for thermodynamic phase transitions
872 Richard A. Brualdi, Keith L. Chavey and Bryan L. Shader, Rectangular L-matrices
873 Xinfu Chen, Avner Friedman and Bei Hu, The thermistor problem with zero-one conductivity II
874 Raoul LePage, Controlling a diffusion toward a large goal and the Kelly principle
875 Raoul LePage, Controlling for optimum growth with time dependent returns
876 Marc Hallin and Madan L. Puri, Rank tests for time series analysis a survey
877 V.A. Solonnikov, Solvability of an evolution problem of thermocapillary convection in an infinite time interval
878 Horia I. Ene and Bogdan Vernescu, Viscosity dependent behaviour of viscoelastic porous media
879 Kaushik Bhattacharya, Self-accommodation in martensite
880 D. Lewis, T. Ratiu, J.C. Simo and J.E. Marsden, The heavy top: a geometric treatment
881 Leonid V. Kalachev, Some applications of asymptotic methods in semiconductor device modeling
882 David C. Dobson, Phase reconstruction via nonlinear least-squares
883 Patricio Aviles and Yoshikazu Giga, Minimal currents, geodesics and relaxation of variational integrals on mappings of bounded variation
884 Patricio Aviles and Yoshikazu Giga, Partial regularity of least gradient mappings
885 Charles R. Johnson and Michael Lundquist, Operator matrices with chordal inverse patterns
886 B.J. Bayly, Infinitely conducting dynamos and other horrible eigenproblems
887 Charles M. Elliott and Stefan Luckhaus, ‘A generalised diffusion equation for phase separation of a multi-component mixture with interfacial free energy’
888 Christian Schmeiser and Andreas Unterreiter, The derivation of analytic device models by asymptotic methods
889 LeRoy B. Beasley and Norman J. Pullman, Linear operators that strongly preserve the index of imprimitivity
890 Jerry Donato, The Boltzmann equation with lie and cartan
891 Thomas R. Hoffend Jr., Peter Smereka and Roger J. Anderson, Method for resolving the laser induced local heating of moving magneto-optical recording media