NOTE ON A GENERALIZED SYLVESTER EQUATION

By

G.W. Stewart

IMA Preprint Series # 985
May 1992
Note on a Generalized Sylvester Equation*

G. W. Stewart†

ABSTRACT

In this note we show how to compute the minimum-norm, least squares solution of the generalized Sylvester equation

\[AX + YB = C, \]

*This report is available by anonymous ftp from thales.cs.umd.edu in the directory pub/reports.

†Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742.
Note on a Generalized
Sylvester Equation
G. W. Stewart

In a personal communication, Richard I. Shrager inquired about the problem of solving the generalized Sylvester equation

\[AX + YB = C, \]

(1)

for \(X \) and \(Y \). Here \(A \) is \(m \times k \), \(B \) is \(l \times n \), and \(C \) is \(m \times n \) with \(k < m \) and \(l < n \). The equation arises in a generalization of a technique for measuring chemical transitions by spectra [1].

In general the system (1) is inconsistent, and we will ask for a least squares solution:

\[\| C - AX - YB \|_2^2 = \min. \]

(2)

Here \(\| \cdot \| \) denotes the Frobenius norm defined by

\[\| C \|_2^2 = \sum_{i,j} \gamma_{ij}. \]

Since the least squares problem (2) is in general underdetermined, we shall also require that

\[\| X \|_2^2 + \| Y \|_2^2 = \min; \]

(3)

i.e., that the combined solution solution be of minimal norm.

The solution can be expressed in terms of the singular value decomposition of \(A \) and \(B \). Specifically, let

\[U_A^T A V_A = \begin{pmatrix} \hat{A} & 0 \\ 0 & 0 \end{pmatrix}, \]

where \(U_A \) and \(V_A \) are orthogonal and

\[\hat{A} = \text{diag}(\hat{\alpha}_i) \]

has positive diagonal entries. Similarly let

\[U_B^T B V_B = \begin{pmatrix} \hat{B} & 0 \\ 0 & 0 \end{pmatrix}, \]
where U_B and V_B are orthogonal and

$$B = \text{diag}(\hat{\beta}_i)$$

has positive diagonal entries. If (with an obvious partitioning) we write

$$V_A^T X V_B = \begin{pmatrix} \hat{X}_1 \\ \hat{X}_2 \end{pmatrix},$$

$$U_A^T Y U_B = (\hat{Y}_1 \ \hat{Y}_2),$$

and

$$U_A^T C V_B = \begin{pmatrix} \hat{C}_{11} & \hat{C}_{12} \\ \hat{C}_{21} & \hat{C}_{22} \end{pmatrix},$$

then we have

$$\begin{pmatrix} \hat{C}_{11} & \hat{C}_{12} \\ \hat{C}_{21} & \hat{C}_{22} \end{pmatrix} = \begin{pmatrix} \hat{A} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \hat{X}_1 \\ \hat{X}_2 \end{pmatrix} + (\hat{Y}_1 \ \hat{Y}_2) \begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix}. \tag{4}$$

From (4) we see that the values of X_2 and Y_2 do not affect the norm (2). Consequently, by (3) they must be zero.

Now let us further partition

$$\hat{X}_1 = (\hat{X}_{11} \ \hat{X}_{12})$$

and

$$\hat{Y}_1 = \begin{pmatrix} \hat{Y}_{11} \\ \hat{Y}_{21} \end{pmatrix}.$$

Then our problem becomes one finding the minimum norm solution of

$$\|\hat{C}_{11} - \hat{A}\hat{X}_{11} - \hat{Y}_{11}\hat{B}\|^2 + \|\hat{C}_{12} - \hat{A}\hat{X}_{12}\|^2 + \|\hat{C}_{21} - \hat{Y}_{21}\hat{B}\|^2 = \min.$$

Clearly, we must have $\hat{X}_{21} = \hat{A}^{-1}\hat{C}_{21}$ and $\hat{Y}_{21} = \hat{C}_{21}\hat{B}^{-1}$. Thus the problem becomes one of determining minimal \hat{X}_{11} and \hat{Y}_{11} satisfying

$$\hat{C}_{11} = \hat{A}\hat{X}_{11} - \hat{Y}_{11}\hat{B}. \tag{5}$$

Because \hat{A} and \hat{B} are diagonal, the problem (5) uncouples into the independent problems

minimize $\hat{\xi}_{ij}^2 + \hat{\eta}_{ij}^2$

subject to $\hat{\alpha}_{ij}\hat{\xi}_{ij} + \hat{\eta}_{ij}\hat{\beta}_{ij} = \hat{\gamma}_{ij}$.

A Generalized Sylvester Equation
But this scalar problem is easily seen to have the solution

\[\hat{\xi}_{ij} = \frac{\hat{\gamma}_{ij}\hat{\alpha}_i}{\hat{\alpha}_i^2 + \hat{\beta}_j^2} \quad \text{and} \quad \hat{\eta}_{ij} = \frac{\hat{\gamma}_{ij}\hat{\beta}_j}{\hat{\alpha}_i^2 + \hat{\beta}_j^2}. \]

This completes the solution of the original problem.

References

Recent IMA Preprints

#

Author/s

Title

E.G. Kalnins, Willard Miller, Jr. and Sanchita Mukherjee, Models of q-algebra representations: the group of plane motions

T.R. Hoffend Jr. and R.K. Kaul, Relativistic theory of superpotentials for a nonhomogeneous, spatially isotropic medium

Reinhold von Schwerin, Two metal deposition on a microdisk electrode

Vladimir I. Oliker and Nina N. Uraltseva, Evolution of nonparametric surfaces with speed depending on curvature, III. Some remarks on mean curvature and anisotropic flows

Wayne Barrett, Charles R. Johnson, Raphael Loewy and Tamir Shalom, Rank incrementation via diagonal perturbations

Mingxiang Chen, Xu-Yan Chen and Jack K. Hale, Structural stability for time-periodic one-dimensional parabolic equations

Hong-Ming Yin, Global solutions of Maxwell's equations in an electromagnetic field with the temperature-dependent electrical conductivity

Robert Grone, Russell Merris and William Watkins, Laplacian unimodular equivalence of graphs

Miroslav Fiedler, Structure-ranks of matrices

Miroslav Fiedler, An estimate for the nonstochastic eigenvalues of doubly stochastic matrices

Miroslav Fiedler, Remarks on eigenvalues of Hankel matrices

Charles R. Johnson, D.D. Olesky, Michael Tsatsomeros and P. van den Driessche, Spectra with positive elementary symmetric functions

Pierre-Alain Gremaud, Thermal contraction as a free boundary problem

K.L. Cooke, Janos Turi and Gregg Turner, Stabilization of hybrid systems in the presence of feedback delays

Robert P. Gilbert and Yongzhi Xu, A numerical transmutation approach for underwater sound propagation

LeRoy B. Beasley, Richard A. Brualdi and Bryan L. Shader, Combinatorial orthogonality

Richard A. Brualdi and Bryan L. Shader, Strong Hall matrices

Håkan Wennérström and David M. Anderson, Difference versus Gaussian curvature energies; monolayer versus bilayer curvature energies applications to vesicle stability

Shmuel Friedland, Eigenvalues of almost skew symmetric matrices and tournament matrices

Avner Friedman, Bei Hu and J.L. Velazquez, A Free Boundary Problem Modeling Loop Dislocations in Crystals

Ezio Venturino, The Influence of Diseases on Lotka-Volterra Systems

Steve Kirkland and Bryan L. Shader, On Multipartite Tournament Matrices with Constant Team Size

Richard A. Brualdi and Jennifer J.Q. Massey, More on Structure-Ranks of Matrices

Douglas B. Meade, Qualitative Analysis of an Epidemic Model with Directed Dispersion

Kazuo Murota, Mixed Matrices Irreducibility and Decomposition

Richard A. Brualdi and Jennifer J.Q. Massey, Some Applications of Elementary Linear Algebra in Combinations

Carl D. Meyer, Sensitivity of Markov Chains

Hong-Ming Yin, Weak and Classical Solutions of Some Nonlinear Volterra Integrodifferential Equations

B. Leinikuler and A. Ruehl, Exploiting Symmetry and Regularity in Waveform Relaxation Convergence Estimation

Xinfu Chen and Charles M. Elliott, Asymptotics for a Parabolic Double Obstacle Problem

Yongzhi Xu and Yi Yan, An Approximate Boundary Integral Method for Acoustic Scattering in Shallow Oceans

Yongzhi Xu and Yi Yan, Source Localization Processing in Perturbed Waveguides

Kenneth L. Cooke and Janos Turi, Stability, Instability in Delay Equations Modeling Human Respiration

F. Bethuel, H. Brezis, B.D. Coleman and F. Hélein, Bifurcation Analysis of Minimizing Harmonic Maps Describing the Equilibrium of Nematic Phases Between Cylinders

Frank W. Elliott, Jr., Signed Random Measures: Stochastic Order and Kolmogorov Consistency Conditions

D.A. Gregory, S.J. Kirkland and B.L. Shader, Pick's Inequality and Tournaments

J.W. Demmel, N.J. Higham and R.S. Schreiber, Block LU Factorization

Victor A. Galaktionov and Juan L. Vazquez, Regional Blow-Up in a Semilinear Heat Equation with Convergence to a Hamilton-Jacobi Equation

Bryan L. Shader, Convertible, Nearly Decomposable and Nearly Reducible Matrices

Dianne P. O'Leary, Iterative Methods for Finding the Stationary Vector for Markov Chains

Nicholas J. Higham, Perturbation theory and backward error for $AX - XB = C$

Z. Strakos and A. Greenbaum, Open questions in the convergence analysis of the lanczos process for the real symmetric eigenvalue problem

Zhaojun Bai, Error analysis of the lanczos algorithm for the nonsymmetric eigenvalue problem

Pierre-Alain Gremaud, On an elliptic-parabolic problem related to phase transitions in shape memory alloys

Bojan Mohar and Neil Robertson, Disjoint essential circuits in toroidal maps

Evolve in the transition from a set of objects to another set of objects
Bojan Mohar and Svatopluk Poljak, Eigenvalues in combinatorial optimization
Richard A. Brualdi, Keith L. Chavey and Bryan L. Shader, Conditional sign-solvability
Roger Fosdick and Ying Zhang, The torsion problem for a nonconvex stored energy function
René Terland and Gaston Giroux, An unbounded mean-field intensity model:
 Propagation of the convergence of the empirical laws and compactness of the fluctuations
Wei-Ming Ni and Izumi Takagi, Spike-layers in semilinear elliptic singular Perturbation Problems
Henk A. Van der Vorst and Gerard G.L. Sleijpen, The effect of incomplete decomposition preconditioning
 on the convergence of conjugate gradients
S.P. Hastings and L.A. Peletier, On the decay of turbulent bursts
Apostolos Hadjidimos and Robert J. Plemmons, Analysis of p-cyclic iterations for Markov chains
ÅBjörck, H. Park and L. Eldén, Accurate downdating of least squares solutions
E.G. Kalnins, Willard Miller, Jr. and G.C. Williams, Recent advances in the use of separation of
 variables methods in general relativity
G.W. Stewart, On the perturbation of LU, Cholesky and QR factorizations
G.W. Stewart, Gaussian elimination, perturbation theory and Markov chains
G.W. Stewart, On a new way of solving the linear equations that arise in the method of least squares
G.W. Stewart, On the early history of the singular value decomposition
G.W. Stewart, On the perturbation of Markov chains with nearly transient states
Umberto Mosco, Composite media and asymptotic dirichlet forms
Walter F. Mascarenhas, The structure of the eigenvectors of sparse matrices
Walter F. Mascarenhas, A note on Jacobi being more accurate than QR
Raymond H. Chan, James G. Nagy and Robert J. Plemmons, FFT-based preconditioners for
 Toeplitz-Block least squares problems
Zhaojun Bai, The CSD, GSVD, their applications and computations
D.A. Gregory, S.J. Kirkland and N.J. Pullman, A bound on the exponent of a primitive matrix using
 Boolean rank
Richard A. Brualdi, Shmuel Friedland and Alex Pothen, Sparse bases, elementary vectors and nonzero
 minors of compound matrices
J.W. Demmel, Open problems in numerical linear algebra
James W. Demmel and William Gragg, On computing accurate singular values and eigenvalues of acyclic
 matrices
James W. Demmel, The inherent inaccuracy of implicit tridiagonal QR
J.J.L. Velázquez, Estimates on the \((N - 1)\)-dimensional Hausdorff measure of the blow-up set
 for a semilinear heat equation
David C. Dobson, Optimal design of periodic antireflective structures for the Helmholtz equation
C.J. van Duijn and Joseph D. Fehribach, Analysis of planar model for the molten carbonate fuel cell
Yongzhi Xu, T. Craig Poling and Trent Brundage, Source localization in a waveguide with unknown
 large inclusions
J.J.L. Velázquez, Higher dimensional blow up for semilinear parabolic equations
E.G. Kalnins and Willard Miller, Jr., Separable coordinates, integrability and the Niven equations
John M. Chadam and Hong-Ming Yin, A diffusion equation with localized chemical reactions
A. Greenbaum and L. Gurvits, Max-min properties of matrix factor norms
Beih Hu, A free boundary problem arising in smoulder combustion
C.M. Elliott and A.M. Stuart, The global dynamics of discrete semilinear parabolic equations
Avner Friedman and Jianhua Zhang, Swelling of a rubber ball in the presence of good solvent
Avner Friedman and Juan J.L. Velázquez, A time-dependence free boundary problem modeling
 the visual image in electrophotography
Richard A. Brualdi, Hyung Chan Jung and William T. Trotter, Jr., On the poset of all posets on
 \(n\) elements
Ricardo D. Fierro and James R. Bunch, Multicollinearity and total least squares
Adam W. Bojanczyk, James G. Nagy and Robert J. Plemmons, Row householder transformations for
 rank-\(k\) Cholesky inverse modifications
Chaocheng Huang, An age-dependent population model with nonlinear diffusion in \(\mathbb{R}^n\)
Emad Fatemir and Farkhoud Odeh, Upwind finite difference solution of Boltzmann equation applied to
 electron transport in semiconductor devices
Esmond G. Ng and Barry W. Peyton, A tight and explicit representation of \(Q\) in sparse \(QR\)
 factorization
Robert J. Plemmons, A proposal for FFT-based fast recursive least-squares
Anne Greenbaum and Zdenek Strakos, Matrices that generate the same Krylov residual spaces
Alan Edelman and G.W. Stewart, Scaling for orthogonality
G.W. Stewart, Note on a generalized sylvester equation
G.W. Stewart, Updating URV decompositions in parallel