PROJECTION FINITE ELEMENT METHODS FOR SEMICONDUCTOR DEVICE EQUATIONS

By

Zhangxin Chen

IMA Preprint Series # 1057

November 1992
PROJECTION FINITE ELEMENT METHODS FOR SEMICONDUCTOR DEVICE EQUATIONS

ZHANGXIN CHEN*

Abstract. In this paper a class of nonstandard finite element methods, which we call projection finite element methods, is introduced to numerically solve the stationary drift-diffusion semiconductor device equations in two and three space dimensions. The methods are based on the use of nonconforming finite elements and the projection of coefficients into finite element spaces, produce symmetric and positive definite systems of algebraic equations, allow to design optimal order multigrid methods for the solution of the linear systems, and yield error estimates of high order. Numerical results are presented to show the performance of the methods.

1. Introduction. The stationary drift-diffusion semiconductor device equations are described by the coupled system of nonlinear partial differential equations [12], [14]:

\begin{align}
\frac{\lambda^2}{\Delta \psi} = C(x) - n + p, & \quad x \in \Omega, \\
\text{div}(\nabla n - n \nabla \psi) = R(\psi, n, p), & \quad x \in \Omega, \\
\text{div}(\nabla p + p \nabla \psi) = R(\psi, n, p), & \quad x \in \Omega,
\end{align}

where λ is the normed Debye length, ψ is the (scaled) potential, n and p are the (scaled) electron and hole concentrations, C is the doping profile, R is the carrier recombination-generation rate, and Ω is the device in \mathbb{R}^2 or \mathbb{R}^3. Introducing the change of variables [3], [5]

\begin{align}
n = u e^\psi, \quad p = v e^{-\psi},
\end{align}

the system (1.1) can be written as

\begin{align}
\frac{\lambda^2}{\Delta \psi} = C(x) - u e^\psi + v e^{-\psi}, & \quad x \in \Omega, \\
\text{div}(e^{\psi} \nabla u) = R(\psi, u, v), & \quad x \in \Omega, \\
\text{div}(e^{-\psi} \nabla v) = R(\psi, u, v), & \quad x \in \Omega.
\end{align}

Then, having used iteration procedures and Gummel's method [10], the nonlinear system (1.3) can be decoupled and linearized so that linear equations of the following form have to be solved at each iteration step:

\begin{align}
-\text{div}(a(x) \nabla \phi) = f(x), & \quad x \in \Omega.
\end{align}

*University of Minnesota Army High Performance Computing Research Center, 1100 Washington Avenue South, Minneapolis, Minnesota 55415. Supported in part by the Army Research Office contract number DAAL03-89-C-0038 with the University of Minnesota Army High Performance Computing Research Center.

Typeset by Ams-TeX
It is well known that standard finite element or finite difference methods are not effective choices for equation (1.4a) mainly due to the fact that the potential \(\psi \) might be fairly big in applications and thus \(a(x) = e^{-\psi(x)} \) (resp., \(e^{\psi(x)} \)) could be a considerable source of problems in computations. Recently, some mixed finite element methods for approximating the solution of (1.4a) have been introduced [3], [4], [5]. However, these methods are restricted to two dimensions and to triangulations having acute angles only. Also, the mixed formulations given in [3], [4] are difficult to handle and are in general expensive from a computational point of view. Moreover, error bounds for these methods are unsatisfactory in practice.

In this paper a class of nonstandard finite element methods, which we call projection finite element methods, is introduced to numerically solve equation (1.4a). The methods are based on the use of nonconforming finite elements and on the projection of coefficients into finite element spaces and are not restricted to triangulations having acute angles only. It is shown that these methods are essentially equivalent to some mixed finite element methods and thus the main features of the mixed methods are preserved here. Furthermore, it is proven that the methods under consideration produce symmetric and positive definite finite element systems and allow us to develop simple and optimal order multigrid algorithms for the solution of the linear systems, and that error estimates of high order can be obtained. Finally, the methods can be easily extended to three dimensions.

In the next section projection finite element methods on rectangular elements in \(\mathbb{R}^2 \) and \(\mathbb{R}^3 \) are defined and analyzed. Then, in §3, multigrid methods for the solution of the linear systems produced by the projection methods are developed. In §4, the corresponding triangular projection methods are introduced. Finally, in §5, numerical results are presented to test the performance of these methods.

We shall consider the boundary condition

\[
\begin{align*}
(1.4b) & \quad \phi = \phi_D, \quad x \in \partial\Omega_D, \\
(1.4c) & \quad \partial\phi/\partial\nu = 0, \quad x \in \partial\Omega_N,
\end{align*}
\]

where \(\partial\Omega = \partial\Omega_D \cup \partial\Omega_N \) and \(\partial\Omega_D \cap \partial\Omega_N = \emptyset \).

2. Rectangular projection finite element methods. We first consider \(\Omega \) to be a planar polygonal domain. Let \(\{T_k\}_{k \geq 1} \) be a regular sequence of partitions of \(\Omega \) into rectangles oriented along the coordinate axes and having maximum diameter \(h_k \) [9]. For each \(k \), the intersections of the Dirichlet and Neumann segments are vertices of rectangles
only. Associated with each T_k, we introduce the spaces

$$W_k = \{ v : v|_T \in P_0(T), \forall T \in T_k \},$$

$$N_k = \{ v : v|_T = a_T^{\frac{1}{2}} + a_T^2 x + a_T^3 y + a_T^4 (x^2 - y^2), \quad a_T^i \in \mathbb{R}, \forall T \in T_k;$$

v is continuous at the midpoints of interior edges and

vanishes at the midpoints of boundary edges in $\partial \Omega_D$,}

$$B_k = \left\{ \varphi : \varphi|_T = \gamma_T \left(4 - 12 \left(\frac{(x - x_T)^2}{h_{kT_x}^2} + \frac{(y - y_T)^2}{h_{kT_y}^2} \right) \right), \quad \gamma_T \in \mathbb{R}, \forall T \in T_k \right\},$$

$$M_k = N_k \oplus B_k,$$

where (x_T, y_T) is the center of T and h_{kT_x} and h_{kT_y} are the x-length and y-length of T, respectively. Namely, on each element, B_k is the set of P_2-bubble functions and M_k is thus the usual nonconforming space augmented with the P_2-bubbles. On $T = [-1,1]^2$, the P_2-bubble is $4 - 3(x^2 + y^2)$, which vanishes at the two quadratic Gauss points on each edge.

We now introduce our projection finite element method for approximating the solution of (1.4):

Find $\phi_k \in M_k + \phi_D$ such that

$$\sum_{T \in T_k} (\alpha_k^{-1} \nabla \phi_k, \nabla v)_T = (P_k f, v), \quad \forall v \in M_k,$$

where P_k denotes the L^2-projection onto W_k and $\alpha_k = P_k a^{-1}$. Notice the differences between (2.1) and the standard Galerkin method. First, on the left-hand side of (2.1), α_k^{-1} appears in place of a. That is, we take the harmonic average α_k^{-1} of the coefficient $a(x)$ instead of the coefficient itself so that the coefficients of system (2.1) are of reasonable size. This is particularly useful when a is of the form $e^{-\psi}$ or e^{ψ} since ψ might be fairly big, as mentioned before. Secondly, on the right-hand side of (2.1), $P_k f$ appears in place of f. This enables us to compute directly the electric field and the current $\sigma = -a \nabla \phi$ by using a very simple formula, as shown in Theorem 2 below. The formula below for calculating the field and current variables are very important in practice since these variables are the ones with which one is primarily concerned.

The following result can be found in [6], [7], [8].

Theorem 1. Problem (2.1) has a unique solution ϕ_k in M_k. Moreover, there is a constant C independent of k such that

$$\left(\sum_{T \in T_k} \| \nabla \phi - \nabla \phi_k \|_T^2 \right)^{1/2} \leq C h_k (\| \phi \|_2 + \| a \|_1),$$

(2.2a)

$$\| \phi - \phi_k \| \leq C h_k^2 (\| a \|_1 + \| f \|_1),$$

(2.2b)
where $\| \cdot \|$ and $\| \cdot \|_m$ represent the norms of $L^2(\Omega)$ and $H^m(\Omega)$, respectively, for $m = 1, 2$.

We remark that ϕ_k approximates ϕ with a higher order of accuracy than the usual numerical solution produced by the lowest-order mixed finite element methods [3], [4]. It is also straightforward to see that problem (2.1) produces a symmetric and positive definite system of algebraic equations if the coefficient a is strictly positive.

We now prove a theorem concerning the calculation of the approximate electric field and current. This theorem shows a relationship between the method under consideration and the lowest-order rectangular mixed method; the numerical field $\sigma_k = -\alpha_k^{-1} \nabla \phi_k$ is the quantity produced by the mixed method [6], [7], [8].

Theorem 2. σ_k at a point $(x, y) \in T \in T_k$ is evaluated by the formula

\[
\sigma_k(x, y) = -\alpha_k^{-1} \nabla z_k(x, y) + \frac{P_k f|_T}{h_{kT}^2 + h_{kTz}^2} (h_{kTz}^2 (y - y_T), h_{kTy}^2 (x - x_T)),
\]

where $z_k \in N_k + \phi_D$ is the solution of

\[
\sum_{T \in T_k} (\alpha_k^{-1} \nabla z_k, \nabla v)_T = (P_k f, v), \quad \forall v \in N_k.
\]

Moreover, σ_k has continuous normal components at the interelement boundaries.

The theorem implies that σ_k can be computed from the solution of the standard non-conforming Galerkin method modified in a virtually cost-free manner. Namely, one simply adds to a standard program the mean of the right-hand side function on each T. Also, the strong continuity property for σ_k stated in the theorem is important in applications [3], [4], [5].

Proof: By the definition of M_k, let $\phi_k = z_k + \xi_k$ with $\xi_k \in B_k$; then, it follows from the definition of σ_k that

\[
\sigma_k = -\alpha_k^{-1} (\nabla z_k + \nabla \xi_k).
\]

Now, by the orthogonality of N_k and B_k, the definition of M_k, (2.1), and (2.4), we see that ξ_k satisfies the equation

\[
(\alpha_k^{-1} \nabla \xi_k, \nabla \varphi)_T = (P_k f, \varphi)_T, \quad \forall \varphi \in B(T), \ T \in T_k,
\]

where $B(T) = B_k|_T$, so that

\[
\Delta \xi_k = -\alpha_k P_k f, \quad \text{on each} \quad T.
\]

Hence, the desired result (2.3) follows from the definition of B_k and a few simple calculations.

The continuity of σ_k can be easily seen from formula (2.3) and the definition of N_k, as shown in [11]; we omit the details. This completes the proof. \blacksquare
We shall now extend the results above to three space dimensions. For this, let \(\Omega \) be a polygonal domain in \(\mathbb{R}^3 \) and let \(T_k \) be now a decomposition of \(\Omega \) into rectangular parallelepipeds having maximum diameter \(h_k \) and oriented along the coordinate axes. In the present case, the form of problem (2.1) formally remains the same with the following new definitions of \(N_k \) and \(B_k \):

\[
N_k = \{ v : v|_T = a_T^1 + a_T^2 x + a_T^3 y + a_T^4 z + a_T^5 (x^2 - y^2) + a_T^6 (x^2 - z^2), \\
a_T^i \in \mathbb{R}, \forall T \in T_k; \ v \text{ is continuous at the centers of interior faces and vanishes at the centers of boundary faces in } \partial \Omega_D \},
\]

\[
B_k = \{ \varphi : \varphi|_T = \gamma_T \left(5 - 12 \left(\frac{(x - x_T)^2}{h^2_{kT_x}} + \frac{(y - y_T)^2}{h^2_{kT_y}} + \frac{(z - z_T)^2}{h^2_{kT_z}} \right) \right), \\
\gamma_T \in \mathbb{R}, \forall T \in T_k \}.
\]

The \(P_2 \)-bubble on \(T = [-1, 1]^3 \) is \(5 - 3(x^2 + y^2 + z^2) \), which is equal to zero at the four tensor product quadratic Gauss points on each face. Furthermore, the results in Theorems 1 and 2 are still true; the formula (2.3) is accordingly modified as follows:

\[
\sigma_k = -\alpha_k^{-1} \nabla z_k + P_k f|_T \left(\frac{1}{h^2_{kT_x}} + \frac{1}{h^2_{kT_y}} + \frac{1}{h^2_{kT_z}} \right)^{-1} \left(\frac{x - x_T}{h^2_{kT_x}}, \frac{y - y_T}{h^2_{kT_y}}, \frac{z - z_T}{h^2_{kT_z}} \right), \\
(x, y, z) \in T \in T_k.
\]

3. The multigrid algorithm. In this section we design a multigrid algorithm for the projection method (2.1) and then for the numerical field \(\sigma_k \) introduced in Theorem 2 as a by-product. We consider the two-dimensional version of (2.1); the extension to the three-dimensional case is trivial from the discussion above.

We need to assume a structure of our family of partitions \(\{T_k\}_{k \geq 1} \). Let \(T_1 \) be given and let \(T_{k+1} \) be constructed by connecting the midpoints of the edges of the rectangles in \(T_k \).

For each \(k \), define

\[
a_k(v, w) = \sum_{T \in T_k} (\alpha_k^{-1} \nabla v, \nabla w)_T , \ \forall v, w \in M_k,
\]

and let \(A_k : M_k \to M_k \) be defined by

\[
a_k(v, w) = (A_k v, w)_{T_k} , \ \forall v, w \in M_k.
\]

Since \(a_k(\cdot, \cdot) \) is symmetric positive definite on \(M_k \), the operator \(A_k \) is symmetric positive definite with respect to \((\cdot, \cdot)_{T_k}\) and standard inverse estimates [9] yield that

\[
(3.1) \quad \text{spectral radius of } A_k \leq Q h_k^{-2},
\]
where Q is a constant independent of k.

Note that, since $M_{k-1} \nsubseteq M_k$, the spaces M_k are nonnested. It is known that natural injection operators do not work for nonnested finite element spaces. Hence, we need to introduce intergrid transfer operators. Following [2], [8], we define the coarse-to-fine intergrid transfer operators $I_{k-1}^k : M_{k-1} \rightarrow M_k$ such that $I_{k-1}^k : N_{k-1} \rightarrow N_k$ and $I_{k-1}^k : B_{k-1} \rightarrow B_k$.

If $v \in N_{k-1}$ and i is a midpoint of an edge e of a rectangle in T_k, then, $I_{k-1}^k v \in N_k$ is given by

$$
(I_{k-1}^k v)(i) = \begin{cases}
0 & \text{if } e \subset \partial \Omega_D, \\
v(i) & \text{if } e \subset \partial \Omega_N \text{ or } e \not\subset T \text{ for any } T \in T_{k-1}, \\
\frac{1}{2}(v|_{T_1(i)} + v|_{T_2(i)}) & \text{if } e \subset T_1 \cap T_2 \text{ for some } T_1, T_2 \in T_{k-1}.
\end{cases}
$$

For $\varphi \in B_{k-1}$, $I_{k-1}^k \varphi \in B_k$ is simply determined by

$$(I_{k-1}^k \varphi, 1)_T = \frac{1}{4} (\varphi, 1)_T,$$

where $T \in T_k$ is one of the four rectangles obtained from subdividing $\hat{T} \in T_{k-1}$.

The fine-to-coarse intergrid transfer operator $I_{k-1}^k : M_k \rightarrow M_{k-1}$ is then defined as usual [2], [8]:

$$(I_{k-1}^k v, w)_{T_{k-1}} = (v, I_{k-1}^k w)_{T_k}, \quad \forall v \in M_k, \ w \in M_{k-1}.$$

We are now ready to define our multigrid algorithm for problem (2.1) or the equivalent linear system

$$(3.2) \quad A_k \phi_k = f_k,$$

where $f_k \in M_k$ and $(f_k, v)_{T_k} = (P_k f, v), \ \forall v \in M_k$. For $k = 1, 2, \cdots$, approximate solutions $\hat{\phi}_k \in M_k$ to problem (3.2) are obtained as follows.

(3.3a) For $k = 1$, $\hat{\phi}_k$ is obtained by a direct method.

(3.3b) For $k \geq 2$, $\hat{\phi}_k$ are obtained recursively by

(i) $\hat{\phi}_0 = I_{k-1}^k \hat{\phi}_{k-1},$

(ii) $\hat{\phi}_l = \text{MG}(k, \phi_{k-1}^l, f_k), \ 1 \leq l \leq r;$

(iii) $\hat{\phi}_r = \phi_r^k.$

Here r is a positive integer independent of k and the kth level iteration with initial guess ϕ_{l-1}^k yields $\text{MG}(k, \phi_{l-1}^k, f_k)$ as an approximate solution to problem (3.2) by means of the following smoothing and correction steps.

(3.3c) (Smoothing step) The approximation $g_j \in M_k$, $j = 1, 2, \cdots, m$, is defined recursively from the initial guess $g_0 = \phi_{l-1}^k$ by the equations

$$
g_j - g_{j-1} = Q^{-1} h_k^2 (f_k - A_k g_{j-1}), \quad j = 1, \cdots, m,$$

6
where \(m \) is the number of smoothing steps and \(Q \) is defined by (3.1).

(3.3d) (Correction step) \(MG(k, \phi_{k-1}^0, f_k) = g_m + I_{k-1}^k q_p \) where \(q_j \in M_{k-1} \) \((j = 0, \cdots, p, \ p = 2 \ or \ 3) \) is defined recursively by

\[
q_0 = 0, \\
q_j = MG(k - 1, q_{j-1}, \hat{f}_k), \ j = 1, \cdots, p,
\]

where \(\hat{f}_k = I_{k-1}^k (f_k - A_k g_m) \).

We now consider the multigrid approximation \(\hat{\sigma}_k \) to \(\sigma_k \). From the definition of \(\sigma_k \), it is defined as

(3.4) \[
\hat{\sigma}_k = -\alpha_k^{-1} \nabla \hat{\phi}.
\]

In order to preserve the continuity property of \(\sigma_k \) stated in Theorem 2, we introduce the average \(\Lambda_k \hat{\sigma}_k \) of \(\hat{\sigma}_k \) as in [2], [8]. Let \(e \) be an edge of \(T \) in \(T_k \) and \(n_e \) be a unit normal of \(e \). If \(e \in \partial \Omega \), then

\[
(\Lambda_k \hat{\sigma}_k \cdot n_e)|_e = (\hat{\sigma}_k|_T \cdot n_e)|_e; \text{ if } e \text{ is the common edge of } T_1 \text{ and } T \text{ in } T_k,
\]

then,

\[
(\Lambda_k \hat{\sigma}_k \cdot n_e)|_e = ((\hat{\sigma}_k|_T \cdot n_e)|_e + (\hat{\sigma}_k|_{T_1} \cdot n_e)|_e)/2.
\]

The next theorem shows the convergence of the multigrid method (3.3).

Theorem 3. Let \(\hat{\phi}_k \) and \(\hat{\sigma}_k \) be defined by (3.3) and (3.4), respectively. Then, if \(m \) and \(r \) in (3.3) are large enough, there is a constant \(C \) independent of \(k \) such that

\[
\| \sigma_k - \Lambda_k \hat{\sigma}_k \| \leq C h_k \| f \|,
\]

\[
\| \sigma - \Lambda_k \hat{\sigma}_k \| \leq C h_k (\| f \| + \| a \|_1),
\]

\[
\| \phi_k - \hat{\phi}_k \| + \left(\sum_{T \in T_k} \| \nabla (\phi_k - \hat{\phi}_k) \|_T^2 \right)^{1/2} \leq C h_k \| f \|.
\]

Moreover, if \(f \in H^1(\Omega) \),

\[
\| \phi_k - \hat{\phi}_k \| \leq C h_k^2 \| f \|_1,
\]

\[
\| \phi - \hat{\phi}_k \| \leq C h_k^2 (\| f \|_1 + \| a \|_1).
\]

The proof can be found in [8]. The requirement in Theorem 3 on the largeness of \(m \) ensures that the \(k \)th level iteration in (3.3) is a contraction for \(k = 1, 2, \cdots \). Let \(m_k = \text{dim}(M_k) \); it can be seen that the total work for obtaining \(\hat{\phi}_k \) is \(O(m_k) \) [1], [8]. Thus, the cost for computing \(\hat{\sigma}_k \) is also \(O(m_k) \).
4. Triangular projection finite element methods. In this section we shall describe the triangular analogue of the projection finite element method on rectangles introduced in §2, which may deserve the name "projection" better. For a planar domain \(\Omega \), let \(T_k \) be a regular partition of \(\Omega \) into triangles of diameter not greater than \(h_k \). For each \(T \) in \(T_k \), let \((\lambda_1, \lambda_2, \lambda_3)\) represent the barycentric coordinates of a point of \(T \). On the triangle \(T \), we define the \(P_2 \)-bubble

\[
\xi_T(x) = 2 - 3(\lambda_1^2 + \lambda_2^2 + \lambda_3^2),
\]

which vanishes at the two Gaussian quadrature points of each side of \(T \) and is equal to unity at the barycenter of \(T \). Then, we introduce the spaces

\[
N_k = \{ v : v|_T \in P_1(T), \forall T \in T_k; \ v \text{ is continuous at the midpoints of interior edges and vanishes at the midpoints of boundary edges in } \partial \Omega_D \},
\]

\[
B_k = \{ \varphi : \varphi|_T = \gamma_T \xi_T(x), \gamma_T \in \mathbb{R}, \forall T \in T_k \}.
\]

The definition of \(M_k \) formally remains the same as before. We shall also need the following space:

\[
V_k = \{ \tau : \tau|_T = (a_T + b_T x, c_T + b_T y), (x, y) \in T, \ a_T, b_T, c_T \in \mathbb{R}, \forall T \in T_k \},
\]

which is the Raviart-Thomas space [13]. We are now in a position to formulate the triangular projection finite element method:

Find \(\phi_k \in M_k + \phi_D \) such that

\[
(4.1) \quad \sum_T (\alpha_k^{-1} P_{V_k}(\nabla \phi_k), \nabla v)_T = (P_k f, v), \forall v \in M_k,
\]

where \(P_{V_k} \) indicates the standard \(L^2 \)-projection onto \(V_k \) and \(P_k \) is defined as in §2. The projections introduced in system (4.1) have similar meanings to those in (2.1). The point we should here stress is the introduction of the projection operator \(P_{V_k} \). The technique of introducing \(P_{V_k} \) allows us to derive an analogous formula to (2.3) for the calculation of the approximate electric field and current in the present case, as stated below.

Theorem 4. Problem (4.1) has a unique solution \(\phi_k \) in \(M_k \). Moreover, \(\sigma_k = -\alpha_k^{-1} P_{V_k}(\nabla \phi_k) \) at a point \((x, y) \in T \in T_k \) is computed by the formula

\[
\sigma_k(x, y) = -\alpha_k^{-1} \nabla z_k(x, y) + P_k f|_T(x - x_T, y - y_T)/2,
\]

where \((x_T, y_T)\) is the center of gravity of the triangle \(T \) and \(z_k \in N_k + \phi_D \) is the solution of problem (2.4) with \(N_k \) defined above, and \(\sigma_k \) has continuous normal components at the interelement boundaries.

Again, \(\sigma_k \) can be obtained from the solution of the \(P_1 \)-nonconforming finite element method, as shown here. Moreover, the error estimates (2.2) in Theorem 1 hold in the present case. Finally, if \(T_1 \) is given and each \(T_{k+1} \) is a regular refinement of \(T_k \) into four times as many elements, then a multigrid algorithm similar to (3.3) can be developed for (4.1) and Theorem 3 remains valid.

The extension of the triangular projection method to three space dimensions can be carried out in the same manner as in §2.
5. **Numerical result.** In this section a numerical result for solving (1.1a) is presented by using the rectangular projection method (2.1). A uniform mesh of 96×32 points is used over the domain $\Omega = (0.0, 0.6) \times (0.0, 0.2)$ (see Figure 1). The Dirichlet boundary segments are of the form

\[
\partial \Omega_D = \{(x, y) : 0 < x < 0.1, \ y = 0.2\} \cup \{(x, y) : 0.2 < x < 0.4, \ y = 0.2\} \\
\cup \{(x, y) : 0.5 < x < 0.6, \ y = 0.2\},
\]

and all the other parts of the boundary are the Neumann segments. In applications, the three parts above of $\partial \Omega_D$ represent the source, gate, and drain contacts, respectively. The boundary datum is given by

\[
\phi_D = \begin{cases}
0.198, & (x, y) \in (0, 0.1) \times \{y = 0.2\}, \\
-0.63, & (x, y) \in (0.2, 0.4) \times \{y = 0.2\}, \\
2.198, & (x, y) \in (0.5, 0.6) \times \{y = 0.2\}.
\end{cases}
\]

In (1.1a), the parameters are chosen as follows:

\[
C/\lambda^2 = \begin{cases}
30, & (x, y) \in [0, 0.1] \times [0.15, 0.2] \cup [0.5, 0.6] \times [0.15, 0.2], \\
10, & \text{elsewhere},
\end{cases}
\]

and $n = p = 0$. Figure 2 very well demonstrates the layer structure of the potential ϕ. The peaks of the electric field in Figures 3 and 4 are due to its singularities around the intersections of the Dirichlet and Neumann segments.

REFERENCES

Keywords. semiconductor device, projection finite element method, numerical result, multigrid method

1980 *Mathematics subject classifications:* 65N30, 65N10, 35L60, 35L65
FIG. 1. The uniform mesh.

FIG. 2. The potential ϕ.
FIG. 3. The horizontal electric field σ_1.

FIG. 4. The vertical electric field σ_2.
Recent IMA Preprints

Title
982 Robert J. Plemmons, A proposal for FFT-based fast recursive least-squares
983 Anne Greenbaum and Zdenek Strakos, Matrices that generate the same Krylov residual spaces
984 Alan Edelman and G.W. Stewart, Scaling for orthogonality
985 G.W. Stewart, Note on a generalized sylvester equation
986 G.W. Stewart, Updating URV decompositions in parallel
987 Angelika Bunse-Gerstner, Volker Mehrmann and Nancy K. Nichols, Numerical methods for the regularization of descriptor systems by output feedback
988 Ralph Byers and N.K. Nichols, On the stability radius of generalized state-space systems
989 David C. Dobson, Designing periodic structures with specified low frequency scattered in far-field data
990 C.-T. Pan and Kermit Sigmon, A bottom-up inductive proof of the singular value decomposition
991 Ricardo D. Fierro and James R. Bunch, Orthogonal projection and total least squares
992 Chiou-Ming Huang and Dianne P. O’Leary, A Krylov multisplitting algorithm for solving linear systems of equations
993 A.C.M Ran and L. Rodman, Factorization of matrix polynomials with symmetries
994 Mike Boyle, Symbolic dynamics and matrices
995 A. Novick-Cohen and L.A. Peletier, Steady states of the one-dimensional Cahn-Hilliard spaces
996 Zhangxin Chen, Large-scale averaging analysis of single phase flow in fractured reservoirs
997 Boris Mordukhovich, Stability theory for parametric generalized equations and variational inequalities via nonsmooth analysis
998 Yongzhi Xu, CW mode structure and constraint beamforming in a waveguide with unknown large inclusions
999 R.P. Gilbert and Yongzhi Xu, Acoustic waves and far-field patterns in two dimensional oceans with porous-elastic seabeds
1000 M.A. Herrero and J.J.L. Velázquez, Some results on blow up for semilinear parabolic problems
1001 Pierre-Alain Gremaud, Numerical analysis of a nonconvex variational problem related to solid-solid phase transitions
1002 Izchak Lewkowicz, Stability robustness of state space systems inter-relations between the continuous and discrete time cases
1003 Kenneth R. Driesssel and Wasin So, Linear operators on matrices: Preserving spectrum and displacement structure
1004 Carolyn Eschenbach, Idempotence for sign pattern matrices
1005 Carolyn Eschenbach, Frank J. Hall and Charles R. Johnson, Self-inverse sign patterns
1006 Marc Moonen, Paul Van Dooren and Filipe Vanpoucke, On the QR algorithm and updating the SVD and URV decomposition in parallel
1007 Paul Van Dooren, Upcoming numerical linear algebra issues in systems and control theory
1008 Avner Friedman and Juan J.L. Velázquez, The analysis of coating flows near the contact line
1009 Stephen J. Kirkland and Michael Neumann, Convexity and concavity of the Perron root and vector of Leslie matrices with applications to a population model
1010 Stephen J. Kirkland and Bryan L. Shader, Tournament matrices with extremal spectral properties
1011 E.G. Kalnins, Willard Miller, Jr. and Sanchita Mukherjee, Models of q-algebra representations: Matrix Elements of $U_q(su_2)$
1012 Zhangxin Chen and Bernardo Cockburn, Error estimates for a finite element method for the drift-diffusion semiconductor device equations
1013 Chaocheng Huang, Drying of gelatin asymptotically in photographic film
1014 Richard E. Ewing and Hong Wang, Eulerian-Lagrangian localized adjoint methods for reactive transport in groundwater
1015 Bing-Yu Zhang, Taylor series expansion for solutions of the Korteweg-de Vries equation with respect to their initial values
1016 Kenneth R. Driesssel, Some remarks on the geometry of some surfaces of matrices associated with Toeplitz eigenproblems
1017 C.J. Van Duijn and Peter Knabner, Flow and reactive transport in porous media induced by well injection: Similarity solution
1018 Wasin So, Rank one perturbation and its application to the Laplacian spectrum of a graph
1019 G. Baccarani, F. Odeh, A. Gnudi and D. Ventura, A critical review of the fundamental semiconductor equations
1020 T.R. Hoffend Jr., Magnetostatic interactions for certain types of stacked, cylindrically symmetric magnetic particles
1021 IMA Summer Program for Graduate Students, Mathematical Modeling
1022 Wayne Barrett, Charles R. Johnson, and Pablo Tarazaga, The real positive definite completion problem for a simple cycle
1023 Charles A. McCarthy, Fourth order accuracy for a cubic spline collocation method
Martin Hanke, James Nagy, and Robert Plemons, Preconditioned iterative regularization for 111-posed problems
John R. Gilbert, Esmond G. Ng, and Barry W. Peyton, An efficient algorithm to compute row and column counts for sparse Cholesky factorization
Xinfu Chen, Existence and regularity of solutions of a nonlinear nonuniformly elliptic system arising from a thermistor problem
Xinfu Chen and Weiqing Xie, Discontinuous solutions of steady state, viscous compressible Navier-Stokes equations
E.G. Kalgins, Willard Miller, Jr., and Sanchita Mukherjee, Models of q-algebra representations: Matrix elements of the q-oscillator algebra
W. Miller, Jr. and Lee A. Rubel, Functional separation of variables for Laplace equations in two dimensions
I. Golberg and I. Koltracht, Structured condition numbers for linear matrix structures
Xinfu Chen, Hile-Shaw problem and area preserved curve shortening motion
Zhangxin Chen and Jim Douglas, Jr. Modelling of compositional flow in naturally fractured reservoirs
Harald K. Wimmer, On the existence of a least and negative-semidefinite solution of the discrete-time algebraic Riccati equation
Harald K. Wimmer, Monotonicity and parametrization results for continuous-time algebraic Riccati equations and Riccati inequalities
Bart De Moor, Peter Van Overschee, and Geert Schelhout, H_2 model reduction for SISO systems
Bart De Moor, Structured total least squares and L_2 approximation problems
Chjan Lim, Nonexistence of Lyapunov functions and the instability of the Von Karman vortex streets
David C. Dobson and Fadi Santosa, Resolution and stability analysis of an inverse problem in electrical impedance tomography – dependence on the input current patterns
C.N. Dawson, C.J. van Duijn, and M.F. Wheeler, Characteristic-Galerkin methods for contaminant transport with non-equilibrium adsorption kinetics
Bing-Yu Zhang, Analyticity of solutions of the generalized Korteweg-de Vries equation with respect to their initial values
Neerchal K. Nagaraj and Wayne A. Fuller, Least squares estimation of the linear model with autoregressive errors
H.J. Sussman & W. Liu, A characterization of continuous dependence of trajectories with respect to the input for control-affine systems
Karen Rudie & W. Murray Wonham, Protocol verification using discrete-event systems
Rohan Abeyaratne & James K. Knowles, Nucleation, kinetics and admissibility criteria for propagating phase boundaries
Gang Bao & William W. Symes, Computation of pseudo-differential operators
Srdjan Stojanovic, Nonsmooth analysis and shape optimization in flow problem
Miroslav Tuma, Row ordering in sparse QR decomposition
Onur Toker & Hitay Özbay, On the computation of suboptimal H^∞ controllers for unstable infinite dimensional systems
Hitay Özbay, H^∞ optimal controller design for a class of distributed parameter systems
J.E. Dunn & Roger Fosdick, The Weierstrass condition for a special class of elastic materials
Bei Hu & Jianhua Zhang, A free boundary problem arising in the modeling of interanl oxidation of binary alloys
Eduard Feireisl & Enrique Zuazua, Global attractors for semilinear wave equations with locally distributed nonlinear damping and critical exponent
I-Heng McComb & Chjan C. Lim, Stability of equilibria for a class of time-reversible, $D_n\times O(2)$-symmetric homogeneous vector fields
Ruben D. Spies, A state-space approach to a one-dimensional mathematical model for the dynamics of phase transitions in pseudoelastic materials
H.S. Dumas, F. Golse, and P. Lochak, Multiphase averaging for generalized flows on manifolds
Bei Hu & Hong-Ming Yin, Global solutions and quenching to a class of quasilinear parabolic equations
Zhangxin Chen, Projection finite element methods for semiconductor device equations
Peter Guttorp, Statistical analysis of biological monitoring data
Wensheng Liu & Héctor J. Sussmann, Abnormal sub-Riemannian minimizers
Chjan C. Lim, A combinatorial perturbation method and Arnold’s whiskered Tori in vortex dynamics
Yong Liu, Axially symmetric jet flows arising from high speed fiber coating
Li Qui & Tongwen Chen, H_2 and H_∞ designs of multirate sampled-data systems
Eduardo Casas & Jiongmin Yong, Maximum principle for state-constrained optimal control problems covered by quasilinear elliptic equations
Suzanne M. Lenhart & Jiongmin Yong, Optimal control for degenerate parabolic equations with logistic growth
Suzanne Lenhart, Optimal control of a convective-diffusive fluid problem