A STATE-SPACE APPROACH TO A ONE-DIMENSIONAL MATHEMATICAL MODEL FOR THE DYNAMICS OF PHASE TRANSITIONS IN PSEUDOELASTIC MATERIALS

By

Ruben D. Spies

IMA Preprint Series # 1054

November 1992
A State-Space Approach to a One-Dimensional Mathematical Model for the Dynamics of Phase Transitions In Pseudoelastic Materials

RUBEN D. SPIES

Institute for Mathematics and Its Applications
514 Vincent Hall
University of Minnesota
Minneapolis, MN 55455

Abstract. An abstract formulation of a general mathematical model for the dynamics of Shape Memory Alloys (SMA's) is presented. Using this approach, existence and uniqueness of solutions for the particular case in which the thermodynamic potential is given in the Landau-Devonshire form is proved. For the associated linear semigroup, a spectral decomposition is obtained, explicit decay rates are derived and continuous dependence on the model parameters is proved.

1. Introduction

The development of smart materials and structures has captured considerable attention during the last few years. Due to their unique characteristics, Shape Memory Alloys (SMA's) have been considered among the materials with potential for applications in this area. In particular, they are being tested as actuators and sensors in various control systems.

The name “Shape Memory Alloys” comes from the fact that at low temperatures these intermetallic materials (chemical compounds of two or more elements) may sustain a residual deformation after the application of a large stress. However, their original shape can be completely restored simply by heating them above a certain critical temperature.

The behavior of these materials at low temperatures is elasto-plastic (Figure 1.a). It is also called ferroelastic because of the similarity of the stress-strain relations with the field-magnetization curves of a ferromagnet. In this range of temperatures the load-deformation curves exhibit an elastic region at small loads, a plastic yield
and a second elastic branch corresponding to large loads. This second elastic branch permits the body to withstand loads beyond the plastic yield, after which, subsequent unloading produces a residual deformation.

In the intermediate range of temperatures a plastic yield can still be observed (Figure 1.1.b). Nevertheless, loading beyond the plastic yield followed by complete unloading does not lead to a residual deformation because of the existence of an intermediate elastic branch which the body reaches by creeping back after the load falls below a certain critical value. This type of conduct is called pseudoelasticity and for this reason, SMA’s have also been termed pseudoelastic materials.

Finally, in the high-temperature range the behavior is almost linearly elastic for loads between certain bounds. However, application of large loads can produce a permanent deformation and the stress-strain curves may show a mixture of pseudoelasticity and shape recovery after unloading (Figure 1.1.c). Some of the alloys which exhibit the above phenomena are AgCd, AuCd, CuAlNi, CuAuZn, CuSn, NiAl, NiTi to name only a few (see [21] for a complete list).

Although there is much to be studied and discovered in order to take full advantage of all their capabilities, SMA’s have already found a broad variety of applications in aircraft, heat engines, orthodontic and other dental devices ([4]), robotic devices and actuators ([21], [27]), deployable antennas for spacecraft, pipe coupling devices, air conditioners, temperature switches and fuses ([21]), SMA Hybrid Composites ([36]), in medicine, as a substitute for the Harrington Rod in the treatment of scoliosis ([38]) and as boneplates ([9], [21]).

The first observations of the Shape Memory Effect (SME) go back to the 1930’s. In 1938, Alen B. Greninger of Harvard University and G. Mooradian of the Massachusetts Institute of Technology showed that temperature changes could produce and make disappear the martensite phase in brass. However it was not until 1962, with the discovery of the NiTinol by Buehler ([27]), that rigorous in-depth studies were completed. Most of these initial efforts concentrated on metallurgical aspects and led to the publication of several books and papers related to the microscopic and mechanical properties ([15], [16], [21], [35], [43]). Between 1968 and 1986 several mathematical models were proposed and studied ([1], [2], [3], [18], [19], [26], [28], [29], [30], [45]). Most of these SMA models did not take into account the strong coupling between the thermal and the mechanical properties which characterize their
behavior. Some of these static models dealt merely with the problem of finding a simple and appropriate fitting for the stress-strain relations that was able to describe and explain some of the properties observed experimentally. However, either temperature or stress was assumed constant everywhere, the processes were treated spatially pointwise, and time-dependent actions were excluded. These and other additional limitations make these models difficult to use in practical control design.

The design, modelling and control of intelligent systems and structures is an immensely complex problem and the subject of many ongoing interdisciplinary programs. There is a rapidly growing need for a unified theory in this area. This theory must be able to capture the unusual and complex characteristics of SMA’s and at the same time it must be practical enough to allow for the development of computational algorithms for the design of controllers.

Figure 1: Stress-Strain curves obtained experimentally for Ti-51 at % Ni for different temperatures ([21]).
2. Derivation of the General Dynamic Equations

In this section we present a general mathematical model for the dynamics of phase transitions in Shape Memory Alloys. Some of the advantages of this model are that it accounts for time-dependent boundary and distributed inputs, viscosity effects, fading thermal memory, local curvature effects and internal variables. Also, it is able to capture all the interesting qualitative isothermal properties of an earlier model proposed by Falk ([18], [19]) through the inclusion of the thermodynamic potential in the constitutive equations. This approach has its origins in a work by M. Niezgódka and J. Sprekels, published in 1988 ([31]).

The thermomechanical processes in a connected one-dimensional body $\Omega \subset \mathbb{R}$ are governed by the balance laws of mass, linear momentum and energy:

\begin{align*}
\rho_t &= -\rho \varepsilon_t \quad \text{in } \Omega \quad \text{(2.1)} \\
\rho u_{tt} &= \sigma_x - \mu_{xx} + f \quad \text{in } \Omega \quad \text{(2.2)} \\
\rho \varepsilon_t &= -q_x + \sigma \varepsilon_t + \mu \varepsilon_{xt} + g \quad \text{in } \Omega \quad \text{(2.3)}
\end{align*}

where $\rho =$ mass density, $u =$ displacement, $\sigma =$ shear stress, $\mu =$ couple stress, $f =$ distributed loads, $\varepsilon =$ specific internal energy, $q =$ heat flux, $\epsilon =$ linearized shear strain and $g =$ density of heat sources or sinks.

The model must also satisfy the second principle of thermodynamics for the production of entropy, i.e., the Clausius-Duhem inequality

\begin{equation}
\rho s_t \geq - \left(\frac{q}{\theta} \right)_x + \frac{g}{\theta} \quad \text{(2.4)}
\end{equation}

where $s =$ specific entropy and $\theta =$ absolute temperature. We assume that the mass ρ is independent of the temperature θ. Therefore, (2.1) implies that

\begin{equation}
\rho = \rho_0 e^{-\varepsilon} \quad \text{(2.5)}
\end{equation}

where ρ_0 is the mass density of the reference phase corresponding to the undeformed state. Provided that ε remains “small”, equation (2.5) justifies the assumption that the mass density is constant. We shall maintain this assumption from now on. We should point out here that actual experiments show only a very small volume change. Therefore, only equations (2.2)-(2.4) will be considered to construct the model.
We also provide an expression for the specific Helmholtz free energy density
\[\Psi = \Psi(\epsilon, \epsilon_x, \theta, \bar{p}) \], where \(\bar{p} = (p_1, \ldots, p_L) \) is an \(L \)-dimensional vector which accounts for possible internal variables of the model such as (martensite and austenite) phase fractions, dummy variables, etc.

The relations between the specific internal energy, the free energy density and the specific entropy are given by the well known thermomechanical equations
\[
\rho s = -\Psi_{\theta}, \quad \rho c = \Psi + \rho \theta s = \Psi - \theta \Psi_{\theta}
\] (2.6)

For the heat flux, it is standard to postulate
\[
q = -k \theta_x - \alpha k \theta_{xt}
\] (2.7)

instead of the classical Fourier law, where \(k \) is the coefficient of thermal conductivity and \(\alpha \) is a nonnegative parameter. This equation characterizes the heat conduction with short thermal memory ([11], [22], [33]). There are several articles devoted to mathematical models which consider the heat flux in the form (2.7) with \(\alpha \) strictly positive ([23], [24], [31], [32]). Although this assumption provides sufficient smoothness for the existence of the solutions of such models, the physical meaning of \(\alpha > 0 \) is controversial since, as we shall see later, the second law of thermodynamics fails to hold in this case. For this reason, we shall concentrate on the case \(\alpha = 0 \). However, for completeness we temporarily leave this term in the model equations.

The stress is the sum of a quasiconservative part and a dissipative part:
\[
\sigma = \sigma_q + \sigma_d
\] (2.8)

with
\[
\sigma_q = \Psi_{\epsilon} \quad \text{and} \quad \sigma_d = \beta \rho \epsilon_t
\] (2.9)

where \(\beta \) is a nonnegative constant representing the viscosity.

The couple stress \(\mu \) is given by
\[
\mu = \Psi_{\epsilon_x}
\] (2.10)

Using equations (2.6)-(2.10), equations (2.2) and (2.3) can be written as
\[
\rho u_t - (\Psi_{\epsilon})_x - \beta \rho (\epsilon_t)_x + (\Psi_{\epsilon_x})_{xx} = f
\]
\[
(\Psi - \theta \Psi_{\theta})_t - (k \theta_x + \alpha k \theta_{xt})_x - (\Psi_{\epsilon} + \beta \rho \epsilon_t) \epsilon_t - \Psi_{\epsilon_x} \epsilon_{xt} = g
\]
and using the relations $\epsilon = u_x$ and $\Psi_t = \Psi_\epsilon \epsilon_t + \Psi_{\epsilon_s} \epsilon_{xt} + \Psi_\theta \theta_t + \sum_{i=1}^L \Psi_{p_i} p_{i,t}$, we find that

\begin{align}
\rho u_{tt} - \beta \rho u_{xxt} - (\Psi_\epsilon)_x + (\Psi_{\epsilon_s})_{xx} &= f \\
-\theta (\Psi_\theta)_t - k \theta_{xx} - \alpha_k \theta_{xxt} + \sum_{i=1}^L \Psi_{p_i} p_{i,t} - \beta \rho u_{xxt}^2 &= g
\end{align}

(2.11) \hspace{1cm} (2.12)

for $x \in \Omega$ and $0 \leq t \leq T$ where T is a certain prescribed final time.

Equation (2.11) is a nonlinear pseudohyperbolic (viscoelastoplasticity) equation in $u(x,t)$ and (2.12) is a pseudoparabolic equation in $\theta(x,t)$. Both equations are strongly coupled due to the presence of the terms involving the partial derivatives of the function Ψ. The model must be complemented by prescribing appropriate laws for the evolution of the internal variables and coherent initial and boundary conditions.

The function Ψ, which must be provided, is the subject of several discussions. Based on experimentally observed stress-strain relations, Falk ([18], [19]) proposed the use of the so-called Landau-Devonshire potential

\begin{equation}
\Psi(\epsilon, \theta) = \Psi_0(\theta) + \alpha_2 (\theta - \theta_1) \epsilon^2 - \alpha_4 \epsilon^4 + \alpha_6 \epsilon^6
\end{equation}

(2.13)

where $\alpha_2, \alpha_4, \alpha_6$ are positive constants, θ_1 is a critical temperature and $\Psi_0(\theta)$ is a certain smooth function of θ, all depending on the material being considered. Niezgódka and Sprekels ([31]) introduced a generalization of this function in order to correct for improper behavior at extremely low and high temperatures and for large strains. The generalized Landau-Devonshire function was then defined by

\begin{equation}
\Psi(\epsilon, \theta) = \Psi_0(\theta) + \Psi_1(\theta) \epsilon^2 + \Psi(\epsilon)
\end{equation}

(2.14)

where Ψ_0, Ψ_1 and Ψ_2 satisfy certain general hypotheses (see [31] for details). Further generalizations gave rise to the Landau-Ginzburg potential, which includes a term depending on the first derivative of the strain, ϵ_x ([20], [40], [41]). Other approaches such as the use of statistical mechanics ([30]) and “snap-springs” ([28], [29]) have produced other expressions for this function.
3. A Brief Review on the Existence and Uniqueness of Solutions

We give here a brief summary on the existence and uniqueness results for system (2.11)-(2.12).

Using a special type of Galerkin approximation, Niezgodka and Sprekels ([31]) first proved local existence of solutions to the system (2.11)-(2.12) when the Helmholtz free energy density is given in the generalized Landau-Devonshire form (2.14) and \(\Psi_0, \Psi_1, \Psi_2 \) satisfy certain specific growth restrictions. The initial and boundary conditions in this case were taken as follows:

\[
\theta(x,0) = \theta_0(x), \quad u(x,0) = u_0(x), \quad u_t(x,0) = u_1(x) \quad \text{for} \ x \in \Omega \quad (3.1a)
\]

with \(u_0 \in C^2(\bar{\Omega}), u_0|_{\partial \Omega} = u_0'|_{\partial \Omega} = 0, \|u_0\|_{H^2(\Omega)} \leq E_0, u_1 \in H^1_0(\Omega) \) and \(\theta_0 \in H^1(\Omega), \theta_0(x) > \theta_s > 0 \) for all \(x \in \bar{\Omega}, \) where \(E_0 \) and \(\theta_s \) are two positive constants depending on the free energy, and

\[
k_i \frac{\partial \theta}{\partial \nu} = k_i(\theta_T - \theta), \quad u \equiv 0 \quad \text{on} \ \partial \Omega \times (0, T) \quad (3.1b)
\]

where \(\nu \) is the outward normal unit vector to \(\partial \Omega, \) \(k_1 \) is a positive constant and \(\theta_T \) is the temperature of the surrounding medium. The uniqueness of solutions in this case was later proved by Hoffman and Songmu ([23], [24]). The first results on global existence are due to Dafermos and Hsiao ([13], [14]) and Niezgodka, Songmu and Sprekels ([32]). The assumptions \(\beta > 0 \) (existence of viscous stress) and \(\alpha > 0 \) (existence of short thermal memory) played a very important role in all of the above mentioned articles. However, the physical meaning of the case \(\alpha > 0 \) is questionable since (2.4) is not satisfied in this case.

The non-viscous case (\(\beta = 0 \)) with no thermal memory (\(\alpha = 0 \)) was treated later by Sprekels ([42]). Here Sprekels used a Landau-Ginzburg potential of the form

\[
\Psi(\epsilon, \epsilon_x, \theta) = \Psi_0(\theta) + \Psi_1(\theta)\Psi_2(\epsilon) + \frac{\gamma}{2} \epsilon_x^2 \quad (3.2)
\]

where \(\gamma \) is a positive constant. In this case the term \((\Psi_{\epsilon_x})_{xx} \) in (2.11) takes the form \(\gamma \epsilon_{xxx} = \gamma u_{xxx}. \) This term provides sufficient smoothness for the existence of solutions. Even so, very strong growth restrictions on \(\Psi \) were needed. One of these conditions, namely

\[
|\Psi_1(\theta)| + |\Psi_1'(\theta)| + |\theta \Psi_1'(\theta)| \leq C \quad \text{for all} \ \theta \geq 0
\]
excluded the physically relevant case in which $\Psi_1(\theta) = \alpha_2(\theta - \theta_1)$, $\Psi_2(\epsilon) = \epsilon^2$, $\Psi_3(\epsilon) = -\alpha_4 \epsilon^4 + \alpha_6 \epsilon^6$, which corresponds to the Landau-Devonshire potential (2.13) with the additional term $\frac{\gamma}{2} \epsilon_x^2$.

In [39], Songmu claims to have proved global existence for the non-viscous case with no thermal memory ($\beta = \alpha = 0$) and potentials of the form

$$\Psi(\epsilon, \epsilon_x, \theta) = \Psi_0(\theta) + \alpha_2(\theta - \theta_1)\epsilon^2 - \alpha_4 \epsilon^4 + \alpha_6 \epsilon^6 + \frac{\gamma}{2} \epsilon_x^2$$ (3.3)

Here, Songmu derives certain a-priori estimates from which he concludes that any local solution can be extended globally in time. However, he gave no rigorous proof of the existence of local solutions. In addition, $-\Psi_0(\theta)$ was assumed to grow at least quadratically in θ which now excludes the physically relevant case

$$\Psi_0(\theta) = -C_v \theta \ln \left(\frac{\theta}{\theta_2} \right) + C_v \theta + C$$ (3.4)

where C_v is the specific heat, θ_2 is a critical temperature and C is a constant.

Finally, in 1988 Songmu and Sprekels ([40]) derived a-priori estimates for the case $\beta = 0$, $\alpha = 0$ and Landau-Ginzburg potentials of the type

$$\Psi(\epsilon, \epsilon_x, \theta) = \Psi_0(\theta) + \alpha_1 \theta \Psi_1(\epsilon) + \Psi_2(\epsilon) + \frac{\gamma}{2} \epsilon_x^2$$ (3.5)

where Ψ_0, Ψ_1, Ψ_2 satisfy certain weaker growth conditions than those imposed in [39] and [42]. These conditions are satisfied in particular by potentials of the form (3.3) with Ψ_0 as in (3.4). Using those estimates they show that local solutions can be extended globally in time. However, again no rigorous proof of the existence of such local solutions was given and none are known for the case $\beta = 0$.

Remarks:

1. By using (2.3) and (2.6)-(2.10), one obtains

$$\rho s_t + \left(\frac{q}{\theta} \right)_x - \frac{g}{\theta} = -\frac{q \theta_x}{\theta^2} - \frac{1}{\theta} \left(\sum_{i=1}^{L} \Psi_{p,i} P_{i,t} - \beta \rho \epsilon_t^2 \right)$$

Hence (2.4) is satisfied if $\alpha = 0$ and Ψ does not depend on internal variables.
(2) There are three “smoothing” terms in the model being considered, namely: viscosity (β), thermal memory (α) and couple stress (Ψ_{ϵ_x}). Up to now, no result on local existence of solutions is known when all these terms are absent although numerical results seem to indicate that even in this case solutions do exist.

(3) As noted before, the case $\alpha > 0$ has a questionable physical meaning since the second law of thermodynamics is not satisfied in this case.

(4) No proof on local existence for the case $\alpha = 0$ has been given before. The articles [39], [40] and [42] systematically avoid dealing with this issue.

In the next section we give a rigorous proof of local existence and uniqueness of solutions of the problem (2.11)-(2.12) for the case $\alpha = 0$ and Landau-Ginzburg potentials of the form (3.3). We first transform the system of PDE’s into an abstract Cauchy problem in an appropriate Hilbert space. Then we prove that the operator $A(q)$ corresponding to the linear part of the system is the infinitesimal generator of an analytic semigroup $T(t; q)$ and the nonlinear part is Lipschitz in the state space variable with respect to the graph-norm of the operator $A(q)$ (q is a vector containing the parameters of the system). This approach allows us not only to obtain explicit spectral decompositions for the operator $A(q)$ and the associated semigroup $T(t; q)$, but also to show that the semigroup $T(t; q)$ is exponentially stable with decay rate depending on the parameters k, k_1, β, ρ and γ.

4. State-Space Formulation and Well-Posedness

Assume $\alpha = 0$ (no thermal memory), $\beta > 0$, $\Omega = (0, 1)$ and the free energy density given in a Landau-Ginzburg form like (3.3) with $\Psi_0(\theta)$ as in (3.4), i.e., we take

$$\Psi(\epsilon, \epsilon_x, \theta) = -C_v \theta \ln \left(\frac{\theta}{\theta_2} \right) + C_v \theta + C + \alpha_2 (\theta - \theta_1) \epsilon^2 - \alpha_4 \epsilon^4 + \alpha_6 \epsilon^6 + \frac{\gamma}{2} \epsilon_x^2$$ \hspace{1cm} (4.1)

Under these assumptions, the system (2.11)-(2.12) takes the form

$$\rho u_{tt} - \beta \rho u_{xx} + \gamma u_{xxx} = f(x, t) + \frac{\partial}{\partial x} \left[\frac{\partial}{\partial \epsilon} \Psi(u_x, u_{xx}, \theta) \right]$$ \hspace{1cm} (4.2a)

$$C_v \theta_t - \rho \theta_{xx} = g(x, t) + 2 \alpha_2 \theta u_x u_{xt} + \beta \rho u_{xt}^2$$ \hspace{1cm} (4.2b)
for \(x \in \Omega, 0 \leq t \leq T \).

We prescribe the initial conditions

\[
\begin{align*}
 u(x, 0) &= u_0(x), \\
 u_t(x, 0) &= u_1(x), \\
 \theta(x, 0) &= \theta_0(x),
\end{align*}
\]
\(x \in \Omega \) (4.2c)

and for \(0 \leq t \leq T \), the following boundary conditions

\[
\begin{align*}
 u(0, t) &= u(1, t) = 0 = u_{xx}(0, t) = u_{xx}(1, t), \\
 \theta_x(0, t) &= 0, \\
 k\theta_x(1, t) &= k_1(\theta_T(t) - \theta(1, t)).
\end{align*}
\]
\((4.2d) \)

where \(\theta_T(t) \) is the temperature of the surrounding medium at time \(t \) and \(k_1 \) is a positive coefficient. Next define

\[
L(x, t) \doteq \theta_T(t) \cos(2\pi x)
\]
\((4.3) \)

so that \(L_x(0, t) = L_x(1, t) = 0 \) and \(L(1, t) = \theta_T(t) \) for all \(t \), and let us make the transformation

\[
\tilde{\theta}(x, t) \doteq \theta(x, t) - L(x, t)
\]
\((4.4) \)

Then our IBVP takes the form

\[
\begin{align*}
 \rho u_{tt} - \beta \rho u_{xxt} + \gamma u_{xxxx} &= f(x, t) + \frac{\partial}{\partial x} \left[\frac{\partial}{\partial \epsilon} \Psi(u_x, u_{xx}, \tilde{\theta} + L) \right], \\
 C_v \tilde{\theta}_t - k \tilde{\theta}_{xx} &= g(x, t) + 2\alpha_2(\tilde{\theta} + L)u_xu_{xt} + \beta \rho u_{xt}^2 - C_v \theta_T(t) \cos(2\pi x) - 4k\pi^2 \theta_T(t) \cos(2\pi x)
\end{align*}
\]
\((4.5a) \)

for \(x \in \Omega, 0 \leq t \leq T \),

\[
\begin{align*}
 u(x, 0) &= u_0(x), \\
 u_t(x, 0) &= u_1(x), \\
 \tilde{\theta}(x, 0) &= \theta_0(x) - \theta_T(0) \cos(2\pi x), \\
 x &\in \Omega
\end{align*}
\]
\((4.5c) \)

and

\[
\begin{align*}
 u(0, t) &= u(1, t) = 0 = u_{xx}(0, t) = u_{xx}(1, t), \\
 \tilde{\theta}_x(0, t) &= 0, \\
 k\tilde{\theta}_x(1, t) + k_1\tilde{\theta}(1, t) &= 0, \\
 0 &\leq t \leq T.
\end{align*}
\]
\((4.5d) \)

We assume that the functions \(f(x, t) \) and \(g(x, t) \) satisfy the following hypotheses

\(\text{(H1)} \) There exist functions \(K_g, K_f \in L_2(0,1), K_g(x) \geq 0, K_f(x) \geq 0 \), such that

\[
|f(x, t_1) - f(x, t_2)| \leq K_f(x)|t_1 - t_2|,
\]
and

$$|g(x, t_1) - g(x, t_2)| \leq K_g(x)|t_1 - t_2|$$

for all $x \in (0, 1), t_1, t_2 \in [0, T]$.

\textbf{(H2)} $\theta_\Gamma \in H^1(0, T), \theta_\Gamma$ and θ_Γ' are locally uniformly Lipschitz continuous, i.e., for each compact set $S \subset [0, T]$ there are constants $K_S, K'_S > 0$ such that

$$|\theta_\Gamma(t_1) - \theta_\Gamma(t_2)| \leq K_S|t_1 - t_2|,$$

and

$$|\theta_\Gamma'(t_1) - \theta_\Gamma'(t_2)| \leq K'_S|t_1 - t_2|$$

for all $t_1, t_2 \in S$.

In order to formulate system (4.5.a-d) as a Cauchy problem in an abstract space, we define the state space

$$Z \doteq H_0^1(0, 1) \cap H^2(0, 1) \times L_2(0, 1) \times L_2(0, 1),$$

$$z(t) \doteq \begin{pmatrix} u(t) \\ v(t) \\ w(t) \end{pmatrix} \doteq \begin{pmatrix} u(\cdot, t) \\ u_\lambda(\cdot, t) \\ \theta(\cdot, t) \end{pmatrix} \in Z,$$

and the admissible parameter set

$$Q \doteq \{ q = (\rho, C_v, \beta, \alpha_2, \alpha_4, \alpha_6, \theta_1, \gamma) \mid q \in \mathbb{R}_+^8 \}$$

Note: we assume $k > 0$ and $k_1 > 0$ are known. Although this assumption is made mainly for simplicity reasons, it is also rooted in the fact that the heat conductivity is a physical parameter and can be estimated from laboratory experiments. In any case, only slight modifications are needed to consider the case in which k and k_1 are components of the parameter q.

We next define in Z an inner product $\langle \cdot, \cdot \rangle_q$ depending on the parameter q as follows

$$\left\langle \begin{pmatrix} u \\ v \\ w \end{pmatrix}, \begin{pmatrix} \dot{u} \\ \dot{v} \\ \dot{w} \end{pmatrix} \right\rangle_q \doteq \gamma \int_\Omega u'' \dot{u}'' + \rho \int_\Omega v \dot{v} + \frac{C_v}{k} \int_\Omega w \dot{w}$$

and we denote by Z_q the Hilbert space Z with the inner product $\langle \cdot, \cdot \rangle_q$. The corresponding norm in Z_q is denoted by $\| \cdot \|_q$.

Then the IBVP (4.5a-d) can be formally written as an abstract Cauchy problem in Z_q as follows

$$(\Sigma): \begin{cases} \dot{z}(t) = A(q)z(t) + F(q, t, z(t)) & 0 \leq t \leq T \\
 z(0) = z_0 \end{cases}$$

(4.7)

where

$$\text{dom}(A(q)) \triangleq \left\{ \begin{pmatrix} u \\ v \\ w \end{pmatrix} \in Z_q \mid u \in H^4(\Omega), u(0) = u(1) = 0 = u''(0) = u''(1), v \in H^4_0(\Omega) \cap H^2(\Omega), w \in H^2(\Omega), w'(0) = 0, kw'(1) = -k_1w(1) \right\}$$

(4.8)

and for $z = \begin{pmatrix} u \\ v \\ w \end{pmatrix} \in \text{dom}(A(q))$

$$A(q)z = A(q) \begin{pmatrix} u \\ v \\ w \end{pmatrix} \triangleq \begin{pmatrix} \beta v'' - \frac{\alpha}{\rho} u'''' \\ \frac{k}{C_v} v'' \end{pmatrix} = \begin{pmatrix} 0 & \beta \partial_x & 0 \\ -\frac{\alpha}{\rho} \partial_x & 0 & 0 \\ \frac{k}{C_v} \partial_x & 0 & \frac{k}{C_v} \partial_x \end{pmatrix} \begin{pmatrix} u \\ v \\ w \end{pmatrix}$$

(4.9)

$$z_0(\cdot) = \begin{pmatrix} u_0(\cdot) \\ u_1(\cdot) \\ \theta_0(\cdot) - \theta_1(0)\cos(2\pi \cdot) \end{pmatrix}$$

Note that $\text{dom}(A(q))$ is a subspace of Z_q independent of $q \in \mathcal{Q}$ since k and k_1 are supposed to be known (i.e., they are not components of q).

The function $F(q, t, z) : \mathcal{Q} \times \mathbb{R}_0^+ \times Z_q \to Z_q$ is defined by

$$F(q, t, z) = F(q, t, \begin{pmatrix} u \\ v \\ w \end{pmatrix}) \triangleq \begin{pmatrix} f_2(q, t, z) \\ f_3(q, t, z) \end{pmatrix},$$

(4.10)

where

$$f_2(q, t, z) \triangleq \rho^{-1} f(\cdot, t) + \rho^{-1} \frac{\partial}{\partial x} \left[2\alpha_2(w + L(\cdot, t) - \theta_1)u' - 4\alpha_4 u'' + 6\alpha_6 u'''' \right],$$

(4.11a)

$$f_3(q, t, z) \triangleq C_v^{-1} g(\cdot, t) + 2\alpha_2 C_v^{-1}(w + L(\cdot, t))u'v' + \beta \rho C_v^{-1}(v')^2 - \theta_1'(t)\cos(2\pi \cdot) - 4k\pi^2 C_v^{-1} L(\cdot, t).$$

(4.11b)
Theorem 4.1. If $A(q)$ and Z_q are as defined above, then the operator $A(q) : \text{dom}(A(q)) \subseteq Z_q \to Z_q$ is dissipative.

Proof: Let $z = \begin{pmatrix} u \\ v \\ w \end{pmatrix} \in \text{dom}(A(q))$ so that $u \in H^4$, $u(0) = u(1) = u''(0) = u''(1)$, $v \in H^1_0 \cap H^2$, $w \in H^2$, $w'(0) = 0$ and $kw'(1) + k_1 w(1) = 0$. Then

$$<A(q)z, z>_q = \left\langle \begin{pmatrix} \beta v'' - \frac{\gamma}{\rho} u''' \\ \frac{k}{C_v} w'' \end{pmatrix}, \begin{pmatrix} u \\ v \\ w \end{pmatrix} \right\rangle_q$$

$$= \gamma \int_{\Omega} v'' u'' + \rho \int_{\Omega} (\beta v'' - \frac{\gamma}{\rho} u''')v + \frac{C_v}{k} \int_{\Omega} \frac{k}{C_v} w'' w$$

$$= \gamma \int_{\Omega} v'' u'' + \rho \beta \left[\frac{dv'}{dx} \bigg|_{x=0} - \int_{\Omega} (v')^2 \right] - \gamma \left[\frac{du''}{dx} \bigg|_{x=0} - \int_{\Omega} u''' v' \right]$$

$$+ \left[\frac{w w'}{x=0} - \left(\frac{w'}{x=0} \right)^2 \right]$$

$$= \gamma \int_{\Omega} v'' u'' - \rho \beta \|v'\|_{L^2}^2 + \gamma \left[\frac{dv''}{dx} \bigg|_{x=0} - \int_{\Omega} u'' v'' \right]$$

$$+ w(1)w'(1) - \|w'\|_{L^2}^2$$

$$= -\rho \beta \|v'\|_{L^2}^2 - \|w'\|_{L^2}^2 - \frac{k_1}{k} [w(1)]^2$$

$$\leq 0$$

Hence $A(q)$ is dissipative.

Theorem 4.2. If $q \in Q$, Z_q and $A(q)$ are as above, then the adjoint of $A(q)$, $A^*(q)$ is given by $\text{dom}(A^*(q)) = \text{dom}(A(q))$, and for $z = \begin{pmatrix} u \\ v \\ w \end{pmatrix} \in \text{dom}(A^*(q))$

$$A^*(q)z = \begin{pmatrix} \beta v'' - \frac{\gamma}{\rho} u''' \\ \frac{k}{C_v} w'' \end{pmatrix} = \begin{pmatrix} 0 & \frac{-I}{\beta} & 0 \\ \frac{\gamma}{\rho} \frac{\partial^2}{\partial x^2} & -\beta \frac{\partial^2}{\partial x^2} & 0 \\ 0 & 0 & \frac{k}{C_v} \frac{\partial^2}{\partial x^2} \end{pmatrix} \begin{pmatrix} u \\ v \\ w \end{pmatrix}. \quad (4.12)$$

Proof: We prove this theorem in two parts. First we show that $\text{dom}(A(q)) \subseteq \text{dom}(A^*(q))$ and $A^*(q)z$ is given by the formula above. In the second part we show that the opposite inclusion holds for the domains.
First part: Let $z = \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} \in \text{dom}(A(q))$. Then for any $\eta = \begin{pmatrix} u \\ v \\ w \end{pmatrix} \in \text{dom}(A(q))$ we have

$$\langle A(q)\eta, z \rangle_q = \left\langle A(q) \begin{pmatrix} u \\ v \\ w \end{pmatrix}, \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} \right\rangle_q = \left\langle \begin{pmatrix} \beta v'' - \frac{3}{\rho} u''' \\ \frac{k}{C_v} w'' \end{pmatrix}, \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} \right\rangle_q$$

$$= \gamma \int_{\Omega} v'' z_1' + \rho \int_{\Omega} \left(\beta v'' - \frac{3}{\rho} u''' \right) z_2 + \frac{C_v}{k} \int_{\Omega} \frac{k}{C_v} w'' z_3$$

$$= \gamma \left\{ z_1'' \left|_{x=0} \right. - \int_{\Omega} v' z_1'' \right\} + \rho \beta \left\{ z_2 v' \left|_{x=0} \right. - \int_{\Omega} v' z_2' \right\}$$

$$- \gamma \left\{ z_2 u''' \left|_{x=0} \right. - \int_{\Omega} u''' z_2' \right\} + \left\{ z_3 w' \left|_{x=0} \right. - \int_{\Omega} w' z_3' \right\}$$

$$= -\gamma \left\{ z_1'' \left|_{x=0} \right. - \int_{\Omega} v' z_1'' \right\} - \rho \beta \left\{ z_2 v' \left|_{x=0} \right. - \int_{\Omega} v' z_2' \right\}$$

$$+ \gamma \left\{ z_2 u''' \left|_{x=0} \right. - \int_{\Omega} u''' z_2' \right\} + z_3(1) w'(1) - \left\{ z_3 w \left|_{x=0} \right. - \int_{\Omega} w z_3' \right\}$$

$$= \gamma \int_{\Omega} v z_1''' + \rho \beta \int_{\Omega} v z_2' - \gamma \int_{\Omega} u'' z_2' + \int_{\Omega} w z_3''.$$

The last equality follows from the fact that $z_3(1)w'(1) = z_3'(1)w(1)$.

By rearranging terms it follows that

$$\langle A(q)\eta, z \rangle_q = \gamma \int_{\Omega} u''(-z_2') + \rho \int_{\Omega} v \left(\beta z_2'' + \frac{\gamma}{\rho} z_1''' \right) + \frac{C_v}{k} \int_{\Omega} w \left(\frac{k}{C_v} z_3'' \right)$$

$$= \left\langle \begin{pmatrix} u \\ v \\ w \end{pmatrix}, \begin{pmatrix} \beta z_2'' + \frac{\gamma}{\rho} z_1''' \\ \frac{k}{C_v} z_3'' \end{pmatrix} \right\rangle_q$$

Hence if $z = \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} \in \text{dom}(A(q))$ then $z \in \text{dom}(A^*(q))$ and

$$A^*(q)z = A^*(q) \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} = \begin{pmatrix} 0 \frac{\partial^4}{\partial x^4} + \frac{1}{\rho} \frac{\partial^3}{\partial x^3} \\ \beta \frac{\partial^2}{\partial x^2} \frac{k}{C_v} \frac{\partial^2}{\partial x^2} \\ 0 \frac{\partial^2}{\partial x^2} \frac{k}{C_v} \frac{\partial^2}{\partial x^2} \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix}.$$
Second part: Now let \(z = \begin{pmatrix} \tilde{z}_1 \\ \tilde{z}_2 \\ \tilde{z}_3 \end{pmatrix} \in \text{dom} (A^*(q)) \). Then there exists \(\tilde{z} = \begin{pmatrix} \tilde{z}_1 \\ \tilde{z}_2 \\ \tilde{z}_3 \end{pmatrix} \in Z_q \) such that for all \(\eta = \begin{pmatrix} u \\ v \\ w \end{pmatrix} \in \text{dom} (A(q)) \)

\[
0 = \langle A(q)\eta, z \rangle_q - \langle \eta, \tilde{z} \rangle_q
\]

\[
= \langle \left(\begin{pmatrix} \beta u'' - z_2 u''' \\ \frac{k}{C_v} w'' \\
\end{pmatrix}, \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} \right), \begin{pmatrix} u \\ v \\ w \end{pmatrix}, \begin{pmatrix} \tilde{z}_1 \\ \tilde{z}_2 \\ \tilde{z}_3 \end{pmatrix} \rangle_q
\]

\[
= \gamma \int_{\Omega} (v'' z_1'' - u'' z_1'') + \rho \int_{\Omega} \left(\beta u'' - \frac{\gamma}{\rho} u''' \right) z_2 - v \tilde{z}_2
\]

\[+ \frac{C_v}{k} \int_{\Omega} \left(\frac{k}{C_v} w'' z_3 - w \tilde{z}_3 \right)\]

\[
= \int_{\Omega} (\gamma v'' z_1'' + \rho \beta u'' z_2 - \rho v \tilde{z}_2) - \gamma \int_{\Omega} (u'' z_1'' + u''' z_2) + \frac{C_v}{k} \int_{\Omega} \left(\frac{k}{C_v} w'' z_3 - w \tilde{z}_3 \right).
\]

Since this equality must hold for all \(\eta = \begin{pmatrix} u \\ v \\ w \end{pmatrix} \in \text{dom} (A(q)) \), each one of the terms in the above expression must vanish, i.e.

\[(a) \quad \int_{\Omega} \tilde{z}_1'' u'' + z_2 u''' = 0 \quad \text{for all } u \in H^4, u|_{\partial \Omega} = u''|_{\partial \Omega} = 0,\]

\[(b) \quad \int_{\Omega} (-\rho \tilde{z}_2) v + (\gamma z_1'' + \rho \beta z_2) v'' = 0 \quad \text{for all } v \in H^1 \cap H^2,\]

\[(c) \quad \int_{\Omega} (-\tilde{z}_3) w + \left(\frac{k}{C_v} z_3 \right) w'' = 0 \quad \text{for all } w \in H^2, w'(0) = 0, kw'(1) + k_1 w(1) = 0.\]

Now (a) implies that \(\int_{\Omega} (\tilde{z}_1'' h + z_2 h'') = 0 \) for all \(h \in H^1 \cap H^2 \). In particular, this equality must hold for all \(h \in H^2_0 \). Then, by the Fundamental Lemma of the Calculus of Variations ([17], p. 31-32) there exist constants \(a \) and \(b \) such that

\[z_2(x) = ax + b - \int_0^x \int_0^s \tilde{z}_1''(\xi) d\xi ds, \quad \text{for } x \in \Omega.\]

Hence, \(z_2 \in H^2 \) and by differentiating twice the above expression we get

\[\tilde{z}_1'' = -z_2'', \quad z_2 \in H^2. \quad \text{(4.13a)}\]
Similarly, the Fundamental Lemma of the Calculus of Variations applied to (b) gives the existence of two constants c and d such that

\[
\gamma z''_1(x) = -\rho \beta z_2(x) + cx + d + \rho \int_0^x \int_0^s \tilde{z}_2(\xi) \, d\xi \, ds, \quad \text{for } x \in \Omega.
\]

Now, since $z_2 \in H^2$, the RHS in the above expression is in H^2. Hence $z_1 \in H^4$ and, by differentiating twice we obtain

\[
\tilde{z}_2 = \beta z''_2 + \frac{\gamma}{\rho} z'''_1, \quad z_1 \in H^4.
\] \hspace{1cm} (4.13b)

Finally, observe that (c) must hold in particular for all $w \in H^2_0$. Again, the Fundamental Lemma of the Calculus of Variations yields the existence of two constants p and q such that

\[
\frac{k}{C_v} z_3(x) = px + q - \int_0^x \int_0^s (-\tilde{z}_3(\xi)) \, d\xi \, ds.
\]

By differentiating twice the above expression we get

\[
\tilde{z}_3 = \frac{k}{C_v} z''_3, \quad z_3 \in H^2.
\] \hspace{1cm} (4.13c)

Therefore, if $z = \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} \in \text{dom} \left(A^*(q) \right)$, then $z_1 \in H^4 \cap H^1_0$ (note $z_1 \in H^1_0$ because z must belong to Z_q) and $z_2, z_3 \in H^2$. To show that $\text{dom} \left(A^*(q) \right) = \text{dom} \left(A(q) \right)$ it remains to show that $z''_1|_{\partial\Omega} = 0, z_2|_{\partial\Omega} = 0, z''_3(0) = 0$ and $k z''_3(1) + k_1 z_3(1) = 0$.

From (4.13a) and (a) we have that for all $u \in H^1_0 \cap H^4$ such that $u''|_{\partial\Omega} = 0$

\[
0 = \int_\Omega (-z''_2 u'' + z_2 u''')
\]

\[
= - \left[u'' z'_2|_{\partial\Omega} - \int_\Omega z'_2 u''' \right] + \left[z_2 u'''|_{\partial\Omega} - \int_\Omega u''' z'_2 \right]
\]

\[
= z_2 u'''|_{\partial\Omega}.
\]

Since this must hold for all $u \in H^1_0 \cap H^4$ with $u''|_{\partial\Omega} = 0$, we must have

\[
z_2|_{\partial\Omega} = 0.
\] \hspace{1cm} (4.14)
From (4.13b) and (b) we get that for all \(v \in H^1_0 \cap H^2 \)

\[
0 = \int_{\Omega} \left[-\rho \left(\beta z''_2 + \frac{\gamma}{\rho} z'''_1 \right) v + (\gamma z''_1 + \rho \beta z_2) v'' \right]
\]

\[
= -\rho \left[v \left(\beta z''_2 + \frac{\gamma}{\rho} z'''_1 \right) \big|_{\partial \Omega} - \int_{\Omega} \left(\beta z'_2 + \frac{\gamma}{\rho} z'''_1 \right) v' \right]
+ \left[(\gamma z''_1 + \rho \beta z_2) v' \big|_{\partial \Omega} - \int_{\Omega} v' \left(\gamma z''_1 + \rho \beta z_2 \right) \right]
\]

\[
= (\gamma z''_1 + \rho \beta z_2) v' \big|_{\partial \Omega}
= \gamma z''_1 v' \big|_{\partial \Omega}.
\]

The last equality follows from (4.14) since \(z_2 \big|_{\partial \Omega} = 0 \).

Since this equality must hold for all \(v \in H^1_0 \cap H^2 \), we must have

\[
z''_1 \big|_{\partial \Omega} = 0.
\]

Finally, from (4.13c) and (c) we get that for all \(w \in H^2 \) with \(w'(0) = 0 \) and

\[
k w'(1) + k_1 w(1) = 0
\]

\[
0 = \int_{\Omega} (-z''_3 w + z_3 w'')
= (-w z'_3 + w' z_3) \big|_{\partial \Omega}
= -[w(1)z'_3(1) - w(0)z'_3(0)] + w'(1)z_3(1)
= -[w(1)z'_3(1) - w(0)z'_3(0)] - k \frac{k_1}{k} w(1)z_3(1)
= w(1) \left[-k \frac{k_1}{k} z_3(1) - z'_3(1) \right] + w(0)z'_3(0).
\]

Therefore, we must have \(-k \frac{k_1}{k} z_3(1) - z'_3(1) = 0\) and \(z'_3(0) = 0\), i.e.,

\[
z'_3(0) = 0 \quad \text{and} \quad k z'_3(1) + k_1 z_3(1) = 0.
\]

Hence \(z \in dom(A(q)) \) and therefore \(dom(A^*(q)) = dom(A(q)) \). This completes the proof of Theorem 4.2.

Now we shall prove that \(A(q) \) is the infinitesimal generator of an analytic semigroup. We shall achieve this in several steps.
Let $L_{2,\rho}(\Omega)$ denote the Hilbert space $L_2(\Omega)$ with inner product defined by $\langle u, v \rangle_{L_{2,\rho}} = \rho \int_{\Omega} uv$ and let us define the operators $A_1(q)$ and $B_1(q)$ on $L_{2,\rho}(\Omega)$ as follows:

$$\text{dom}(A_1(q)) = \{ u \in H^4(\Omega) \mid u(0) = u(1) = u''(0) = u''(1) = 0 \},$$

$$\text{dom}(B_1(q)) = H^1_0(\Omega) \cap H^2(\Omega),$$

$$A_1(q)f = \frac{\gamma}{\rho} \frac{\partial f}{\partial x^4}, \quad f \in \text{dom}(A_1(q)) \quad (4.15)$$

$$B_1(q)h = -\beta \frac{\partial h}{\partial x^2}, \quad h \in \text{dom}(B_1(q)). \quad (4.16)$$

Note that both $\text{dom}(A_1(q))$ and $\text{dom}(B_1(q))$ are dense in $L_{2,\rho}(\Omega)$.

Theorem 4.3. Let $A_1(q) : \text{dom}(A_1(q)) \subset L_{2,\rho}(\Omega) \to L_{2,\rho}(\Omega)$, and $B_1(q) : \text{dom}(B_1(q)) \subset L_{2,\rho}(\Omega) \to L_{2,\rho}(\Omega)$ be as above. Then

i) $A_1(q)$ is strictly positive and self-adjoint;

ii) $B_1(q)$ is strictly positive and self-adjoint;

iii) $B_1(q) = \frac{\beta}{\sqrt{\rho}} A_1^{1/2}(q)$.

Proof:

i) If $u \in \text{dom}(A_1(q))$, then

$$\langle A_1(q) u, u \rangle_{L_{2,\rho}} = \left\langle \frac{\gamma}{\rho} u''', u \right\rangle_{L_{2,\rho}}$$

$$= \gamma \int_{\Omega} u'''u$$

$$= \gamma \left(uu'' \bigg|_{\Omega} - u'u'' \bigg|_{\partial \Omega} + \int_{\Omega} (u'')^2 \right)$$

$$= \gamma \| u'' \|_{L_2(\Omega)}^2 \quad \text{(since } u|_{\partial \Omega} = u''|_{\partial \Omega} = 0)$$

$$\geq 0.$$

Moreover, $\langle A_1(q) u, u \rangle_{L_{2,\rho}} = 0$ implies $\| u'' \|_{L_2} = 0$ which in terms implies $u = 0$ since $u|_{\partial \Omega} = 0$. Hence, $A_1(q)$ is strictly positive. Let us prove now that $A_1(q)$ is self-adjoint.
If \(v \in \text{dom} (A_1(q)) \), then for any \(u \in \text{dom} (A_1(q)) \) we have

\[
\langle A_1(q)u, v \rangle_{L_{2,\rho}} = \gamma \int_{\Omega} u'''v' = \gamma \left(v' u' \big|_{\partial \Omega} - v'' u' \big|_{\partial \Omega} + v''' u \big|_{\partial \Omega} + \int_{\Omega} v''' u \right)
\]

\[
= \gamma \int_{\Omega} v''' u
\]

\[
= \rho \int_{\Omega} \frac{\gamma}{\rho} v''
\]

\[
= \langle u, A_1(q)v \rangle_{L_{2,\rho}}.
\]

Therefore, \(v \in \text{dom} (A_1^*(q)) \) and \(A_1^*(q)v = A_1(q)v \), i.e., \(A_1(q) \) is symmetric.

Now if \(u \in \text{dom} (A_1^*(q)) \), then there exists \(v \in L_{2,\rho}(\Omega) \) such that for all \(w \in \text{dom} (A_1(q)) \)

\[
0 = \langle A_1(q)w, u \rangle_{L_{2,\rho}} - \langle w, v \rangle_{L_{2,\rho}}
\]

\[
= \rho \int_{\Omega} \left(\frac{\gamma}{\rho} w''' u - w v \right).
\]

(4.17)

This equality must hold in particular for all \(w \in H_0^4(\Omega) \). The Fundamental Lemma of the Calculus of Variations implies that there exist four constants \(a, b, c \) and \(d \) such that

\[
\frac{\gamma}{\rho} u(x) = ax^3 + bx^2 + cx + d - \int_0^x \int_0^{s_1} \int_0^{s_2} \int_0^{s_3} (-v(\xi)) \, d\xi \, ds_3 \, ds_2 \, ds_1, \quad \text{for } x \in \Omega.
\]

Hence, \(u \in H^4(\Omega) \) and, by differentiating four times, the above expression becomes

\[
\frac{\gamma}{\rho} u''' = v. \quad \text{Substituting this expression into (4.17) we get}
\]

\[
0 = \int_{\Omega} (w''' u - w u''')
\]

\[
= uw''' \big|_{\partial \Omega} - u' w'' \big|_{\partial \Omega} - w u''' \big|_{\partial \Omega} + w' u'' \big|_{\partial \Omega}
\]

\[
= uw''' + u'' w \big|_{\partial \Omega}.
\]

Since this equality must hold for all \(w \in \text{dom} (A_1(q)) \), we conclude that \(u|_{\partial \Omega} = u''|_{\partial \Omega} = 0 \). Hence, \(\text{dom} (A_1^*(q)) = \text{dom} (A_1(q)) \) and \(A_1(q) \) is self-adjoint.
ii) If \(u \in \text{dom}(B_1(q)) \), then

\[
\langle B_1(q)u, u \rangle_{L^2, \rho} = \langle -\beta u'', u \rangle_{L^2, \rho} \\
= -\beta \rho \int_\Omega u'' u \\
= \beta \rho \| u' \|_{L^2}^2 \\
\geq 0.
\]

Moreover, \(\langle B_1(q)u, u \rangle_{L^2, \rho} = 0 \) implies \(\| u' \|_{L^2} = 0 \) and, therefore, \(u = 0 \) since \(u|_{\partial \Omega} = 0 \). Thus, \(B_1(q) \) is strictly positive.

We will show now that \(B_1(q) \) is self-adjoint. Let \(v \in \text{dom}(B_1(q)) \). Then for any \(u \in \text{dom}(B_1(q)) \)

\[
\langle B_1(q)u, v \rangle_{L^2, \rho} = \langle -\beta u'', v \rangle_{L^2, \rho} \\
= -\beta \rho \int_\Omega u'' v.
\]

After integrating by parts twice and using \(u|_{\partial \Omega} = v|_{\partial \Omega} = 0 \), one obtains

\[
\langle B_1(q)u, v \rangle_{L^2, \rho} = -\beta \rho \int_\Omega uv'' \\
= \langle u, -\beta v'' \rangle_{L^2, \rho} \\
= \langle u, B_1(q)v \rangle_{L^2, \rho}.
\]

Therefore, \(v \in \text{dom}(B_1^*(q)) \) and \(B_1^*(q)v = B_1(q)v \), i.e., \(B_1(q) \) is symmetric.

Now if \(u \in \text{dom}(B_1^*(q)) \), then there exists \(v \in L^2, \rho(\Omega) \) such that for all \(w \in \text{dom}(B_1(q)) \)

\[
0 = \langle B_1(q)w, u \rangle_{L^2, \rho} - \langle w, v \rangle_{L^2, \rho} \\
= -\rho \int_\Omega (\beta w'' u + w v). \tag{4.18}
\]

This equality must hold for all \(w \in H^2_0(\Omega) \). The Fundamental Lemma of the Calculus of Variations implies that there exist two constants \(a \) and \(b \) such that

\[
\beta u(x) = ax + b - \int_0^x \int_0^s v(\xi) \, d\xi \, ds, \quad \text{for} \ x \in \Omega.
\]
Thus, \(u \in H^2(\Omega) \) and, by differentiating twice, it follows that \(\beta u'' = -v \). Substituting into (4.18) we get

\[
0 = \int_{\Omega} (w'u - wu'')
= w\nu'|_{\partial\Omega} - wu'|_{\partial\Omega}
= u\nu'|_{\partial\Omega}.
\]

Since this equality must hold for all \(w \in \text{dom}(B_1(q)) \), we conclude that \(u|_{\partial\Omega} = 0 \). Hence, \(\text{dom}(B_1^s(q)) = \text{dom}(B_1(q)) \) and \(B_1(q) \) is self-adjoint.

iii) Since \(A_1(q) \) is positive and self-adjoint, it possesses a unique positive self-adjoint square root \(A_1^{1/2}(q) \) (see [25], p. 281 or [44], p. 197). Moreover, any positive fractional power \(A_1^{\delta}(q) \) of \(A_1(q) \) is well defined, positive and self-adjoint.

It is easy to see that \(\text{dom}(B_1^2(q)) = \text{dom}(A_1(q)) \) and \(B_1^2(q)u = \frac{\beta^2}{\gamma} A_1(q)u \) for all \(u \in \text{dom}(A_1(q)) \). Hence \(B_1(q) = \frac{\beta^2}{\gamma} A_1^{1/2}(q) \) and this completes the proof of Theorem 4.3.

We now define the Hilbert space \(E_q \) by

\[
E_q \doteq \text{dom}(A_1^{1/2}(q)) \times L_{2,\rho}(\Omega) = \text{dom}(B_1(q)) \times L_{2,\rho}(\Omega)
\]

with inner product

\[
\left\langle \begin{pmatrix} f_1 \\ g_1 \end{pmatrix}, \begin{pmatrix} f_2 \\ g_2 \end{pmatrix} \right\rangle_{E_q} \doteq \left\langle A_1^{1/2}(q)f_1, A_1^{1/2}(q)f_2 \right\rangle_{L_{2,\rho}} + \langle g_1, g_2 \rangle_{L_{2,\rho}},
\]

and the operator \(C_1(q) : E_q \to E_q \) by \(\text{dom}(C_1(q)) \doteq \text{dom}(A_1(q)) \times \text{dom}(A_1^{1/2}(q)) = \text{dom}(A_1(q)) \times \text{dom}(B_1(q)) \) and

\[
C_1(q) \doteq \begin{pmatrix} 0 & I \\ -A_1(q) & -B_1(q) \end{pmatrix}.
\tag{4.19}
\]

Note that \(\text{dom}(C_1(q)) \) is dense in \(E_q \). The operator \(C_1(q) \) corresponds to the elastic model \(\ddot{x} + B_1(q)\dot{x} + A_1(q)x = 0 \) written as a first order system. By Theorem 4.3, the
elastic operator $A_1(q)$ is positive and self-adjoint on $L_{2,\rho}(\Omega)$. The same is true for the dissipation operator $B_1(q)$.

Theorem 4.4. Let $C_1(q) : \text{dom}(C_1(q)) \subset E_q \to E_q$ be as defined above. Then $C_1(q)$ is the infinitesimal generator of a strongly continuous semigroup of contractions $e^{C_1(q)t}$ on E_q.

Proof: Let $\eta = \begin{pmatrix} u \\ v \end{pmatrix} \in \text{dom}(C_1(q))$. Then $u \in \text{dom}(A_1(q))$, $v \in \text{dom}(B_1(q))$ and

$$
\langle C_1(q)\eta, \eta \rangle_{E_q} = \left\langle \begin{pmatrix} 0 & I \\ -A_1(q) & -B_1(q) \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}, \begin{pmatrix} u \\ v \end{pmatrix} \right\rangle_{E_q}
= \left\langle \begin{pmatrix} v \\ -A_1(q)u - B_1(q)v \end{pmatrix}, \begin{pmatrix} u \\ v \end{pmatrix} \right\rangle_{E_q}
= \left\langle A_1^{1/2}(q)v, A_1^{1/2}(q)u \right\rangle_{L^2,\rho} + \left\langle -A_1(q)u - B_1(q)v, v \right\rangle_{L^2,\rho}.
$$

Also, since $A_1^{1/2}(q)$ is self-adjoint, $u \in \text{dom}(A_1(q))$ and $B_1(q)$ is positive, it follows that

$$
\langle C_1(q)\eta, \eta \rangle_{E_q} = \langle v, A_1(q)u \rangle_{L^2,\rho} - \langle A_1(q)u, v \rangle_{L^2,\rho} - \langle B_1(q)v, v \rangle_{L^2,\rho}
= -\langle B_1(q)v, v \rangle_{L^2,\rho}
\leq 0.
$$

Hence $C_1(q)$ is dissipative.

One can easily verify that the adjoint $C_1^*(q)$ of $C_1(q)$ is given by $\text{dom}(C_1^*(q)) = \text{dom}(C_1(q)) = \text{dom}(A_1(q)) \times \text{dom}(B_1(q))$ and

$$
C_1^*(q) = \begin{pmatrix} 0 & -I \\ A_1(q) & -B_1(q) \end{pmatrix}.
$$
If \(\eta = \begin{pmatrix} u \\ v \end{pmatrix} \in \text{dom} \left(C_1^*(q) \right) \), we have

\[
\langle C_1^*(q)\eta, \eta \rangle_{E_q} = \left\langle \begin{pmatrix} 0 & -I \\ A_1(q) & -B_1(q) \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}, \begin{pmatrix} u \\ v \end{pmatrix} \right\rangle_{E_q}
\]

\[
= \left\langle \begin{pmatrix} A_1(q) -v \\ B_1(q)u - v \end{pmatrix}, \begin{pmatrix} u \\ v \end{pmatrix} \right\rangle_{E_q}
\]

\[
= \left\langle A_1^{1/2}(q)v, A_1^{1/2}(q)u \right\rangle_{L_{2,\rho}} + \langle A_1(q)u - B_1(q)v, v \rangle_{L_{2,\rho}}.
\]

Again, since \(A_1^{1/2}(q) \) is self-adjoint, \(u \in \text{dom} \left(A_1(q) \right) \) and \(B_1(q) \) is positive, it follows that

\[
\langle C_1^*(q)\eta, \eta \rangle_{E_q} = -\langle v, A_1(q)u \rangle_{L_{2,\rho}} + \langle A_1(q)u, v \rangle_{L_{2,\rho}} - \langle B_1(q)v, v \rangle_{L_{2,\rho}}
\]

\[
= -\langle B_1(q)v, v \rangle_{L_{2,\rho}}
\]

\[
\leq 0.
\]

Hence, \(C_1^*(q) \) is also dissipative. It now follows from the Lumer-Phillips theorem (see [34], p.15, cor. 4.4) that \(C_1(q) \) is the infinitesimal generator of a strongly continuous semigroup of contractions \(e^{C_1(q)t} \) on \(E_q \).

Comment: Operators of the form \(\mathcal{A}_B = \begin{pmatrix} 0 & I \\ -A & -B \end{pmatrix} \) where both \(A \) and \(B \) are positive and self-adjoint, appear often in the theory of elastic systems. In fact, they correspond to the elastic model \(\ddot{x} + B\dot{x} + Ax = 0 \), written as a first order system. In 1982, D.L. Russell and G. Chen ([10]) first conjectured the analyticity of the \(C_0 \)-semigroup of contractions \(e^{\mathcal{A}_Bt} \) generated by \(\mathcal{A}_B \), when \(B \) is "related" to the \(\delta \)-power of \(A \), \(0 < \delta \leq 1 \). This conjecture was later proved by Triggiani and S. Chen ([12]). It turns out that if \(\rho_1 A^\delta \leq B \leq \rho_2 A^\delta \) for some constants \(\rho_1, \rho_2, 0 < \rho_1 < \rho_2 < \infty \), then \(e^{\mathcal{A}_Bt} \) is analytic if \(\frac{1}{2} \leq \delta \leq 1 \) and \(e^{\mathcal{A}_Bt} \) is not analytic if \(0 < \delta < \frac{1}{2} \).

For fixed \(q \in \mathcal{Q} \) the eigenvalues of the operator \(A_1(q) \) are easily found to be

\[
\mu_n = \mu_n(q) = \frac{\gamma n^4 \pi^4}{\rho}, \quad n = 1, 2, \ldots, \tag{4.20}
\]
with corresponding normalized eigenfunctions in $L_{2,\rho}(\Omega)$ given by

$$h_n(x) = \sqrt{\frac{2}{\rho}} \sin(\pi nx). \quad (4.21)$$

Theorem 4.5. Let $q \in \mathcal{Q}$, $C_1(q)$ as in (4.19) and $\{\mu_n\}_{n=1}^{\infty}$ the eigenvalues of $A_1(q)$ given by (4.20). Then, **a)** the strongly continuous semigroup of contractions $e^{C_1(q)t}$ generated by $C_1(q)$ on E_q is also analytic. **b)** The spectrum $\sigma(C_1(q))$ of $C_1(q)$ consists only of eigenvalues $\{\lambda_n^{+,\pm}\}_{n=1}^{\infty}$, which are the solutions of the equation

$$\lambda^2 + 2r(q)\mu_n^{1/2}\lambda + \mu_n = 0,$$

where $r(q) = \frac{\beta \sqrt{\rho}}{2\sqrt{\gamma}}$, and are given by

$$\lambda_n^{+,\pm} = \sqrt{\mu_n} \left(-r(q) \pm \sqrt{r^2(q) - 1}\right).$$

The eigenvalues are real if and only if $r(q) \geq 1$, i.e. $\beta^2 \rho \geq 4\gamma$. If $r(q) < 1$, the eigenvalues lay symmetrically with respect to the real axis on the two rays

$\{xe^{\pm i\alpha(q)}, \quad 0 \leq x < \infty\}$

where $e^{\pm i\alpha(q)} = -r(q) \pm i \sqrt{1 - r^2(q)}$ (note that $\alpha(q) > \frac{\pi}{2}$).

In any case, $\text{Re}\lambda_n^{+,\pm} < 0$ for all n,

$$\frac{|\text{Im}\lambda_n^{+,\pm}|}{|\text{Re}\lambda_n^{+,\pm}|} \leq M(q) \hat{=} \begin{cases} 0 & \text{if } r(q) \geq 1, \\ \frac{\sqrt{1 - r^2(q)}}{r(q)} & \text{if } r(q) < 1. \end{cases}$$

and the spectrum $\sigma(C_1(q))$ of $C_1(q)$ is contained in a triangular sector of the form

$$\Sigma \hat{=} \left\{ \lambda \in \mathbb{C} \mid |\arg(\lambda)| > \frac{\pi}{2} + \theta_0(q) \right\},$$

where $\theta_0(q)$ is any number satisfying $0 < \theta_0(q) < \frac{\pi}{2}$ if $r(q) \geq 1$, and $0 < \theta_0(q) < \alpha(q) - \frac{\pi}{2}$ if $r(q) < 1$. The corresponding family of normalized eigenvectors $\{\phi_n^{+,\pm}\}_{n=1}^{\infty}$ on E_q is given by

$$\phi_n^+ = \left(\frac{e_n}{\lambda_n^{+,\pm}e_n}\right), \quad \phi_n^- = k_n \left(\frac{e_n}{\lambda_n^{+,\pm}e_n}\right),$$
where
\[e_n(x) = \sqrt{\frac{2}{\rho (\mu_n + |\lambda_n^+|^2)}} \sin(\pi nx), \quad \text{and} \quad k_n^2 = \frac{\mu_n + |\lambda_n^+|^2}{\mu_n + |\lambda_n^-|^2}. \]

Note that \(\mu_n, \lambda_n^{+/-}, \theta_0, e_n, \phi_n^{+/-}, \) all depend on \(q \in \mathbb{Q}. \)

c) The eigenvectors \(\{\phi_n^{+/-}\}_{n=1}^{\infty} \) satisfy:

(i) \(\{\phi_n^{+}\}_{n=1}^{\infty} \) is an orthonormal family on \(E_q; \)

(ii) \(\{\phi_n^{-}\}_{n=1}^{\infty} \) is an orthonormal family on \(E_q \) and

(iii) \(\langle \phi_m^{+}, \phi_n^{-}\rangle_{E_q} = \begin{cases} 0 & \text{if } n \neq m, \\ k_n \left(\mu_n + \lambda_n^+ \lambda_n^- \right) \|e_n\|_{L_2, \rho}^2 & \text{if } m = n \text{ and } \lambda_n^+ \neq \lambda_n^-, \\ 1 & \text{if } m = n \text{ and } \lambda_n^+ = \lambda_n^-. \end{cases} \)

d) The eigenvalues of \(C_1^*(q) \) are \(\left\{ \lambda_n^{+/-} \right\}_{n=1}^{\infty} \), the conjugates of the eigenvalues of \(C_1(q) \), with corresponding normalized eigenvectors on \(E_q \) given by

\[\phi_m^{**} = \left(\frac{e_m}{\lambda_m^+ e_m} \right), \quad \phi_m^{*-} = k_m \left(\frac{e_m}{-\lambda_m^- e_m} \right). \]

e) Assume, in addition that \(\beta^2 \rho \neq 4\gamma \) (or equivalently, \(r(q) \neq 1 \)) and let

\[\psi_m^{**} = \frac{1}{v_m^{**}} \phi_m^{**}, \quad \psi_m^{*-} = \frac{1}{v_m^{**} k_m} \phi_m^{*-}, \]

where

\[v_m^{-} \doteq \frac{\mu_m - (\lambda_m^-)^2}{\mu_m + |\lambda_m^-|^2}, \quad v_m^{+} \doteq \frac{\mu_m - (\lambda_m^+)^2}{\mu_m + |\lambda_m^+|^2}. \]

Then, the non-normalized eigenvectors \(\{\psi_m^{**+/-}\}_{m=1}^{\infty} \) form a bi-orthogonal system with respect to the eigenvectors \(\{\phi_m^{+/-}\}_{m=1}^{\infty} \) of \(C_1(q) \), in the sense that

\[\langle \psi_m^{**}, \phi_n^{+}\rangle_{E_q} = \langle \psi_m^{*-}, \phi_n^{-}\rangle_{E_q} = \delta_{nm} = \begin{cases} 1 & \text{if } n = m, \\ 0 & \text{if } n \neq m. \end{cases} \]

and

\[\langle \psi_m^{**}, \phi_n^{+}\rangle_{E_q} = \langle \psi_m^{*-}, \phi_n^{-}\rangle_{E_q} = 0 \]

for all \(m, n. \)
f) The operator $C_1(q)$ and the semigroup $e^{C_1(q)t}$ generated by $C_1(q)$ on E_q have the following spectral representations:

$$C_1(q)\begin{pmatrix} u \\ v \end{pmatrix} = \sum_{n=1}^{\infty} \lambda_n^+ \left\langle \begin{pmatrix} u \\ v \end{pmatrix}, \psi_n^+ \right\rangle_{E_q} \phi_n^+ + \sum_{n=1}^{\infty} \lambda_n^- \left\langle \begin{pmatrix} u \\ v \end{pmatrix}, \psi_n^- \right\rangle_{E_q} \phi_n^-,$$

$$e^{C_1(q)t} \begin{pmatrix} u \\ v \end{pmatrix} = \sum_{n=1}^{\infty} e^{\lambda_n^+ t} \left\langle \begin{pmatrix} u \\ v \end{pmatrix}, \psi_n^+ \right\rangle_{E_q} \phi_n^+ + \sum_{n=1}^{\infty} e^{\lambda_n^- t} \left\langle \begin{pmatrix} u \\ v \end{pmatrix}, \psi_n^- \right\rangle_{E_q} \phi_n^-.$$

g) Finally, the semigroup $e^{C_1(q)t}$ satisfies the stability condition

$$\|e^{C_1(q)t}\|_{L(E_q)} \leq e^{-\epsilon(q)t}$$

where $\epsilon(q) = - \sup_{\lambda \in \sigma(C_1(q))} \Re \lambda = - \Re \lambda_1^+$ satisfies

$$\epsilon(q) = \begin{cases} \sqrt{\mu_1} r(q) = \frac{\beta \pi^2}{2}, & \text{if } \beta^2 \rho \leq 4\gamma \\ \sqrt{\mu_1} \left(r(q) - \sqrt{r^2(q) - 1} \right) = \frac{\pi^2}{2\sqrt{\rho}} \left(\beta \sqrt{\rho} - \sqrt{\beta^2 \rho - 4\gamma} \right), & \text{if } \beta^2 \rho > 4\gamma \end{cases}$$

PROOF: The proof of this theorem follows immediately from Theorems 1.1, 1.2 and Lemmas A1 and A2 in [12], by noting that the operator $C_1(q)$ corresponds to the elastic system $\ddot{x} + 2r(q)A_{1/2}(q)\dot{x} + A_1(q)x = 0$ written as a first order system.

Let $L_{2,\mathbb{C}_x}^2(\Omega)$ denote the Hilbert space $L_2(\Omega)$ with inner product

$$\langle w, \dot{w} \rangle_{L_{2,\mathbb{C}_x}^2(\Omega)} = \frac{C_v}{k} \int_{\Omega} w \dot{w}$$

and define the operator $C_2(q)$ on $L_{2,\mathbb{C}_x}^2(\Omega)$ by

$$\text{dom}(C_2(q)) \doteq \{ w \in H^2(\Omega) \mid w'(0) = 0, kw'(1) + k_1w(1) = 0 \},$$

$$C_2(q) \doteq \frac{k}{C_v} \frac{\partial^2}{\partial x^2}. \quad (4.22)$$

Theorem 4.6. Let $C_2(q) : \text{dom}(C_2(q)) \subset L_{2,\mathbb{C}_x}^2(\Omega) \rightarrow L_{2,\mathbb{C}_x}^2(\Omega)$ be as defined above. Then

i) $C_2(q)$ is dissipative and self-adjoint;
ii) The spectrum \(\sigma(C_2(q)) \) consists only of eigenvalues \(\{\alpha_n\}_{n=1}^{\infty} \) given by

\[
\alpha_n = -\frac{k\tau_n}{C_v}, \quad n = 1, 2, \ldots,
\]

where \(\{\tau_n\}_{n=1}^{\infty} \) are all the positive solutions of the equation \(\tan \tau = \frac{k_1}{k_T} \). The corresponding normalized eigenfunctions \(\{\chi_n\}_{n=1}^{\infty} \) in \(L_2, \mathcal{C}_K^\kappa(\Omega) \) are given by

\[
\chi_n(x) = \left(\frac{k\tau_n}{C_v \int_0^{\tau_n} \cos^2(\xi) \, d\xi} \right)^{1/2} \cos(\tau_n x).
\]

iii) The operator \(C_2(q) \) generates a strongly continuous semigroup of contractions \(e^{C_2(q)t} \) on \(L_2, \mathcal{C}_K^\kappa(\Omega) \) which is also analytic and satisfies the stability property

\[
\|e^{C_2(q)t}\|_{\mathcal{L}(L_2, \mathcal{C}_K^\kappa(\Omega))} \leq e^{-\frac{k\tau^2}{C_v} t}, \quad t \geq 0.
\]

iv) The semigroup \(e^{C_2(q)t} \) has the representation

\[
e^{C_2(q)t}w = \sum_{n=1}^{\infty} e^{\alpha_n t} \langle w, \chi_n \rangle_{L_2, \mathcal{C}_K^\kappa} \chi_n
\]

Proof:

i) Using integration by parts and the boundary conditions for \(C_2(q) \), it follows that

\[
\langle C_2(q)w, w \rangle_{L_2, \mathcal{C}_K^\kappa} = -\frac{k_1}{k} \|w(1)\|^2 - \|w'\|_{L_2}^2
\]

for any \(w \in \text{dom}(C_2(q)) \). Thus \(C_2(q) \) is dissipative. Similarly, one can easily show that \(C_2(q) \) is symmetric. Moreover, an application of the Fundamental Lemma of the Calculus of Variations yields that \(C_2(q) \) is self-adjoint. Since the steps are exactly the same as those in the proof of Theorem 4.2, we do not give details here.

ii) The function \(f \) is an eigenvector of \(C_2(q) \) corresponding to the eigenvalue \(\xi \) if and only if \(f \neq 0 \) satisfies \(f''(x) = \frac{C_2k}{k} f(x), f'(0) = 0 \) and \(k f'(1) + k_1 f(1) = 0 \). This implies that \(\xi < 0 \) satisfies

\[
\frac{k}{k_1} \sqrt{-\frac{C_2k}{k} \tan \left(\sqrt{-\frac{C_2k}{k}} x \right)} = 1 \quad \text{and} \quad f(x) = b \cos \left(\sqrt{-\frac{C_2k}{k}} x \right),
\]

\(b \in \mathbb{R} \). Letting \(\tau = \sqrt{-\frac{C_2k}{k}} \), we get that the eigenvalues \(\{\alpha_n\}_{n=1}^{\infty} \) of \(C_2(q) \) are given by
\[\alpha_n = - \frac{k \nu^2}{C_v} \text{ where } \{ \tau_n \}_{n=1}^{\infty} \text{ are all the positive solutions of the equation } \frac{k}{k_1} \tau \tan \tau = 1. \]

Moreover, normalization of \(\chi_n(x) = b_n \cos(\tau_n x) \) gives \(b_n = \left(\frac{k \nu^2}{C_v} \int_0^{\tau_n} \cos^2(\xi) \, d\xi \right)^{1/2} \).

\textbf{iii, iv} Since \(C_2(q) \) is self-adjoint with pure point spectrum it follows that (see [44])

\[L_2, \mathcal{G}_k^q(\Omega) = \text{span} \{ \chi_n \}_{n=1}^{\infty}, w = \sum_{n=1}^{\infty} \langle w, \chi_n \rangle_{L_2, \mathcal{G}_k^q} \chi_n \text{ for any } w \in L_2, \mathcal{G}_k^q(\Omega), C_2(q)w = \sum_{n=1}^{\infty} \alpha_n \langle w, \chi_n \rangle_{L_2, \mathcal{G}_k^q} \chi_n \text{ for any } w \in \text{dom}(C_2(q)), \text{ and } e^{C_2(q)t}w = \sum_{n=1}^{\infty} e^{\alpha_n t} \langle w, \chi_n \rangle_{L_2, \mathcal{G}_k^q} \chi_n \text{ for any } w \in L_2, \mathcal{G}_k^q(\Omega). \]

From this representation for \(e^{C_2(q)t} \) it is easy to see that

\[\| e^{C_2(q)t} \|_{L(\mathcal{G}_k^q(\Omega))} \leq e^{\alpha_1 t} = e^{-\frac{k \nu^2}{C_v} t}, \quad t \geq 0. \]

We note now that \(Z_q \) is isometrically isomorphic to \(E_q \times L_2, \mathcal{G}_k^q(\Omega) \). In fact,

\[\eta = \begin{pmatrix} u \\ v \end{pmatrix} \in E_q \text{ and } w \in L_2, \mathcal{G}_k^q(\Omega) \text{ if and only if } \begin{pmatrix} u \\ v \end{pmatrix} \in Z_q. \]

Also note that for any \(\eta = \begin{pmatrix} u \\ v \end{pmatrix}, \hat{\eta} = \begin{pmatrix} \hat{u} \\ \hat{v} \end{pmatrix} \in E_q, w, \hat{w} \in L_2, \mathcal{G}_k^q(\Omega) \) we have

\[\left\langle \begin{pmatrix} \eta \\ w \end{pmatrix}, \begin{pmatrix} \hat{\eta} \\ \hat{w} \end{pmatrix} \right\rangle_{E_q \times L_2, \mathcal{G}_k^q} = \left\langle \eta, \hat{\eta} \right\rangle_{E_q} + \left\langle w, \hat{w} \right\rangle_{L_2, \mathcal{G}_k^q} \]

\[= \left\langle \begin{pmatrix} u \\ \hat{u} \end{pmatrix}, \begin{pmatrix} \hat{u} \\ \hat{v} \end{pmatrix} \right\rangle_{E_q} + \left\langle w, \hat{w} \right\rangle_{L_2, \mathcal{G}_k^q} \]

\[= \left\langle A_1^{1/2} u, A_1^{1/2} \hat{u} \right\rangle_{L_2, \rho} + \left\langle \hat{v}, \hat{w} \right\rangle_{L_2, \rho} + \left\langle w, \hat{w} \right\rangle_{L_2, \mathcal{G}_k^q} \]

\[= \rho \int_\Omega \sqrt{\gamma} u'' + \rho \int_\Omega \sqrt{\gamma} \hat{u}'' + \rho \int_\Omega v\hat{v} + \frac{C_v}{k} \int_\Omega \hat{w} \hat{w} \]

\[= \gamma \int_\Omega u'' \hat{u}'' + \rho \int_\Omega v\hat{v} + \frac{C_v}{k} \int_\Omega \hat{w} \hat{w} \]

\[= \left\langle \begin{pmatrix} u \\ v \end{pmatrix}, \begin{pmatrix} \hat{u} \\ \hat{v} \end{pmatrix} \right\rangle_{Z_q}. \]
Thus, the Hilbert space $E_q \times L_{2,\mathcal{L}_q}(\Omega)$ endowed with the usual inner product is isometrically isomorphic to Z_q. From now on we will freely make use of this identification.

The following identity relating the operators $A(q)$, $C_1(q)$ and $C_2(q)$ can be immediately verified

$$A(q) = \begin{pmatrix} C_1(q) & 0 \\ 0 & C_2(q) \end{pmatrix},$$

where the equality should be interpreted in the sense of the isomorphism previously defined. This identity allows us to use Theorems 4.5 and 4.6 from which we obtain the following.

Theorem 4.7. Let $A(q) : \text{dom} \,(A(q)) \subset Z_q \to Z_q$ be as in (4.8)-(4.9). Then

i) $0 \in \rho(A(q))$, the resolvent set of $A(q)$;

ii) The spectrum $\sigma(A(q))$ of $A(q)$ consists only of eigenvalues,

$$\sigma(A(q)) = \sigma_p(A(q)) = \sigma_p(C_1(q)) \cup \sigma_p(C_2(q)) = \{ \lambda_n^{+,-}, \alpha_n \}_{n=1}^\infty$$

where

$$\lambda_n^{+,-} = \sqrt{\mu_n} \left(-r(q) \pm \sqrt{r^2(q) - 1} \right), \quad \alpha_n = -\frac{k\tau_n^2}{C_v},$$

with $\mu_n = \frac{\gamma n^4 \pi^4}{\rho^2}$, $r(q) = \frac{\beta \sqrt{\rho}}{2 \sqrt{\gamma}}$ and $\{ \tau_n \}_{n=1}^\infty$ are all the positive solutions of the equation $\tan \tau = \frac{k_1}{k\tau}$.

The corresponding set of normalized eigenvectors in Z_q is given by

$$\left\{ \begin{pmatrix} e_n \\ \lambda_n^{+} e_n \\ 0 \end{pmatrix}, \begin{pmatrix} k_n \lambda_n^{-} e_n \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}_{n=1}^\infty,$$

where

$$e_n(x) = \left(\frac{2}{\rho(\mu_n + |\lambda_n^{+}|^2)} \right)^{1/2} \sin(\pi n x),$$

$$\chi_n(x) = \left(\frac{k\tau_n}{C_v \int_0^{\tau_n} \cos^2(\xi) \, d\xi} \right)^{1/2} \cos(\tau_n x)$$
and

\[k_n^2 = \frac{\mu_n + |\lambda_n^+|^2}{\mu_n + |\lambda_n^-|^2}, \]

iii) The operator \(A(q) \) generates an exponentially stable analytic semigroup \(T(t; q) \) which satisfies

\[\|T(t; q)\|_{\mathcal{L}(z_q)} \leq e^{-\omega(q)t}, \quad \text{for } t \geq 0, \]

where \(\omega(q) \) is given by

\[\omega(q) = \begin{cases}
\min \left(\frac{k_n^2}{C_v}, \frac{\beta \sigma^2}{2} \right), & \text{if } \beta^2 \rho \leq 4\gamma \\
\min \left(\frac{k_n^2}{C_v}, \frac{\beta \sigma^2}{2} - \frac{\sigma^2}{2\sqrt{\rho}} \sqrt{\beta^2 \rho - 4\gamma} \right), & \text{if } \beta^2 \rho > 4\gamma.
\end{cases} \]

Moreover, the semigroup \(T(t; q) \) has the representation

\[
T(t; q)z = \sum_{n=1}^{\infty} e^{\lambda_n^+ t} \left\langle z, \frac{1}{v_n^+} \left(-\frac{e_n}{\lambda_n^+ e_n} \right) \right\rangle_q \left(\frac{e_n}{\lambda_n^+ e_n} \right) + \sum_{n=1}^{\infty} e^{\lambda_n^- t} \left\langle z, \frac{1}{v_n^-} \left(-\frac{e_n}{\lambda_n^- e_n} \right) \right\rangle_q \left(\frac{k_n e_n}{\lambda_n^- e_n} \right) + \sum_{n=1}^{\infty} e^{\alpha_n t} \left\langle z, \begin{pmatrix} 0 \\ \chi_n \end{pmatrix} \right\rangle_q \left(\begin{pmatrix} 0 \\ \chi_n \end{pmatrix} \right),
\]

where \(v_n^{+/-} = \frac{\mu_n - \left(\frac{\lambda_n^{+/-}}{2} \right)^2}{\mu_n + \left(\frac{\lambda_n^{+/-}}{2} \right)^2} \).

Proof: It can be immediately verified that \(A(q) \) is invertible and

\[A^{-1}(q) = \begin{pmatrix} C_1^{-1}(q) & 0 \\ 0 & C_2^{-1}(q) \end{pmatrix}, \]

where

\[C_1^{-1}(q) = \begin{pmatrix} -B_1(q)A_1^{-1}(q) & -A_1^{-1}(q) \\ I & 0 \end{pmatrix} = \begin{pmatrix} -\frac{\beta \sigma^2}{\sqrt{\rho}} A_1^{1/2}(q) & -A_1^{-1}(q) \\ I & 0 \end{pmatrix}. \]
Parts (ii) and (iii) follow immediately from Theorems 4.5 and 4.6 and the fact that $C_1(q)$ and $C_2(q)$ “decouple” the operator $A(q)$.

Since $A(q)$ is closed, $\text{dom} (A(q))$ endowed with the graph norm of $A(q)$,

$$\|z\|_{A(q)} = \|z\|_q + \|A(q)z\|_q$$

is a Hilbert space which we denote by $Z_{A(q)}$, i.e.,

$$Z_{A(q)} \ni (\text{dom} (A(q)) ; \|\cdot\|_{A(q)}) .$$

Since $A(q)$ is invertible, $\|\cdot\|_{A(q)}$ is equivalent to $\|\cdot\|_G$ defined by $\|z\|_G = \|A(q)z\|_q$ on $\text{dom} (A(q))$.

Now, for $z = \begin{pmatrix} u \\ v \\ w \end{pmatrix} \in \text{dom} (A(q))$ we define

$$\|z\|_{H^2}^2 = \|u\|_{H^2}^2 + \|v\|_{H^2}^2 + \|w\|_{H^2}^2,$$

while $\|z\|_{H^1}^2$ is defined in the analogous way. The following Lemma relates the H^2-norm and the $\|\cdot\|_{A(q)}$-norm on $\text{dom} (A(q))$.

Lemma 4.8. Let S be a bounded subset of $Z_{A(q)}$. Then S is also bounded in the H^2-norm, i.e., there exists a constant C depending on q and S such that $\|z\|_{H^2}^2 \leq C$ for all $z \in S$. Moreover, the constant C can be chosen independent of q, for q on compact subsets of Q not containing $q = 0$.

Proof: Since S is bounded in $Z_{A(q)}$, there exists $M > 0$ such that $\|z\|_{A(q)}^2 \leq M$ for all $z \in S$. Let $z = \begin{pmatrix} u \\ v \\ w \end{pmatrix} \in S$. Then,

$$\|u\|_{L^2} \leq \|u'\|_{L^2} \leq \|u''\|_{L^2} \quad \text{since } u \in H^1_0(0,1) \cap H^2(0,1).$$

The first inequality, known as Poincaré’s first inequality (see [46], p. 116), follows immediately from Schwartz’s inequality and the fact that $u(0) = 0$. For the second one, note that $\|u'\|_{L^2}^2 = \int_0^1 (u')^2 = -\int_0^1 uu'' \leq \|u\|_{L^2}\|u''\|_{L^2} \leq \|u'\|_{L^2}\|u''\|_{L^2}$. Hence, $\|u'\|_{L^2} \leq \|u''\|_{L^2}$.
Now
\[\|u''\|_{L_2}^2 \leq \frac{\|z\|_q^2}{\gamma} \leq \frac{\|z\|_{A(q)}^2}{\gamma} \leq \frac{M}{\gamma}. \]
Similarly we have
\[\|v\|_{L_2} \leq \|v'\|_{L_2} \leq \|v''\|_{L_2}, \quad \text{since } v \in H_0^1(0,1) \cap H^2(0,1). \]
and
\[\|v''\|_{L_2} \leq \frac{\|A(q)z\|_q^2}{\gamma} \leq \frac{\|z\|_{A(q)}^2}{\gamma} \leq \frac{M}{\gamma}. \]
Finally, we have
\[\|w\|_{L_2}^2 \leq \frac{\|z\|_q^2}{\frac{C_v}{k}} \leq \frac{k}{C_v} \|z\|_{A(q)}^2 \leq \frac{Mk}{C_v}, \]
\[\|w''\|_{L_2}^2 = \frac{C_v}{k} \left(\frac{k}{C_v} \|w''\|_{L_2}^2 \right) \leq \frac{C_v}{k} \|A(q)z\|_q^2 \leq \frac{C_v}{k} \|z\|_{A(q)}^2 \leq \frac{C_v M}{k}, \]
and
\[\|w'\|_{L_2}^2 = \int w'w|_{\partial \Omega} - \int_{\Omega} \int w'' \leq w'(1)w(1) + \|w\|_{L_2} \|w''\|_{L_2} \]
\[= -\frac{k_1}{k} [w(1)]^2 + \|w\|_{L_2} \|w''\|_{L_2} \leq \|w\|_{L_2} \|w''\|_{L_2} \]
\[\leq \sqrt{\frac{kM}{C_v} \sqrt{\frac{C_v M}{k}}} = M. \]
Hence \(\|z\|_{H^2} \leq C \), where \(C = M \left(\frac{6}{\gamma} + \frac{C_v}{k} + \frac{k}{C_v} + 1 \right) \) can be chosen independent of \(q \) on any subset \(Q_\omega \) of \(Q \) of the form
\[Q_\omega = \{ q = (\rho, C_v, \beta, \alpha_2, \alpha_4, \alpha_6, \theta_1, \gamma) \in Q \mid 0 < a \leq C_v \leq b < \infty, \quad 0 < c \leq \gamma \} \]
and therefore, on any compact subset of \(Q \) not containing \(q = 0 \).

Remark: By Theorem 4.7, \(A(q) \) is the infinitesimal generator of an analytic semigroup and \(0 \in \rho(-A(q)) \). Hence, the fractional powers of \(-A(q) \), \([-A(q)]^\delta \) are well defined, closed, linear, invertible operators for all \(0 < \delta \leq 1 \) (see [34], section 2.6). Therefore, \(\text{dom} \left([-A(q)]^\delta \right) \) endowed with the graph norm \(\|z\|_{A^\delta(q)} \cong \|z\|_q + \|[A(q)]^\delta z\|_q \) is a Hilbert space, which we denote by \(Z_{A^\delta(q)} \).
One way of showing that the initial value problem (4.7) is well-posed, involves proving that the nonlinear term $F(q, t, z)$ is sufficiently regular with respect to the operator $A(q)$. More precisely, one of the requirements is that $F(q, t, z)$ be locally uniformly Hölder continuous in z with respect to the graph norm of some fractional δ-power of $-A(q)$.

Definition (Condition (F)). Let $-A$ be the infinitesimal generator of an analytic semigroup $T(t)$ on a Banach space X and assume $0 \in \rho(-A)$. For $0 < \delta \leq 1$, let X_δ denote the Banach space $(\text{dom } (A^\delta) ; || \cdot ||_\delta)$, where $||x||_\delta \doteq ||A^\delta x||$. Let U be an open subset of $\mathbb{R}^+ \times X_\delta$. We say that the function $f : U \rightarrow X$ satisfies the condition (F) on U if for every $(t, x) \in U$ there exists a neighborhood $V \subset U$ and constants $L \geq 0$, $0 < \nu \leq 1$ such that

$$||f(t_1, x_1) - f(t_2, x_2)|| \leq L (|t_1 - t_2|^{\nu} + ||x_1 - x_2||_\delta)$$

for all $(t_1, x_1), (t_2, x_2) \in V$, i.e., if f is locally Hölder continuous in t and locally Lipschitzian in x, on U.

Theorem 4.9. Let $-A$ be the infinitesimal generator of an analytic semigroup $T(t)$ satisfying $||T(t)|| \leq M$ and assume further that $0 \in \rho(-A)$. If f satisfies the condition (F) for some $0 < \delta \leq 1$, then for every initial data $(t_0, x_0) \in U$ the initial value problem

$$\begin{align*}
\frac{du(t)}{dt} + Au(t) &= f(t, u(t)), & t > 0 \\
u(t_0) &= x_0
\end{align*}$$

has a unique local solution $u \in C([t_0, t_1); X) \cap C^1((t_0, t_1); X)$ where $t_1 = t_1(t_0, x_0) > t_0$.

Proof: The proof of this theorem for the case $0 < \delta < 1$ can be found in [34], p. 196. In the case $\delta = 1$, it is enough that $-A$ be the infinitesimal generator of a C_0-semigroup, i.e. one can drop the analyticity assumption. The proof for this particular case can be found in [34], p. 190.

The following theorem states that the nonlinear part of system (4.7) satisfies the condition (F) with $\delta = 1$.
Theorem 4.10. Let \(q \in \mathcal{Q} \), \(U \) a bounded open neighborhood of the origin in \(\mathbb{R}^+_0 \times Z_{A(q)} \), and define \(h_q : U \to Z_q \) by \(h_q(t, z) = F(q, t, z) \). Then \(h_q \) satisfies the condition \((F)\) on \(U \) with constants \(\delta = 1, \nu = 1 \) and \(L > 0 \), uniformly in \(U \), i.e.,

\[
\|F(q, t_1, z_1) - F(q, t_2, z_2)\|_q \leq L \left(|t_1 - t_2| + \|z_1 - z_2\|_{A(q)} \right) \tag{4.23}
\]

for all \((t_1, z_1), (t_2, z_2) \in U\). The constant \(L \) in general depends on \(q \) but it can be chosen independent of \(q \) on compact subsets of \(\mathcal{Q} \) not containing \(q = 0 \).

Proof: Since \(U \) is bounded, there exist constants \(M_1, M_2 > 0 \) such that \(|t| \leq M_1\) and \(\|z\|_{A(q)} \leq M_2 \) for all \((t, z) \in U\). Also, by Lemma 4.8, there exists a constant \(C_1 \) depending on \(q \) such that \(\|z\|_{H^2} \leq C_1 \) for all \((t, z) \in U\). More precisely, \(C_1 = M_2 \sqrt{\frac{\delta}{\gamma} + \frac{C_v}{k} + \frac{k}{C_v} + 1} \).

Let \((t_i, z_i) \in U, z_i = \begin{pmatrix} u_i \\ v_i \\ w_i \end{pmatrix}, i = 1, 2\). Then

\[
\|h_q(t_1, z_1) - h_q(t_2, z_2)\|_q = \|F(q, t_1, z_1) - F(q, t_2, z_2)\|_q
\]

\[
= \left\| \begin{pmatrix} f_2(q, t_1, z_1) - f_2(q, t_2, z_2) \\ f_3(q, t_1, z_1) - f_3(q, t_2, z_2) \end{pmatrix} \right\|_q
\]

\[
= \left\{ \rho \|f_2(q, t_1, z_1) - f_2(q, t_2, z_2)\|^2_{L_2} + \frac{C_v}{k} \|f_3(q, t_1, z_1) - f_3(q, t_2, z_2)\|^2_{L_2} \right\}^{\frac{1}{2}}
\]

\[
\leq \sqrt{\rho} \|f_2(q, t_1, z_1) - f_2(q, t_2, z_2)\|_{L_2} + \sqrt{\frac{C_v}{k}} \|f_3(q, t_1, z_1) - f_3(q, t_2, z_2)\|_{L_2}.
\]

Therefore, \(h_q(t, z) \) satisfies the condition \((F)\) uniformly on \(U \) with \(\nu = 1 \) if both \(f_2(q, t, z) \) and \(f_3(q, t, z) \) are uniformly Lipschitz in \(t \) on \(U \) and uniformly Lipschitz in \(z \) on \(U \) with respect to the norm \(\| \cdot \|_{A(q)} \).

Let us work first with \(f_3(q, t, z) \). We have

\[
f_3(q, t_1, z_1) - f_3(q, t_2, z_2) = C_v^{-1} [g(\cdot, t_1) - g(\cdot, t_2)]
\]

\[
+ 2\alpha_2 C_v^{-1} [(w_1 + L(\cdot, t_1)) u_1' v_1' - (w_2 + L(\cdot, t_2)) u_2' v_2']
\]

\[
+ \beta \rho C_v^{-1} (v_1'^2 - v_2'^2)
\]

\[
- \cos(2\pi \cdot) [\theta'_1(t_1) - \theta'_1(t_2)]
\]

\[
- 4k \pi^2 C_v^{-1} [L(\cdot, t_1) - L(\cdot, t_2)]
\]

\[
= I_1 + I_2 + I_3 + I_4 + I_5. \tag{4.24}
\]
Now, using hypothesis (H1) we obtain
\[\|I_1\|_{L^2} \leq C_v^{-1}\|K_\rho\|_{L^2}|t_1 - t_2|. \quad (4.25a) \]

Also,
\[\|I_3\|_{L^2} = \beta \rho C_v^{-1}\|v_1^2 - v_2^2\|_{L^2} \leq \beta \rho C_v^{-1}(\|v'_1\|_{L^\infty} + \|v'_2\|_{L^\infty})\|v'_1 - v'_2\|_{L^2}, \]

and using the Sobolev embedding \(H^1(\Omega) \hookrightarrow L^\infty(\Omega) \) we have \(\|v'_1\|_{L^\infty} \leq C_\infty \|v'_1\|_{H^1} \leq C_\infty \|v_1\|_{H^2} \leq C_\infty \|z_1\|_{H^2} \leq C_\infty C_1 \), where \(C_\infty \) is a positive constant coming from the embedding. Similarly, \(\|v'_2\|_{L^\infty} \leq C_\infty C_1 \) and, therefore
\[\|I_3\|_{L^2} \leq 2\beta \rho C_v^{-1}C_\infty C_1\|v'_1 - v'_2\|_{L^2}. \]

Since \(v_i \in H^1_0 \cap H^2(0,1), \ i = 1, 2 \), it follows that
\[\|I_3\|_{L^2} \leq 2\beta \rho C_v^{-1}C_\infty C_1\|v''_1 - v''_2\|_{L^2} \leq 2\beta \rho C_v^{-1}C_\infty C_1 \frac{1}{\sqrt{\gamma}}\|A(q)(z_1 - z_2)\|_q \leq \frac{2\beta \rho C_\infty C_1}{C_v \sqrt{\gamma}}\|z_1 - z_2\|_{A(q)}. \quad (4.25b) \]

From hypothesis (H2) we get
\[\|I_4\|_{L^2} \leq |\theta_x'(t_1) - \theta_x'(t_2)| \leq K'_{M_1}|t_1 - t_2|, \quad (4.25c) \]

where \(K'_{M_1} \) is the (local) Lipschitz constant for \(\theta_x' \) on the interval \([0, M_1]\).

Turning to \(I_5 \), we obtain the bound
\[\|I_5\|_{L^2} = 4\kappa^2 C_v^{-1}\|\theta_\Gamma(t_1) - \theta_\Gamma(t_2)\| \left(\int_\Omega \cos^2(2\pi x) \, dx \right)^{1/2} \leq 4\kappa^2 C_v^{-1}K_{M_1}|t_1 - t_2|, \quad (4.25d) \]

where \(K_{M_1} \) is the (local) Lipschitz constant for \(\theta_\Gamma \) corresponding to the interval \([0, M_1]\).

We now have to estimate \(\|I_2\|_{L^2} \). We separate \(I_2 \) into two terms, as follows:
\[I_2 = 2\alpha_2 C_v^{-1}\left[(w_1u'_1 - w_2u'_2)v'_1 + (L(\cdot, t_1)u'_1 v'_1 - L(\cdot, t_2)u'_2 v'_2) \right] = 2\alpha_2 C_v^{-1}(I_{21} + I_{22}). \quad (4.26) \]
Writing I_{21} in the form
\[I_{21} = w_1v'_1(u'_1 - u'_2) + u'_2w_1(v'_1 - v'_2) + u'_2v'_2(w_1 - w_2), \]
we obtain the estimate
\[\|I_{21}\|_{L_2} \leq \|w_1\|_{L_\infty} \|v'_1\|_{L_\infty} \|u'_1 - u'_2\|_{L_2} + \|u'_2\|_{L_\infty} \|w_1\|_{L_\infty} \|v'_1 - v'_2\|_{L_2} \]
\[+ \|u'_2\|_{L_\infty} \|v'_1\|_{L_\infty} \|w_1 - w_2\|_{L_2}. \]
Again, the Sobolev embedding $H^1(\Omega) \hookrightarrow L_\infty(\Omega)$ immediately yields $\|w_1\|_{L_\infty} \leq C_\infty C_1$, $\|v'_1\|_{L_\infty} \leq C_\infty C_1$, $\|v'_2\|_{L_\infty} \leq C_\infty C_1$, and $\|u'_2\|_{L_\infty} \leq C_\infty C_1$. Hence,
\[\|I_{21}\|_{L_2} \leq C_\infty^2 C_1^2 (\|u''_1 - u''_2\|_{L_2} + \|v''_1 - v''_2\|_{L_2} + \|w_1 - w_2\|_{L_2}). \]
Since $u_i, v_i \in H_0^1 \cap H^2, i = 1, 2$, it follows that
\[\|I_{21}\|_{L_2} \leq C_\infty^2 C_1^2 (\|u''_1 - u''_2\|_{L_2} + \|v''_1 - v''_2\|_{L_2} + \|w_1 - w_2\|_{L_2}) \]
\[\leq C_\infty^2 C_1^2 \left(\frac{\|z_1 - z_2\|_q}{\sqrt{\gamma}} + \frac{\|A(q)(z_1 - z_2)\|_q}{\sqrt{\gamma}} + \frac{\|z_1 - z_2\|_q}{C_v} \right) \]
\[\leq C_\infty^2 C_1^2 \left(\frac{1}{\sqrt{\gamma}} + \sqrt{\frac{k}{C_v}} \right) \|z_1 - z_2\|_{A(q)}. \] (4.27a)

Similarly, we have
\[I_{22} = L(\cdot, t_1)u'_1v'_1 - L(\cdot, t_2)u'_2v'_2 \]
\[= L(\cdot, t_1)u'_1(u'_1 - u'_2) + L(\cdot, t_1)u'_2(v'_1 - v'_2) + u'_2v'_2 (L(\cdot, t_1) - L(\cdot, t_2)) \]
\[= \theta_\Gamma(t_1)\cos(2\pi \cdot) v'_1(u'_1 - u'_2) + \theta_\Gamma(t_1)\cos(2\pi \cdot) u'_2(v'_1 - v'_2) \]
\[+ u'_2v'_2\cos(2\pi \cdot) (\theta_\Gamma(t_1) - \theta_\Gamma(t_2)). \]
Using hypothesis (H2) and the embedding $H^1(\Omega) \hookrightarrow L_\infty(\Omega)$, it follows that
\[\|I_{22}\|_{L_2} \leq \|\theta_\Gamma\|_{L_\infty(0, M_1)} C_\infty C_1 \|u'_1 - u'_2\|_{L_2} + \|\theta_\Gamma\|_{L_\infty(0, M_1)} C_\infty C_1 \|v'_1 - v'_2\|_{L_2} \]
\[+ C_\infty^2 C_1^2 K_{M_1} |t_1 - t_2| \]
\[\leq \|\theta_\Gamma\|_{L_\infty(0, M_1)} C_\infty C_1 (\|u''_1 - u''_2\|_{L_2} + \|v''_1 - v''_2\|_{L_2}) \]
\[+ C_\infty^2 C_1^2 K_{M_1} |t_1 - t_2| \]
\[\leq \|\theta_\Gamma\|_{L_\infty(0, M_1)} C_\infty C_1 \left(\frac{\|z_1 - z_2\|_q}{\sqrt{\gamma}} + \frac{\|A(q)(z_1 - z_2)\|_q}{\sqrt{\gamma}} \right) \]
\[+ C_\infty^2 C_1^2 K_{M_1} |t_1 - t_2| \]
\[\leq \frac{C_\infty C_1 \|\theta_\Gamma\|_{L_\infty(0, M_1)}}{\sqrt{\gamma}} \|z_1 - z_2\|_{A(q)} + C_\infty^2 C_1^2 K_{M_1} |t_1 - t_2|. \] (4.27b)
From (4.26) and (4.27a,b) we get

\[\|I_2\|_{L^2} \leq C_2|t_1 - t_2| + C_3\|z_1 - z_2\|_{A(\eta)}, \]

(4.28)

where

\[C_2 = \frac{2\alpha_2 C_\infty^2 C_1^2 K_{M_1}}{C_v}, \]

and

\[C_3 = \frac{2\alpha_2}{C_v} \left\{ C_\infty^2 C_1^2 \left(\frac{1}{\sqrt{\gamma}} + \sqrt{\frac{k}{C_v}} \right) + \frac{C_\infty C_1 \|\theta_1\|_{L^\infty(0,M_1)}}{\sqrt{\gamma}} \right\}. \]

Substituting (4.25a-d) and (4.28) into (4.24) we finally obtain the estimate

\[\|f_3(q, t_1, z_1) - f_3(q, t_2, z_2)\|_{L^2} \leq C_4|t_1 - t_2| + C_5\|z_1 - z_2\|_{A(\eta)}, \]

(4.29)

where

\[C_4 = \frac{\|K_g\|_{L^2}}{C_v} + C_2 + K_{M_1}' + \frac{4k\pi^2 K_{M_1}}{C_v}, \]

and

\[C_5 = C_3 + \frac{2\beta \rho C_\infty C_1}{C_v \sqrt{\gamma}}. \]
We turn now to $f_2(q, t, z)$. We have that

$$f_2(q, t_1, z_1) - f_2(q, t_2, z_2) = \rho^{-1} [f(\cdot, t_1) - f(\cdot, t_2)]$$

$$+ \rho^{-1} \frac{\partial}{\partial x} \left\{ \frac{\partial}{\partial \epsilon} \Psi (u_1', u_1'', w_1 + L(\cdot, t_1)) - \frac{\partial}{\partial \epsilon} \Psi (u_2', u_2'', w_2 + L(\cdot, t_2)) \right\}$$

$$= \rho^{-1} [f(\cdot, t_1) - f(\cdot, t_2)]$$

$$+ \rho^{-1} \frac{\partial}{\partial x} \left\{ 2 \alpha_2 \left[(w_1 + L(\cdot, t_1) - \theta_1) u_1' - (w_2 + L(\cdot, t_2) - \theta_1) u_2' \right]
\right.$$

$$- 4 \alpha_4 (u_1^3 - u_2^3) + 6 \alpha_6 (u_1^5 - u_2^5) \right\}$$

$$= \rho^{-1} [f(\cdot, t_1) - f(\cdot, t_2)] + 2 \alpha_2 \rho^{-1} (w_1' u_1'' - w_2' u_2'')$$

$$+ 2 \alpha_2 \rho^{-1} \left(\frac{\partial}{\partial x} L(\cdot, t_1) u_1' - \frac{\partial}{\partial x} L(\cdot, t_2) u_2' \right)$$

$$+ 2 \alpha_2 \rho^{-1} (w_1' u_1'' - w_2' u_2'') + 2 \alpha_2 \rho^{-1} [L(\cdot, t_1) u_1'' - L(\cdot, t_2) u_2'']$$

$$- 2 \alpha_2 \rho^{-1} \theta_1 (u_1'' - u_2'') - 12 \alpha_4 \rho^{-1} (u_1'' u_1'' - u_2'' u_2'')$$

$$+ 30 \alpha_6 \rho^{-1} (u_1'^4 u_1'' - u_2'^4 u_2'')$$

$$= \sum_{i=1}^{8} T_i,$$ \hspace{1cm} (4.30)

where $T_i, i = 1, 2, \ldots, 8$, represent the above terms in their respective orders. We shall obtain estimates on each one of the T_i's.

Using the hypothesis (H1), it follows that

$$\|T_1\|_{L_2} \leq \rho^{-1} \|K_f\|_{L_2} |t_1 - t_2|.$$ \hspace{1cm} (4.31a)

To estimate T_2 we write

$$T_2 = 2 \alpha_2 \rho^{-1} (w_1' u_1' - w_2' u_2')$$

$$= 2 \alpha_2 \rho^{-1} \left[w_1' (u_1' - u_2') + u_2' (w_1' - w_2') \right],$$

which implies

$$\|T_2\|_{L_2} \leq 2 \alpha_2 \rho^{-1} \left(\|w_1'\|_{L_\infty} \|u_1' - u_2'\|_{L_2} + \|u_2'\|_{L_\infty} \|w_1' - w_2'\|_{L_2} \right).$$

By virtue of the embedding $H^1(\Omega) \hookrightarrow L_\infty(\Omega)$, and since $u_i \in H^1_0 \cap H^2, w_i \in H^2,$
\[w_i'(0) = 0, \; i = 1, 2, \] it follows that

\[
\| T_2 \|_{L^2} \leq 2\alpha_2 \rho^{-1} C_1 C_\infty \left(\| u''_1 - u''_2 \|_{L^2} + \| w''_1 - w''_2 \|_{L^2} \right) \\
\leq 2\alpha_2 \rho^{-1} C_1 C_\infty \left(\frac{\| z_1 - z_2 \|_q}{\sqrt{\gamma}} + \frac{\| A(q)(z_1 - z_2) \|_q}{\sqrt{k/c_v}} \right) \\
\leq \frac{2\alpha_2 C_1 C_\infty}{\rho} \left(\frac{1}{\sqrt{\gamma}} + \sqrt{\frac{C_v}{k}} \right) \| z_1 - z_2 \|_{A(q)}. \tag{4.31b}
\]

We have that

\[
T_3 = 2\alpha_2 \rho^{-1} \left[\frac{\partial}{\partial x} L(\cdot, t_1) u'_1 - \frac{\partial}{\partial x} L(\cdot, t_2) u'_2 \right] \\
= 2\alpha_2 \rho^{-1} \left\{ \frac{\partial}{\partial x} L(\cdot, t_1)(u'_1 - u'_2) + u'_2 \left(\frac{\partial}{\partial x} L(\cdot, t_1) - \frac{\partial}{\partial x} L(\cdot, t_2) \right) \right\} \\
= 2\alpha_2 \rho^{-1} \left\{ -2\pi \theta_{\Gamma}(t_1) \sin(2\pi \cdot)(u'_1 - u'_2) - 2\pi \sin(2\pi \cdot)u'_2 (\theta_{\Gamma}(t_1) - \theta_{\Gamma}(t_2)) \right\}.
\]

Applying Hypothesis (H2), the Sobolev embedding \(H^1(\Omega) \hookrightarrow L_\infty(\Omega) \) and the fact that \(\| u'_1 - u'_2 \|_{L^2} \leq \| u''_1 - u''_2 \|_{L^2} \), we obtain the estimate

\[
\| T_3 \|_{L^2} \leq 4\alpha_2 \rho^{-1} \pi \| \theta_{\Gamma} \|_{L_\infty(0, M_1)} \frac{\| z_1 - z_2 \|_{A(q)}}{\sqrt{\gamma}} \\
+ 4\alpha_2 \rho^{-1} \pi C_1 C_\infty K_{M_1} |t_1 - t_2|. \tag{4.31c}
\]
To obtain an estimate on $\|T_4\|_{L_2}$ we observe that

$$
\|T_4\|_{L_2} = 2\alpha_2 \rho^{-1} \|w_1u''_1 - w_2u''_2\|_{L_2}
= 2\alpha_2 \rho^{-1} \|w_1(u''_1 - u''_2) + u''_2(w_1 - w_2)\|_{L_2}
\leq 2\alpha_2 \rho^{-1} (\|w_1\|_{L_{\infty}} \|u''_1 - u''_2\|_{L_2} + \|u''_2\|_{L_2} \|w_1 - w_2\|_{L_{\infty}})
\leq 2\alpha_2 \rho^{-1} \left(C_1 C_\infty \frac{\|A(q)(z_1 - z_2)\|_{q}}{\sqrt{\gamma}} + \frac{\|z_2\|_{q} C_\infty \|w_1 - w_2\|_{H^1}}{\sqrt{\gamma}} \right)
\leq \frac{2\alpha_2 C_\infty}{\rho \sqrt{\gamma}} \left(C_1 \|z_1 - z_2\|_{A(q)} + \|z_2\|_{A(q)} \|w_1 - w_2\|_{H^1} \right)
\leq \frac{2\alpha_2 C_\infty}{\rho \sqrt{\gamma}} \left\{ C_1 \|z_1 - z_2\|_{A(q)} + M_2 (\|w_1 - w_2\|_{L_2} + \|w'_1 - w'_2\|_{L_2}) \right\}
\leq \frac{2\alpha_2 C_\infty}{\rho \sqrt{\gamma}} \left(C_1 \|z_1 - z_2\|_{A(q)} + M_2 \frac{\|z_1 - z_2\|_{q}}{\sqrt{C_k}} + M_2 \|w''_1 - w''_2\|_{L_2} \right)
\leq \frac{2\alpha_2 C_\infty}{\rho \sqrt{\gamma}} \left(C_1 \|z_1 - z_2\|_{A(q)} + M_2 \sqrt{\frac{k}{C_v}} \|z_1 - z_2\|_{q} + M_2 \|A(q)(z_1 - z_2)\|_{q} \right)
\leq \frac{2\alpha_2 C_\infty}{\rho \sqrt{\gamma}} \left(C_1 + M_2 \sqrt{\frac{k}{C_v}} + M_2 \sqrt{\frac{C_v}{k}} \right) \|z_1 - z_2\|_{A(q)}
= \frac{2\alpha_2 C_\infty}{\rho \sqrt{\gamma}} \left(C_1 + \frac{M_2 (k + C_v)}{\sqrt{kC_v}} \right) \|z_1 - z_2\|_{A(q)}.
$$

(4.31d)

By writing T_5 in the form

$$
T_5 = 2\alpha_2 \rho^{-1} \left[L(\cdot, t_1)u''_1 - L(\cdot, t_2)u''_2 \right]
= 2\alpha_2 \rho^{-1} \left[L(\cdot, t_1)(u''_1 - u''_2) + u''_2 (L(\cdot, t_1) - L(\cdot, t_2)) \right],
$$

we immediately obtain the estimate

$$
\|T_5\|_{L_2} \leq 2\alpha_2 \rho^{-1} \left(\|\theta_T\|_{L_{\infty}(0,M_1)} \frac{\|z_1 - z_2\|_{q}}{\sqrt{\gamma}} + \|u''_2\|_{L_2} K_{M_1} |t_1 - t_2| \right)
\leq 2\alpha_2 \rho^{-1} \left(\|\theta_T\|_{L_{\infty}(0,M_1)} \frac{\|z_1 - z_2\|_{A(q)}}{\sqrt{\gamma}} + \frac{\|z_2\|_{q} K_{M_1} |t_1 - t_2|}{\sqrt{\gamma}} \right)
\leq \frac{2\alpha_2 \|\theta_T\|_{L_{\infty}(0,M_1)}}{\rho \sqrt{\gamma}} \|z_1 - z_2\|_{A(q)} + \frac{2\alpha_2 M_2 K_{M_1}}{\rho \sqrt{\gamma}} |t_1 - t_2|.
$$

(4.31e)
The term $\|T_6\|_{L^2}$ satisfies the inequality

$$
\|T_6\|_{L^2} = \| - 2\alpha_2 \rho^{-1} \theta_1 (u_1'' - u_2'') \|_{L^2} \\
\leq \frac{2\alpha_2 \theta_1}{\rho} \|z_1 - z_2\|_q \\
\leq \frac{2\alpha_2 \theta_1}{\rho \sqrt{\gamma}} \|z_1 - z_2\|_{A(q)}.
$$

(4.31f)

Observing that

$$
T_7 = -12\alpha_4 \rho^{-1} (u_1'^2 u''_1 - u_1'^2 u''_2) \\
= -12\alpha_4 \rho^{-1} \left[u_1'^2 (u''_1 - u''_2) + u_2'' (u'_1 + u'_2) (u'_1 - u'_2) \right],
$$

it follows that

$$
\|T_7\|_{L^2} \leq 12\alpha_4 \rho^{-1} \left(\|u'_1\|^2_{L^\infty} \|u''_1 - u''_2\|_{L^2} + \|u''_2\|_{L^2} \|u'_1 + u'_2\|_{L^\infty} \|u'_1 - u'_2\|_{L^\infty} \right) \\
\leq 12\alpha_4 \rho^{-1} \left(C_\infty^2 C_1^2 \|u''_1 - u''_2\|_{L^2} + C_1 (2C_1 C_\infty) C_\infty \|u'_1 - u'_2\|_{H^1} \right).
$$

Since $\|u\|^2_{H^1} = \|u\|^2_{L^2} + \|u'\|^2_{L^2} \leq 2\|u''\|^2_{L^2}$ and $u \in H^1_0 \cap H^2$, it follows that

$$
\|T_7\|_{L^2} \leq \frac{12\alpha_4 C_1^2 C_\infty^2}{\rho} \left(\|u''_1 - u''_2\|_{L^2} + 2\sqrt{2} \|u''_1 - u''_2\|_{L^2} \right) \\
= \frac{12\alpha_4 C_1^2 C_\infty^2}{\rho} \left(1 + 2\sqrt{2} \right) \|u''_1 - u''_2\|_{L^2} \\
\leq \frac{12\alpha_4 C_1^2 C_\infty^2}{\rho \sqrt{\gamma}} \left(1 + 2\sqrt{2} \right) \|z_1 - z_2\|_{A(q)}.
$$

(4.31g)

Similarly, we use the identity

$$
T_8 = 30\alpha_6 \rho^{-1} (u_1'^4 u''_1 - u_2'^4 u''_2) \\
= 30\alpha_6 \rho^{-1} \left[u_1'^4 (u''_1 - u''_2) - u_2'' (u_1'^4 - u_2'^4) \right] \\
= 30\alpha_6 \rho^{-1} \left[u_1'^4 (u''_1 - u''_2) - u_2'' (u_1'^3 + u_2'^2 u_2'' + u_2'^2 u_2'' + u_2'^2) (u'_1 - u'_2) \right].
$$
to obtain the estimate
\[
\|T_8\|_{L_2} \leq 30\alpha_6\rho^{-1} \left\{ \|u_1''\|_{L_\infty} \|u_2'' - u_2\|_{L_2} \\
+ \|u_2''\|_{L_2} \|u_1'' + u_1'u_2' + u_1'u_2^2 + u_2^3\|_{L_\infty} \|u_1'' - u_2''\|_{L_2} \right\}
\]
\[
\leq 30\alpha_6\rho^{-1} \left[C_1^4C_\infty^4 \|u_1'' - u_2''\|_{L_2} + C_1 \left(4C_1^3C_\infty^3 \right) C_\infty \|u_1'' - u_2''\|_{H^1} \right]
\]
\[
\leq \frac{30\alpha_6C_1^4C_\infty^4}{\rho} \left(\|u_1'' - u_2''\|_{L_2} + 4\|u_1'' - u_2''\|_{H^1} \right)
\]
\[
\leq \frac{30\alpha_6C_1^4C_\infty^4}{\rho\sqrt{\gamma}} \left(1 + 4\sqrt{2} \right) \|z_1 - z_2\|_{A(\psi)}.
\] (4.31h)

Substituting (4.31a-h) into (4.30) we finally obtain
\[
\|f_3(q, t_1, z_1) - f_3(q, t_2, z_2)\|_{L_2} = \left\| \sum_{i=1}^{8} T_i \right\|_{L_2}
\]
\[
\leq C_6|t_1 - t_2| + C_7\|z_1 - z_2\|_{A(\psi)},
\] (4.32)

where
\[
C_6 = \rho^{-1} \left(\|K_f\|_{L_2} + 4\alpha_2\pi C_1C_\infty K_{M_1} + \frac{2\alpha_2M_2K_{M_1}}{\sqrt{\gamma}} \right),
\]
and
\[
C_7 = \frac{1}{\rho\sqrt{\gamma}} \left\{ 4\alpha_2C_1C_\infty + 2\alpha_2 \left[(1 + 2\pi)\|\theta\|_{L_\infty(0, M_1)} + \theta_1 + \frac{C_\infty M_2(k + C_v)}{\sqrt{kC_v}} \right] + 12\alpha_4C_1^2C_\infty^2(1 + 2\sqrt{2}) + 30\alpha_6C_1^4C_\infty^4(1 + 4\sqrt{2}) \right\} + \frac{2\alpha_2C_1C_\infty}{\rho\sqrt{\gamma}} \frac{C_v}{\sqrt{k}}.
\]

An analysis of the constants C_i, $i = 1, 2, \ldots, 7$, reveals that they are all bounded independently of q on subsets of Q of the form
\[
\left\{ (\rho, C_v, \beta, \alpha_2, \alpha_4, \alpha_6, \theta_1, \gamma) \in Q \mid 0 \leq a_1 \leq \rho \leq b_1 < \infty, \ 0 < a_2 \leq C_v \leq b_2 < \infty, \ 0 < a_3 \leq \gamma, \ \beta \leq b_3 < \infty, \ \alpha_2 \leq b_4 < \infty, \ \alpha_4 \leq b_5 < \infty, \ \alpha_6 \leq b_6 < \infty, \ \theta_1 \leq b_7 < \infty \right\},
\]
i.e., on any subset of Q where $\rho, C, \beta, \alpha_2, \alpha_4, \alpha_6, \theta_1$ are bounded above and ρ, C and γ are bounded away from zero, and therefore on any compact subset of Q not containing $q = 0$. This completes the proof of Theorem 4.10.

We are now ready to state and prove the main local existence and uniqueness theorem for the solutions of the initial value problem (4.7).

Theorem 4.11 (Local existence and uniqueness). Let $q \in Q$ and $A(q) : \text{dom}(A(q)) \subset Z_q \to Z_q$ as defined in (4.8)-(4.9). Then, for any initial data $z_0 \in \text{dom}(A(q))$, there exists $t_1 = t_1(z_0)$ such that the initial value problem (4.7) has a unique (strong) solution $z(t; q) \in C([0, t_1] : Z_q) \cap C^1((0, t_1) : Z_q)$.

Proof: Let $z_0 \in \text{dom}(A(q))$ and let U be a bounded open neighborhood of the origin in $\mathbb{R}_0^+ \times Z_{A(q)}$ containing the point $(0, z_0)$. By Theorem 4.10, the function $h_q : U \to Z_q$ defined by $h_q(t, z) = F(q, t, z)$ satisfies the condition (F) on U. The local existence and uniqueness then follows from the fact that $A(q)$ is the infinitesimal generator of an analytic semigroup $T(t; q)$ on Z_q with $0 \in \rho(A(q))$ (Theorem 4.7) and Theorem 4.9.

5. Continuous Dependence on the Parameter q

In this section we will show that the semigroup $T(t; q)$ generated by $A(q)$ on Z_q depends continuously on q, i.e., if $\{q^N\}_{N=1}^{\infty} \subset Q$ is a sequence of admissible parameters and $q^N \to q \in Q$ as $N \to \infty$, then the semigroup $T(t; q^N)$ generated by $A(q^N)$ on Z_{q^N} "approaches" $T(t; q)$ in some sense.

The following is a version of the well known Trotter-Kato theorem due to T.G. Kurtz. Its proof can be found in [5], p. 40-43.

Theorem 5.1 (Trotter-Kato). Let A be the infinitesimal generator of a strongly continuous semigroup $T(t)$ on a Banach space X with norm $\| \cdot \|$. Let X^N, $N = 1, 2, \ldots$, be a sequence of Banach spaces with norms $\| \cdot \|_N$, and A^N the infinitesimal generator of a C_0-semigroup $T^N(t)$ on X^N. Let $\Pi^N \in L(X, X^N)$, $N = 1, 2, \ldots$, be a sequence of bounded linear operators satisfying

$$\lim_{N \to \infty} \| \Pi^N x \|_N = \| x \|$$

for all $x \in X$ \hspace{1cm} (J1)
Assume also that the following conditions hold

(A) (Stability) There exist constants $M_0 \geq 1$, $\omega_0 \in \mathbb{R}$ independent of N such that
\[\|T^N(t)\|_{\mathcal{L}(X^N)} \leq M_0 e^{\omega_0 t} \text{ for all } t \geq 0 \text{ and } N = 1, 2, \ldots. \]

(B) (Consistency) There exists a set $D \subset \text{dom}(A)$ and a complex number λ_0 with

\[\text{Re} \lambda_0 > \omega_0 \text{ such that} \]

(i) $\Pi^N D \subset \text{dom}(A^N)$ for each $N = 1, 2, \ldots,$

(ii) $(\lambda_0 - A)D = X$, and

(iii) $\|A^N \Pi^N y - \Pi^N Ay\|_N \to 0$ as $N \to \infty$ for each $y \in D$.

Then for each $x \in X$

\[\|T^N(t)\Pi^N x - \Pi^N T(t)x\|_N \to 0 \quad \text{as } N \to \infty, \]

and the convergence is uniform on compact t-intervals.

Remarks:

(1) By using the uniform boundedness principle with minor modifications to take into account the varying spaces, it can be proved that condition (J1) implies $\|\Pi^N\|_{\mathcal{L}(X^N)} \leq C$ for some constant C independent of N.

(2) Condition (B) implies that $\lambda_0 \in \rho(A) \cap \bigcap_{N=1}^{\infty} \rho(A^N)$ and

\[\|R(\lambda; A^N)\Pi^N x - \Pi^N R(\lambda; A)x\|_N \to 0 \]

for each $x \in X$. This is often referred to as the stability condition (see [5], p. 43).

Theorem 5.2 (Continuity of $T(t; q)$ with respect to q).

Let $\{q^N = (\rho^N, C^N_v, \beta^N, \alpha^N_2, \alpha^N_4, \alpha^N_6, \theta^N_1, \gamma^N)\}_{N=1}^{\infty} \subset \mathcal{Q}$ be a sequence of admissible parameters such that $q^N \to q = (\rho, C_v, \beta, \alpha_2, \alpha_4, \alpha_6, \theta_1, \gamma) \in \mathcal{Q}$ as $N \to \infty$. Let $T(t; q^N)$ and $T(t; q)$ be the analytic semigroups generated by $A(q^N)$ and $A(q)$ respectively. Then for each $z \in Z_q$ and $t \geq 0$,

\[\lim_{N \to \infty} \|T(t; q^N)z - T(t; q)z\|_{q^N} = 0 \]
\[\lim_{N \to \infty} \| T(t; q^N)z - T(t; q)z \|_{q^*} = 0 \]

for any \(q^* \in Q \). Moreover, the convergence is uniform on compact \(t \)-intervals.

Proof: Define \(\Pi^N : Z_q \to Z_{q^N} \) to be the identity operator and let \(z = \begin{pmatrix} u \\ v \\ w \end{pmatrix} \in Z_q \).

It follows that

\[
\| \Pi^N z \|_{q^N}^2 = \gamma^N \| u'' \|_{L^2(\Omega)}^2 + \rho^N \| v \|_{L^2(\Omega)}^2 + \frac{C_v^N}{k} \| w \|_{L^2(\Omega)}^2
\]

\[
\xrightarrow{N \to \infty} \gamma \| u'' \|_{L^2(\Omega)}^2 + \rho \| v \|_{L^2(\Omega)}^2 + \frac{C_v}{k} \| w \|_{L^2(\Omega)}^2
\]

\[= \| z \|_q^2 \]

Thus, condition (J1) of the Trotter-Kato theorem is satisfied. By Theorem 4.7, the semigroups \(T(t; q^N) \) satisfy \(\| T(t; q^N) \|_{\mathcal{L}(Z_{q^N})} \leq e^{-w(q^N)t} \). For the stability condition (A) of Theorem 5.1 we need this bound to be independent of \(N \). This is achieved by choosing \(M_0 = 1 \) and \(\omega_0 = 0 \). Now, letting \(D = \text{dom} \left(A(q) \right) = \text{dom} \left(A(q^N) \right) \), condition B-(i) is trivial since \(\Pi^N \) is the identity operator and B-(ii) holds for any choice of \(\lambda_0 > 0 \). Finally, for each \(z = \begin{pmatrix} u \\ v \\ w \end{pmatrix} \in D \) we have

\[
\| A(q^N)\Pi^N z - \Pi^N A(q)z \|_{q^N}^2 = \| A(q^N)z - A(q)z \|_{q^N}^2
\]

\[
= \left\| \left(\frac{\beta^N v'' - \frac{\gamma^N}{\rho^N} u'''}{\frac{k}{C_v^N} w''} \right) - \left(\frac{\beta v'' - \frac{\gamma}{\rho} u'''}{\frac{k}{C_v} w''} \right) \right\|_{q^N}^2
\]

\[
= \rho^N \left\| (\beta^N - \beta) v'' - \left(\frac{\gamma^N}{\rho^N} - \frac{\gamma}{\rho} \right) u''' \right\|_{L^2(\Omega)}^2 + \frac{C_v^N}{k} \left\| k \left(\frac{1}{C_v^N} - \frac{1}{C_v} \right) w'' \right\|_{L^2(\Omega)}^2
\]

\[
\leq 2\rho^N \left[(\beta^N - \beta)^2 \| v'' \|_{L^2(\Omega)}^2 + \left(\frac{\gamma^N}{\rho^N} - \frac{\gamma}{\rho} \right)^2 \| u''' \|_{L^2(\Omega)}^2 \right]
\]

\[
+ kC_v^N \left(\frac{1}{C_v^N} - \frac{1}{C_v} \right)^2 \| w'' \|_{L^2(\Omega)}^2
\]

\[\to 0 \quad \text{as} \quad N \to \infty, \]
since $\beta^N \to \beta$, $\gamma^N \to \gamma$, $\rho^N \to \rho \neq 0$ and $C_v^N \to C_v \neq 0$ (note that $\rho \neq 0$ and $C_v \neq 0$ because $q \in Q$). Thus, condition B-(iii) of the Trotter-Kato theorem 5.1 is also satisfied. Hence, for each $z \in Z_q$ and $t \geq 0$

$$\lim_{N \to \infty} \| T(t; q^N)z - T(t; q)z \|_{q^N} = 0,$$

and the limit is uniform in t on compact intervals.

The second part of the theorem follows immediately by noting that for any $q^* \in Q$, $z \in Z_q$ and $t \geq 0$ one has

$$\| T(t; q^N)z - T(t; q)z \|_{q^*} \leq \max \left(\frac{\gamma^*}{\gamma^N}, \frac{\rho^*}{\rho^N}, \frac{C_v^*}{C_v^N} \right) \| T(t; q^N)z - T(t; q)z \|_{q^N},$$

$\gamma^N \to \gamma \neq 0$, $\rho^N \to \rho \neq 0$ and $C_v^N \to C_v \neq 0$ and therefore

$$\sup_{N=1, 2, \ldots} \max \left(\frac{\gamma^*}{\gamma^N}, \frac{\rho^*}{\rho^N}, \frac{C_v^*}{C_v^N} \right) < \infty.$$

Hence,

$$\| T(t; q^N)z - T(t; q)z \|_{q^*} \to 0 \quad \text{as } N \to \infty,$$

uniformly on compact t-intervals. \hfill \blacksquare

We note here that the continuity of the semigroup $T(t; q)$ with respect to the parameter q does not necessarily imply the continuity of the solutions $z(t; q)$ with respect to q. A stronger result than the one in Theorem 4.10 is needed to achieve this goal. In fact if $\delta < 1$ (i.e., if $F(q, t, z)$ satisfies the condition (F) with δ strictly less than 1), then one could use Gronwall’s inequality together with the bound $\| A^\delta(q)T(t; q)z \|_q \leq Mt^{-\delta\|z\|_q}$ (see [34], Theorem 2.6.13) to conclude that $\|z(t; q) - z(t; \hat{q})\|_{A^\delta(q)} \to 0$ as $q \to \hat{q}$.

6. Summary, Conclusions and Future Plans

In this paper we have developed an abstract framework for a state-space formulation of a general one-dimensional dynamic mathematical model of phase transitions in materials with memory. We have proved the well-posedness of the system for the
physically relevant case in which no thermal memory is present ($\alpha = 0$) and for thermodynamic potentials of the Landau-Ginzburg type. We have obtained a spectral decomposition and explicit decay rates for the associated linear semigroup and we have proved its continuous dependence on the model parameters.

There is certainly much room for further study. For example, the proof of the well-posedness that we have given, strongly depends on the fact that $\gamma > 0$. Although numerical experiments seem to show that solutions exist even in the case $\gamma = 0$, no rigorous theoretical proof of this fact is known up to now. In this case, by leaving the term $2\alpha_2 \theta_1 u_{xx}$ on the left hand side of the equation (4.2a) we were able to show that the resulting linear operator $A(q)$ is quasidisipative and the generator of an analytic semigroup on the Hilbert space $H^1_0(\Omega) \times L_2(\Omega) \times L_2(\Omega)$ with the energy inner product
\[
\left\langle \begin{pmatrix} u \\ v \\ w \end{pmatrix}, \begin{pmatrix} \dot{u} \\ \dot{v} \\ \dot{w} \end{pmatrix} \right\rangle \doteq 2\alpha_2 \theta_1 \int_\Omega u'\dot{u}' + \rho \int_\Omega v'\dot{v}' + \frac{\varepsilon_4}{k} \int_\Omega w'\dot{w}'.
\]
However, we could not show that the nonlinear term is Lipschitz continuous in the state variable with respect to the norm of the operator $A(q)$. We plan to continue effort in this direction.

The operator $A(q)$ given by (4.8)-(4.9) is a fourth order differential operator in u and second order in v and w, while the nonlinear term $F(q,t,z)$, $z = \begin{pmatrix} u \\ v \\ w \end{pmatrix}$, given by (4.10)-(4.11) is only second order in u and first order in v and w. For this reason, we strongly believe that this nonlinear term is Lipschitz in the state variable with respect to the graph-norm of the square root of $-A(q)$. If this conjecture were true, one could derive local existence for a much broader set of initial conditions, namely for $z_0 \in \text{dom} \left([-A(q)]^{1/2} \right)$. The problem is that the square root of a differential operator is explicitly known only for a special subset of the natural boundary conditions and even in simple cases it is known only up to a multiplicative bounded operator ([37]). Although the proof of the conjecture described above does not necessarily imply finding $[-A(q)]^{1/2}$ explicitly, it does involve finding bounds for $\|u''\|_{L_2}$, $\|v'\|_{L_2}$ and $\|w'\|_{L_2}$ in terms of $\left\| \begin{pmatrix} u \\ v \\ w \end{pmatrix} \right\|_{[-A(q)]^{1/2}}$. We also intend to devote efforts to solving this problem.

We have developed numerical approximations for the solutions of the system
(4.2a,b). Details of the results in this area will be published in a forthcoming paper. Efforts are also underway to develop optimization algorithms for parameter estimation. This objective will involve the design of laboratory experiments to collect appropriate data for particular alloys. Estimation techniques will then be used to obtain accurate approximations to the model parameters.

Other areas of interest in which we plan to pursue further results are the inclusion of history-dependent stress-strain relations into the dynamic model and the study of the effects of viscosity and couple stress. Finally we note that most of the data for SMA's come from uniaxial tensile stretching experiments. For this reason, it is important from a practical point of view that the mathematical models include time-dependent stresses as possible boundary conditions. If $\gamma > 0$, an extra pair of boundary conditions is needed and it is no clear what would be appropriate in this case.

REFERENCES:

[26] LOHMAN R. and MULLER I., “A Model for the Qualitative Description of Martensitic Transformations in Memory Alloys”, in Phase Transformations,
Aifantis E. and Gittus J., pp 55-75.

<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>982</td>
<td>Robert J. Plemmons</td>
<td>A proposal for FFT-based fast recursive least-squares</td>
</tr>
<tr>
<td>983</td>
<td>Anne Greenbaum and Zdenek Strakos</td>
<td>Matrices that generate the same Krylov residual spaces</td>
</tr>
<tr>
<td>984</td>
<td>Alan Edelman and G.W. Stewart</td>
<td>Scaling for orthogonality</td>
</tr>
<tr>
<td>985</td>
<td>G.W. Stewart</td>
<td>Note on a generalized sylvester equation</td>
</tr>
<tr>
<td>986</td>
<td>G.W. Stewart</td>
<td>Updating URV decompositions in parallel</td>
</tr>
<tr>
<td>987</td>
<td>Angelika Bunse-Gerstner, Volker Mehrmann and Nancy K. Nichols</td>
<td>Numerical methods for the regularization of descriptor systems by output feedback</td>
</tr>
<tr>
<td>988</td>
<td>Ralph Byers and N.K. Nichols</td>
<td>On the stability radius of generalized state-space systems</td>
</tr>
<tr>
<td>989</td>
<td>David C. Dobson</td>
<td>Designing periodic structures with specified low frequency scattered in far-field data</td>
</tr>
<tr>
<td>990</td>
<td>C.-T. Pan and Kermit Sigmon</td>
<td>A bottom-up inductive proof of the singular value decomposition</td>
</tr>
<tr>
<td>991</td>
<td>Ricardo D. Fierro and James R. Bunch</td>
<td>Orthogonal projection and total least squares</td>
</tr>
<tr>
<td>992</td>
<td>Chiou-Ming Huang and Dianne P. O’Leary</td>
<td>A Krylov multisplitting algorithm for solving linear systems of equations</td>
</tr>
<tr>
<td>993</td>
<td>A.C.M Ran and L. Rodman</td>
<td>Factorization of matrix polynomials with symmetries</td>
</tr>
<tr>
<td>994</td>
<td>Mike Boyle</td>
<td>Symbolic dynamics and matrices</td>
</tr>
<tr>
<td>995</td>
<td>A. Novick-Cohen and L.A. Peletier</td>
<td>Steady states of the one-dimensional Cahn-Hilliard spaces</td>
</tr>
<tr>
<td>996</td>
<td>Zhangxin Chen</td>
<td>Large-scale averaging analysis of single phase flow in fractured reservoirs</td>
</tr>
<tr>
<td>997</td>
<td>Boris Mordukhovich</td>
<td>Stability theory for parametric generalized equations and variational inequalities via nonsmooth analysis</td>
</tr>
<tr>
<td>998</td>
<td>Yongzhi Xu</td>
<td>CW mode structure and constraint beamforming in a waveguide with unknown large inclusions</td>
</tr>
<tr>
<td>999</td>
<td>R.P. Gilbert and Yongzhi Xu</td>
<td>Acoustic waves and far-field patterns in two dimensional oceans with porous-elastic seaboards</td>
</tr>
<tr>
<td>1000</td>
<td>M.A. Herrero and J.J.L. Velázquez</td>
<td>Some results on blow up for semilinear parabolic problems</td>
</tr>
<tr>
<td>1001</td>
<td>Pierre-Alain Gremaud</td>
<td>Numerical analysis of a nonconvex variational problem related to solid-solid phase transitions</td>
</tr>
<tr>
<td>1002</td>
<td>Izchak Lewkowicz</td>
<td>Stability robustness of state space systems inter-relations between the continuous and discrete time cases</td>
</tr>
<tr>
<td>1003</td>
<td>Kenneth R. Driessl and Wasin So</td>
<td>Linear operators on matrices: Preserving spectrum and displacement structure</td>
</tr>
<tr>
<td>1004</td>
<td>Carolyn Eschenbach</td>
<td>Idempotence for sign pattern matrices</td>
</tr>
<tr>
<td>1005</td>
<td>Carolyn Eschenbach, Frank J. Hall and Charles R. Johnson</td>
<td>Self-inverse sign patterns</td>
</tr>
<tr>
<td>1006</td>
<td>Marc Moonen, Paul Van Dooren and Filip Vanpoucke</td>
<td>On the QR algorithm and updating the SVD and URV decomposition in parallel</td>
</tr>
<tr>
<td>1007</td>
<td>Paul Van Dooren</td>
<td>Upcoming numerical linear algebra issues in systems and control theory</td>
</tr>
<tr>
<td>1008</td>
<td>Avner Friedman and Juan J.L. Velázquez</td>
<td>The analysis of coating flows near the contact line</td>
</tr>
<tr>
<td>1009</td>
<td>Stephen J. Kirkland and Michael Neumann</td>
<td>Convexity and concavity of the Perron root and vector of Leslie matrices with applications to a population model</td>
</tr>
<tr>
<td>1010</td>
<td>Stephen J. Kirkland and Bryan L. Shader</td>
<td>Tournament matrices with extremal spectral properties</td>
</tr>
<tr>
<td>1011</td>
<td>E.G. Kalnins, Willard Miller, Jr. and Sanchita Mukherjee</td>
<td>Models of q-algebra representations: Matrix Elements of $U_q(su_2)$</td>
</tr>
<tr>
<td>1012</td>
<td>Zhangxin Chen and Bernardo Cockburn</td>
<td>Error estimates for a finite element method for the drift-diffusion semiconductor device equations</td>
</tr>
<tr>
<td>1013</td>
<td>Chaocheng Huang</td>
<td>Drying of gelatin asymptotically in photographic film</td>
</tr>
<tr>
<td>1014</td>
<td>Richard E. Ewing and Hong Wang</td>
<td>Eulerian-Lagrangian localized adjoint methods for reactive transport in groundwater</td>
</tr>
<tr>
<td>1015</td>
<td>Bing-Yu Zhang</td>
<td>Taylor series expansion for solutions of the Korteweg-de Vries equation with respect to their initial values</td>
</tr>
<tr>
<td>1016</td>
<td>Kenneth R. Driessl</td>
<td>Some remarks on the geometry of some surfaces of matrices associated with Toeplitz eigenproblems</td>
</tr>
<tr>
<td>1017</td>
<td>C.J. Van Duijn and Peter Knabner</td>
<td>Flow and reactive transport in porous media induced by well injection: Similarity solution</td>
</tr>
<tr>
<td>1018</td>
<td>Wasin So</td>
<td>Rank one perturbation and its application to the Laplacian spectrum of a graph</td>
</tr>
<tr>
<td>1019</td>
<td>G. Baccarani, F. Odeh, A. Gnudi and D. Ventura</td>
<td>A critical review of the fundamental semiconductor equations</td>
</tr>
<tr>
<td>1020</td>
<td>T.R. Hoffend Jr.,</td>
<td>Magnetostatic interactions for certain types of stacked, cylindrically symmetric magnetic particles</td>
</tr>
<tr>
<td>1021</td>
<td>IMA Summer Program for Graduate Students</td>
<td>Mathematical Modeling</td>
</tr>
<tr>
<td>1022</td>
<td>Wayne Barrett, Charles R. Johnson, and Pablo Tarazaga</td>
<td>The real positive definite completion problem for a simple cycle</td>
</tr>
<tr>
<td>1023</td>
<td>Charles A. McCarthy</td>
<td>Fourth order accuracy for a cubic spline collocation method</td>
</tr>
</tbody>
</table>
Martin Hanke, James Nagy, and Robert Plemmons, Preconditioned iterative regularization for ill-posed problems
John R. Gilbert, Esmond G. Ng, and Barry W. Peyton, An efficient algorithm to compute row and column counts for sparse Cholesky factorization
Xinfu Chen, Existence and regularity of solutions of a nonlinear nonuniformly elliptic system arising from a thermistor problem
Xinfu Chen and Weiqing Xie, Discontinuous solutions of steady state, viscous compressible Navier-Stokes equations
E.G. Kalnins, Willard Miller, Jr., and Sanchita Mukherjee, Models of q-algebra representations: Matrix elements of the q-oscillator algebra
W. Miller, Jr. and Lee A. Rubel, Functional separation of variables for Laplace equations in two dimensions
I. Gohberg and I. Koltracht, Structured condition numbers for linear matrix structures
Xinfu Chen, Hele-Shaw problems and area preserved curve shortening motion
Zhangxin Chen and Jim Douglas, Jr. Modelling of compositional flow in naturally fractured reservoirs
Harald K. Wimmer, On the existence of a least and negative-semidefinite solution of the discrete-time algebraic Riccati equation
Harald K. Wimmer, Monotonicity and parametrization results for continuous-time algebraic Riccati equations and Riccati inequalities
Bart De Moor, Peter Van Overschee, and Geert Schelhout, H_2 model reduction for SISO systems
Bart De Moor, Structured total least squares and L_2 approximation problems
Chjan Lim, Nonexistence of Lyapunov functions and the instability of the Von Karman vortex streets
David C. Dobson and Fadil Santosa, Resolution and stability analysis of an inverse problem in electrical impedance tomography – dependence on the input current patterns
C.N. Dawson, C.J. van Duijn, and M.F. Wheeler, Characteristic-Galerkin methods for contaminant transport with non-equilibrium adsorption kinetics
Bing-Yu Zhang, Analyticity of solutions of the generalized Korteweg-de Vries equation with respect to their initial values
Neerchal K. Nagaraj and Wayne A. Fuller, Least squares estimation of the linear model with autoregressive errors
H.J. Sussman & W. Liu, A characterization of continuous dependence of trajectories with respect to the input for control-affine systems
Karen Rudie & W. Murray Wonham, Protocol verification using discrete-event systems
Rohan Abeyaratne & James K. Knowles, Nucleation, kinetics and admissibility criteria for propagating phase boundaries
Gang Bao & William W. Symes, Computation of pseudo-differential operators
Srdjan Stoianovic, Nonsmooth analysis and shape optimization in flow problem
Miroslav Tuma, Row ordering in sparse QR decomposition
Onur Toker & Hitay Özbay, On the computation of suboptimal H^∞ controllers for unstable infinite dimensional systems
Hitay Özbay, H^∞ optimal controller design for a class of distributed parameter systems
J.E. Dunn & Roger Fosdick, The Weierstrass condition for a special class of elastic materials
Bei Hu & Jianhua Zhang, A free boundary problem arising in the modeling of internal oxidation of binary alloys
Eduard Feireisl & Enrique Zuazua, Global attractors for semilinear wave equations with locally distributed nonlinear damping and critical exponent
I-Heng McComb & Chjan C. Lim, Stability of equilibria for a class of time-reversible, $D_n \times O(2)$-symmetric homogeneous vector fields
Ruben D. Spies, A state-space approach to a one-dimensional mathematical model for the dynamics of phase transitions in pseudoeelastic materials
H.S. Dumas, F. Golse, and P. Lochak, Multiphase averaging for generalized flows on manifolds
Bei Hu & Hong-Ming Yin, Global solutions and quenching to a class of quasilinear parabolic equations
Zhangxin Chen, Projection finite element methods for semiconductor device equations
Peter Guttorp, Statistical analysis of biological monitoring data
Wensheng Liu & Héctor J. Sussmann, Abnormal sub-Riemannian minimizers
Chjan C. Lim, A combinatorial perturbation method and Arnold’s whiskered Tori in vortex dynamics
Yong Liu, Axially symmetric jet flows arising from high speed fiber coating
Li Qui & Tongwen Chen, H_2 and H_∞ designs of multirate sampled-data systems
Eduardo Casas & Jongmin Yong, Maximum principle for state-constrained optimal control problems covered by quasilinear elliptic equations
Suzanne M. Lenhart & Jongmin Yong, Optimal control for degenerate parabolic equations with logistic growth
Suzanne Lenhart, Optimal control of a convective-diffusive fluid problem