SOURCE LOCALIZATION IN A WAVEGUIDE
WITH UNKNOWN LARGE INCLUSIONS

By

Yongzhi Xu
T. Craig Poling
and
Trent Brundage

IMA Preprint Series # 967
May 1992
Source Localization in a Waveguide with Unknown Large Inclusions

Yongzhi Xu
Institute for Mathematics and its Applications
University of Minnesota
Minneapolis, MN 55455.

T. Craig Poling, Trent Brundage
Alliant Techsystems Inc.
600 Second St. NE
Hopkins, MN 55343

Abstract

In this paper, we combine the matched-field method with the boundary integral equation method from inverse scattering theory to study a sound source localization problem in a shallow ocean with an unknown large inclusion. We assume that there is an unknown inclusion embedded in a shallow water waveguide. To localize a continuous wave (CW) source, we send in a number of "mode waves", which scatter off the unidentified inclusion and are received by a hydrophone array. Combining the information of these scattered waves and the signal from the point source, we present an algorithm to estimate the location of the CW source. A numerical simulation using this method is presented.

1 Introduction

The "Matched-field processing" method for the localization of acoustic sources in waveguides has been studied by many authors in recent years [1] [2] [8] [9] [10]. The main idea of the matched-field processing method is described in Bucker's paper "use of calculated wave field and matched field detection to locate sound source" [2]. On the other hand, the classical inverse scattering theories have developed rapidly recently [3] [11] [5]. The basic idea of the inverse scattering theory is based on the physical idea of scattering one or more "plane waves" off the unidentified inclusion and then trying to identify the shape of the inclusion or other properties from its far-field patterns. Recently, Gilbert and Xu have generalized this idea to the direct and inverse scattering problems in a shallow ocean (ref. [6] [7] [12] [13]).

In this paper, we combine matched-field processing with the boundary integral equation method of inverse scattering theory to study a sound source localization problem in a shallow ocean with an unknown large inclusion. A similar idea has been used by Xu and Yan [15] for sound source localization in a shallow ocean with a known large inclusion. Here we extend the idea to the case that there is an unknown inclusion embedded in a shallow water waveguide. A continuous wave (CW), produced by a sound source, is scattered by the inclusion and then received by a hydrophone array (Figure 1). As we can expect, the existence of the unknown inclusion changes the propagating field greatly. The propagating fields from a point source in a waveguide with and without the inclusion are

1This author's research was supported in part by the Institute for Mathematics and its Applications with funds provided by the National Science Foundation, the Minnesota Supercomputer Institute and Alliant Techsystems Inc.
plotted in figures 3 and 4 respectively. Therefore, neglecting the existence of the unknown inclusion will lead to substantial mismatching in the matched-field signal processing.

One straightforward method of avoiding mismatch is to use the inverse scattering method to reconstruct the shape of the unknown inclusion and then use the BIEM method in [14] to estimate the location of the source. However, sometimes one is only interested in locating the sound source. In that case, the method above is not a wise choice because the reconstruction of the unknown inclusion requires a large amount of information and very heavy computation. Moreover, the ill-posedness of the reconstruction problem will cause unnecessary error.

In this paper we will present a method which uses the idea of inverse scattering without actually computing the shape of the unknown inclusion. To localize a continuous wave source we send in a number of “plane waves” which scatter off the unidentified inclusion and are received by a hydrophone array. By combining the information from these scattered waves with the signal from the point source we present an algorithm to estimate the location of the CW source. In Section 2 we formulate the problem and present the theory. Section 3 describes the numerical results.

2 Modeling and methodology

2.1 Modeling

The model of the perturbed waveguide is depicted in figure 1.

We denote the waveguide with depth d as $R^2_d = \{(x_1, x_2) | -\infty < x_1 < \infty, 0 \leq x_2 \leq d\}$. An inclusion which is a bounded region located in the waveguide is denoted as Ω. For the sake of exposition, we shall assume that the inclusion has a sound-soft boundary $\partial \Omega$. Here we would like to point out that the shape of this inclusion is unknown and no information about Ω is actually used in our computation. A time-harmonic acoustic source is located at $x^s = (x^s_1, x^s_2)$. The hydrophone array consists of L hydrophones at $x^l = (x^l_1, x^l_2), l = 1, 2, \cdots, L$. A time-harmonic wave, radiated from x^s and scattered by Ω, propagates outward to $|x_1| \to \infty$. Let $p(x; x^s)$ be the acoustic pressure at $x = (x_1, x_2)$, emitted from the acoustic source at x^s, and $k = 2\pi f/c$ be the wave number, where f is the frequency and c is the speed of the time-harmonic acoustic wave. If the water waveguide has a pressure release surface at $x_2 = 0$ and a rigid bottom at $x_2 = d$, then the propagation of the outgoing wave is governed by the following equation:

$$\Delta p(x; x^s) + k^2 p(x; x^s) = -\delta(x_1 - x^s_1)\delta(x_2 - x^s_2), \quad x = (x_1, x_2) \in R^2_d \setminus \overline{\Omega},$$

(2.1)

$$p(x_1, 0; x^s) = 0, \quad \frac{\partial p}{\partial x_2}(x_1, d; x^s) = 0,$$

(2.2)

$$p(x; x^s) = 0 \text{ for } x \in \partial \Omega.$$ \hspace{1cm} (2.3)

Moreover, $p(x; x^s)$ satisfies an outgoing radiating condition, i.e., for $|x_1| \to \infty$, $p(x; x^s)$ has an expansion

$$p(x_1, x_2) = \sum_{n=1}^{\infty} p_n \phi_n(x_2)e^{ikn|x_1|},$$

(2.4)
where \(k_n = [k^2 - (n - \frac{1}{2})^2 \frac{x_1^2}{d^2}]^{1/2} \) is the horizontal wavenumber, and the coefficients \(p_n \) depend on \(x^s \) and the sign of \(x_1 \), and
\[
\phi_n(x_2) = \sin[\left(n - \frac{1}{2}\right)\frac{\pi}{d}x_2]. \tag{2.5}
\]

Now we can state our source localization problem as follows: given the acoustic pressure at points \(x^l, l = 1, 2, \ldots, L \) in the perturbed waveguide, estimate the location of the sound source \(x^s \).

2.2 Representation of the propagator

In this section we represent the propagating field using the boundary integral equation method on \(\partial\Omega \). The purpose is to understand the information that is needed to approximate the propagating field. The integral is defined over an unknown boundary and cannot actually be calculated.

The propagating acoustic wave emitted from a point source at \(x^s \) (which is called the Green’s function) can be constructed in the following way.

Write the Green’s function in the waveguide with an inclusion \(\Omega \) as
\[
p(x; x^s) = p_0(x; x^s) + p_1(x; x^s). \tag{2.6}
\]
Here \(p_0(x; x^s) \) is the Green’s function in the waveguide without the inclusion, i.e., \(p_0(x; x^s) \) satisfies
\[
\Delta p_0(x; x^s) + k^2 p_0(x; x^s) = -\delta(x_1 - x_1^s)\delta(x_2 - x_2^s), \quad x = (x_1, x_2) \in \mathbb{R}_d^2 \tag{2.7}
\]
\[
p_0(x_1, 0; x^s) = 0, \quad \frac{\partial p_0}{\partial x_2}(x_1, d; x^s) = 0, \tag{2.8}
\]
and \(p_0(x; x^s) \) is outgoing. By separation of variables, we can represent \(p_0(x; x^s) \) as
\[
p_0(x; x^s) = \sum_{n=1}^{\infty} \left\{ \frac{i}{2k_n} \right\} \phi_n(x_2)\phi_n(x_2^s)e^{ik_n|z_1 - z_1^s|}. \tag{2.9}
\]

Then \(p_1 = p - p_0 \) is a solution of the problem
\[
\Delta p_1(x; x^s) + k^2 p_1(x; x^s) = 0, \quad x \in \mathbb{R}_d^2 \setminus \overline{\Omega}, \tag{2.10}
\]
\[
p_1(x_1, 0; x^s) = 0, \quad \frac{\partial p_1}{\partial x_2}(x_1, d; x^s) = 0, \tag{2.11}
\]
\[
p_1(x; x^s) = -p_0(x; x^s) \quad \text{for} \quad x \in \partial\Omega, \tag{2.12}
\]
and \(p_1(x; x^s) \) is out-going as \(|x_1| \to \infty \). The physical meaning of this problem is that a wave \(p_0 \) incident upon the inclusion \(\Omega \) produces the scattered wave \(p_1 \). The Green’s function \(p \) is the composition of the incident wave \(p_0 \) and the scattered wave \(p_1 \).

We construct the scattered wave \(p_1 \) by the boundary integral equation method. Using a double layer potential,[4] we write
\[
p_1(x; x^s) = \int_{\partial\Omega} \frac{\partial p_0(x; y)}{\partial \nu_y} \psi(y; x^s) d\sigma_y, \quad \text{for} \quad x \in \mathbb{R}_d^2 \setminus \overline{\Omega}, \tag{2.13}
\]
where ψ is the solution of the boundary integral equation
\begin{equation}
\psi(x; x^*) + 2 \int_{\partial \Omega} \frac{\partial p_0}{\partial \nu_y}(x; y)\psi(y; x^*)d\sigma_y = -2p_0(x; x^*), \text{ for } x \in \partial \Omega. \tag{2.14}
\end{equation}

Symbolically we denote the boundary integral equation (2.14) as
\begin{equation}
\psi + K\psi = -2p_0, \tag{2.15}
\end{equation}
where K is the integral operator
\begin{equation}
K\psi(x; x^*) := 2 \int_{\partial \Omega} \frac{\partial p_0}{\partial \nu_y}(x; y)\psi(y; x^*)d\sigma_y, \text{ for } x \in \partial \Omega. \tag{2.16}
\end{equation}

By the theory of Fredholm integral equations of the second kind, if k is not an eigenvalue of the interior Neumann problem in Ω, then $I + K$ is invertible [4]. We can write
\begin{equation}
\psi(x; x^*) = -2(I + K)^{-1}p_0(x; x^*), \tag{2.17}
\end{equation}
and
\begin{equation}
p(x; x^*) = p_0(x; x^*) - 2 \int_{\partial \Omega} \frac{\partial p_0(x; y)}{\partial \nu_y}(I + K)^{-1}p_0(y; x^*)d\sigma_y, \text{ for } x \in \mathbb{R}^2 \setminus \overline{\Omega}. \tag{2.18}
\end{equation}

2.3 Approximation of the Green's function using the inverse scattering method

The representation (2.18) in the last section cannot be used for computation since Ω is unknown. However, in view of (2.9), we can rewrite (2.18) for $x_1 < y_1 < x_1$ as
\begin{equation}
p(x; x^*) = \sum_{n=1}^{\infty} \frac{i}{2k_n} \phi_n(x_2)e^{-ik_nx_1^*}\left\{\phi_n(x_2)e^{ik_nx_1} - 2 \int_{\partial \Omega} \frac{\partial p_0(x; y)}{\partial \nu_y}(I + K)^{-1}\phi_n(y_2)e^{ik_nv_1}d\sigma_y\right\}. \tag{2.19}
\end{equation}

For the other cases of x_1^*, y_1, and x_1, we get similar representations by using a proper change of the signs of x_1^*, y_1, and x_1.

Hence, we can approximate $p(x; x^*)$ by
\begin{equation}
p_N(x; x^*) = \sum_{n=1}^{N} \frac{i}{2k_n} u_n(x)\phi_n(x_2^*)e^{-ik_nx_1^*}, \tag{2.20}
\end{equation}

where
\begin{equation}
u_n(x) = \phi_n(x_2)e^{ik_nx_1} - 2 \int_{\partial \Omega} \frac{\partial p_0(x; y)}{\partial \nu_y}(I + K)^{-1}\phi_n(y_2)e^{ik_nv_1}d\sigma_y, \tag{2.21}
\end{equation}
and N is the number of propagating modes. If the inclusion Ω is known, (2.21) can be used to calculate u_n, and hence obtain the calculated field. However, since we assume no knowledge of Ω is given, we have to estimate u_n using some other information.

Comparing (2.21) and (2.18), we see that $u_n(x)$ is the sum of the incident wave $u^i_n = \phi_n(x_2)e^{ik_nx_1}$ and the corresponding scattered wave
\begin{equation}
u_n^s = -2 \int_{\partial \Omega} \frac{\partial p_0(x; y)}{\partial \nu_y}(I + K)^{-1}\phi_n(y_2)e^{ik_nv_1}d\sigma_y.
\end{equation}
That is, an incident "mode wave" u_n^i scatters off the unknown object and produces the scattered wave u_n^s. The total field is the sum of the incident and scattered waves $u_n = u_n^i + u_n^s$.

We compute our estimate of the acoustic field $p_N(x; x^*)$ in two separate steps:

1. Detect $u_n(x^i)$ for given $x^i, l = 1, 2, \ldots, L$. We send in "mode waves" u_n^i for $n = 1, 2, \ldots, N$, and the complex pressures detected at $x^i, l = 1, 2, \ldots, L$ are $u_n(x^i)$.

2. For a given source location x^*, compute $p_N(x^i; x^*)$. After $u_n(x^i)$ are obtained, $p_N(x^i; x^*)$ can be calculated using (2.20).

2.4 Construction of estimators

Using the representations for the Green’s function (2.9) and its modal amplitude, we now construct the estimators. For the sake of illustrating our method, we shall use the following simple estimator. More robust estimators will be interesting in practise. However we will not discuss them in this report.

Estimator: Let $\{p_{m_l}\}$ be the detected data set consisting of the acoustic pressure field p_{m_l} sampled at the hydrophones located at $(x_1^m, x_2^l), m = 1, 2, \ldots, M; l = 1, 2, \ldots, L$. The estimator in phone space is defined as follows:

$$F_p(x_1^i, x_2^i) = \left[\sum_{l=1}^{L} \sum_{m=1}^{M} \left| p_N(x_1^m, x_2^l; x_1^i, x_2^i) - p_{m_l}^* \right|^2 \right]^{-1}, \tag{2.22}$$

where $p_N(x_1^m, x_2^l; x_1^i, x_2^i)$ is the calculated acoustic pressure field at (x_1^m, x_2^l).

3 Computer simulations

Computer simulations using the method above were carried out on the Cray2 at the Minnesota Supercomputer Center. In this section we present some examples from our computations.

Example: Vertical hydrophone array

The configuration for the computer simulations is depicted in figure 2.

We assume the waveguide has a depth of 100 meters. The sound speed is assumed to be 1500m/s. An acoustic source S located at $(-350/\pi, 100/\pi)$ emits a time-harmonic wave at the frequency $f = 30Hz$. The hydrophone array is arranged vertically at $(600/\pi, 2.5j), j = 0, 1, \ldots, 40$. There is an inclusion Ω with a pressure release surface which occupies the region $\{(x_1, x_2) | x_1^2 + 4(x_2 - 50)^2 \leq (50/\pi)^2\}$. If the waveguide is normalized to a depth of π, then the normalized wave number is $k = 4$, which means there are four propagating modes for the acoustic wave at the given frequency.

We use the boundary integral equation method to compute the propagating field. For the following integral equation (2.13) for $\psi(x; x^*)$ where $p_0(x; x^*)$ is given by (2.9) with truncation at $n = 30$ and $x^* = (-350/\pi, 100/\pi)$, and substitute the $\psi(x; x^*)$ into (2.18) to get the propagating field $p(x; x^*)$. A contour plot of the propagating wave with source at $x^* = (-350/\pi, 100/\pi)$ is plotted in figure 3. For comparison, a contour plot of the propagating wave with a source at $x^* = (-350/\pi, 100/\pi)$ in an unperturbed waveguide is plotted in figure 4. In particular, we obtain $p_{m_l}^* = p(600/\pi, 2.5m; x^*), m = 0, 1, \ldots, 40$. To make the data more realistic, we add Gaussian noise (generated by a NAG subroutine g05ddf in our computation) to the data and use it as our detected data. Contour plots of the first to
forth modes of the total fields in a waveguide with the large inclusion are given in figures 5-8. For comparison, the forth mode in a unperturbed waveguide is plotted in figure 9.

The second step is to compute the estimator. We generated the \(u_n(600/\pi, 2.5m) \) as the detected field at \((600/\pi, 2.5m), m = 0, 1, \cdots, 40 \). These data are obtained by our approximate BIEM method with added Gaussian noise.

Using these \(u_n(x) \), we search the area of \([-600/\pi, 0.0] \times [0, 100] \), and plot the estimator \(F_p(x^*) \) for \(x^* \in [-600/\pi, 0.0] \times [0, 100] \). (See figures 10-14).

Figure 10-11: These figures show the estimator \(F_p(x^*) \) for the detected data \(p_m^* = p(600/\pi, 2.5m; x^*) \) \(m = 0, 1, \cdots, 40 \) which contain Gaussian noise with signal-to-noise ratio \(S/N = 10dB \). In figure 11, a filter with the threshold value \(F_p(x^*) = 0.65 \) is used, i.e. we set \(F_p(x^*) = 0 \) if \(F_p(x^*) < 0.65 \).

Figure 12: This figure shows the estimator \(F_p(x^*) \) when the calculated field \(p_N(x; x^*) \) is computed in the absence of the inclusion and hence mismatches the true field. The figure indicates the processing loss and localization ambiguities incurred by not accounting for unknown inclusions in matched field processing. No noise was used in this calculation.

Figure 13: Same as Figure 15 with added Gaussian noise, signal to noise ratio \(S/N = 10dB \), and a filter threshold value of \(F_p(x^*) = 0.65 \).

4 Conclusions

A technique for compensating for environmental uncertainty in matched field processing has been described. The method combines the boundary integral equation method with matched field processing. By illuminating the search space with incident "mode waves" the effect of unknown inhomogeneities in the environment on matched field processing can be compensated. The advantages of this compensation on matched field processing gain and localization can be clearly seen by the numerical simulations.

References

Figure 1: Acoustic source in a perturbed waveguide
Figure 2: Detection of acoustic source by a vertical hydrophone array.
Figure 3: Total propagating wave from the point source in the perturbed waveguide.
Figure 4: Total propagating wave from the point source in the unperurbed waveguide.
Figure 5: First mode of the total wave in the perturbed waveguide.
Figure 6: Second mode of the total wave in the perturbed waveguide.
Perturbed waveguide

Figure 7: Third mode of the total wave in the

Power (db)
Figure 8: Fourth mode of the total wave in the perturbed waveguide.
Figure 9: Fourth mode of the total wave in the unperturbed waveguide.
Figure 10: Estimator of detected data with Gaussian noise, S/N=10db
Figure 11: Estimator with filter threshold set at 0.65
Figure 12: Estimator output when the calculated field is mismatched the true field computed in the absence of the inclusion and hence...
Figure 13: Same as Figure 12 with added Gaussian noise, $S/N=10$ db, filter threshold set at 65.
<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>892</td>
<td>E.G. Kalnins, Willard Miller, Jr. and Sanchita Mukherjee,</td>
<td>Models of q-algebra representations: the group of plane motions</td>
</tr>
<tr>
<td>893</td>
<td>T.R. Hoffend Jr. and R.K. Kaul,</td>
<td>Relativistic theory of superpotentials for a nonhomogeneous, spatially</td>
</tr>
<tr>
<td></td>
<td></td>
<td>isotropic medium</td>
</tr>
<tr>
<td>894</td>
<td>Reinhold von Schwerin,</td>
<td>Two metal deposition on a microdisk electrode</td>
</tr>
<tr>
<td>895</td>
<td>Vladimir I. Oliker and Nina N. Uraltseva,</td>
<td>Evolution of nonparametric surfaces with speed depending on curve,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>III. Some remarks on mean curvature and anisotropic flows</td>
</tr>
<tr>
<td>896</td>
<td>Wayne Barrett, Charles R. Johnson, Raphael Loewy and</td>
<td>Rank incrementation via diagonal perturbations</td>
</tr>
<tr>
<td></td>
<td>Tamir Shalom,</td>
<td></td>
</tr>
<tr>
<td>897</td>
<td>Mingxiang Chen, Xu-Yan Chen and Jack K. Hale,</td>
<td>Structural stability for time-periodic one-dimensional parabolic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>equations</td>
</tr>
<tr>
<td>898</td>
<td>Hong-Ming Yin,</td>
<td>Global solutions of Maxwell's equations in an electromagnetic field</td>
</tr>
<tr>
<td></td>
<td></td>
<td>with the temperature-dependent electrical conductivity</td>
</tr>
<tr>
<td>900</td>
<td>Robert Grone, Russell Merris and William Watkins,</td>
<td>Laplacian unimodular equivalence of graphs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>901</td>
<td>Miroslav Fiedler, Structure-ranks of matrices</td>
<td></td>
</tr>
<tr>
<td>902</td>
<td>Miroslav Fiedler,</td>
<td>An estimate for the nonstochastic eigenvalues of doubly stochastic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>matrices</td>
</tr>
<tr>
<td>903</td>
<td>Miroslav Fiedler,</td>
<td>Remarks on eigenvalues of Hankel matrices</td>
</tr>
<tr>
<td>904</td>
<td>Charles R. Johnson, D.D. Olesky, Michael Tsatsomeros and</td>
<td>Spectra with positive elementary symmetric functions</td>
</tr>
<tr>
<td></td>
<td>P. van den Driessche,</td>
<td></td>
</tr>
<tr>
<td>905</td>
<td>Pierre-Alain Gremaud,</td>
<td>Thermal contraction as a free boundary problem</td>
</tr>
<tr>
<td>906</td>
<td>K.L. Cooke, Janos Turi and Gregg Turner,</td>
<td>Stabilization of hybrid systems in the presence of feedback delays</td>
</tr>
<tr>
<td>907</td>
<td>Robert P. Gilbert and Yongzhi Xu,</td>
<td>A numerical transmutation approach for underwater sound propagation</td>
</tr>
<tr>
<td>908</td>
<td>LeRoy B. Beasley, Richard A. Brualdi and Bryan L. Shader,</td>
<td>Combinatorial orthogonality</td>
</tr>
<tr>
<td>909</td>
<td>Richard A. Brualdi and Bryan L. Shader,</td>
<td>Strong hall matrices</td>
</tr>
<tr>
<td>910</td>
<td>Håkan Wennström and David M. Anderson,</td>
<td>Difference versus Gaussian curvature energies; monolayer versus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bilayer curvature energies applications to vesicle stability</td>
</tr>
<tr>
<td>911</td>
<td>Shmuel Friedland,</td>
<td>Eigenvalues of almost skew symmetric matrices and tournament matrices</td>
</tr>
<tr>
<td>912</td>
<td>Avner Friedman, Bei Hu and J.L. Velazquez,</td>
<td>A Free Boundary Problem Modeling Loop Dislocations in Crystals</td>
</tr>
<tr>
<td>913</td>
<td>Ezio Venturino,</td>
<td>The Influence of Diseases on Lotka-Volterra Systems</td>
</tr>
<tr>
<td>914</td>
<td>Steve Kirkland and Bryan L. Shader,</td>
<td>On Multipartite Tournament Matrices with Constant Team Size</td>
</tr>
<tr>
<td>915</td>
<td>Richard A. Brualdi and Jennifer J.Q. Massey,</td>
<td>More on Structure-Ranks of Matrices</td>
</tr>
<tr>
<td>916</td>
<td>Douglas B. Meade,</td>
<td>Qualitative Analysis of an Epidemic Model with Directed Dispersions</td>
</tr>
<tr>
<td>917</td>
<td>Kazuo Murota,</td>
<td>Mixed Matrices Irreducibility and Decomposition</td>
</tr>
<tr>
<td>918</td>
<td>Richard A. Brualdi and Jennifer J.Q. Massey,</td>
<td>Some Applications of Elementary Linear Algebra in Combinations</td>
</tr>
<tr>
<td>919</td>
<td>Carl D. Meyer,</td>
<td>Sensitivity of Markov Chains</td>
</tr>
<tr>
<td>920</td>
<td>Hong-Ming Yin,</td>
<td>Weak and Classical Solutions of Some Nonlinear Volterra</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Integrodifferential Equations</td>
</tr>
<tr>
<td>921</td>
<td>B. Leinikuhler and A. Ruehli,</td>
<td>Exploiting Symmetry and Regularity in Waveform Relaxation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Estimation</td>
</tr>
<tr>
<td>922</td>
<td>Xinfu Chen and Charles M. Elliott,</td>
<td>Asymptotics for a Parabolic Double Obstacle Problem</td>
</tr>
<tr>
<td>923</td>
<td>Yongzhi Xu and Yi Yan,</td>
<td>An Approximate Boundary Integral Method for Acoustic Scattering in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shallow Oceans</td>
</tr>
<tr>
<td>924</td>
<td>Yongzhi Xu and Yi Yan,</td>
<td>Source Localization Processing in Perturbed Waveguides</td>
</tr>
<tr>
<td>925</td>
<td>Kenneth L. Cooke and Janos Turi,</td>
<td>Stability, Instability in Delay Equations Modeling Human Respirations</td>
</tr>
<tr>
<td>926</td>
<td>F. Bethuel, H. Brezis, B.D. Coleman and F. Hélein,</td>
<td>Bifurcation Analysis of Minimizing Harmonic Maps Describing the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Equilibrium of Nematic Phases Between Cylinders</td>
</tr>
<tr>
<td>927</td>
<td>Frank W. Elliott, Jr.,</td>
<td>Signed Random Measures: Stochastic Order and Kolmogorov Consistency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conditions</td>
</tr>
<tr>
<td>928</td>
<td>D.A. Gregory, S.J. Kirkland and B.L. Shader,</td>
<td>Pick's Inequality and Tournaments</td>
</tr>
<tr>
<td>929</td>
<td>J.W. Demmel, N.J. Higham and R.S. Schreiber,</td>
<td>Block LU Factorization</td>
</tr>
<tr>
<td>930</td>
<td>Victor A. Galaktionov and Juan L. Vazquez,</td>
<td>Regional Blow-Up in a Semilinear Heat Equation with</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Convergence to a Hamilton-Jacobi Equation</td>
</tr>
<tr>
<td>931</td>
<td>Bryan L. Shader,</td>
<td>Convertible, Nearly Decomposable and Nearly Reducible Matrices</td>
</tr>
<tr>
<td>932</td>
<td>Dianne P. O'Leary,</td>
<td>Iterative Methods for Finding the Stationary Vector for Markov Chains</td>
</tr>
<tr>
<td>933</td>
<td>Nicholas J. Higham,</td>
<td>Perturbation theory and backward error for $AX - XB = C$</td>
</tr>
<tr>
<td>934</td>
<td>Z. Strakos and A. Greenbaum,</td>
<td>Open questions in the convergence analysis of the lanczos process for</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the real symmetric eigenvalue problem</td>
</tr>
<tr>
<td>935</td>
<td>Zhaojun Bai,</td>
<td>Error analysis of the lanczos algorithm for the nonsymmetric</td>
</tr>
<tr>
<td></td>
<td></td>
<td>eigenvalue problem</td>
</tr>
<tr>
<td>936</td>
<td>Pierre-Alain Gremaud,</td>
<td>On an elliptic-parabolic problem related to phase transitions in shape</td>
</tr>
<tr>
<td></td>
<td></td>
<td>memory alloys</td>
</tr>
<tr>
<td>937</td>
<td>Dojan Mohar and Neil Robertson,</td>
<td>Disjoint essential circuits in toroidal maps</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bojan Mohar and Svatopluk Poljak, Eigenvalues in combinatorial optimization
Richard A. Brualdi, Keith L. Chavey and Bryan L. Shader, Conditional sign-solvability
Roger Fosdick and Ying Zhang, The torsion problem for a nonconvex stored energy function
René Ferland and Gaston Giroux, An unbounded mean-field intensity model: Propagation of the convergence of the empirical laws and compactness of the fluctuations
Wei-Ming Ni and Izumi Takagi, Spike-layers in semilinear elliptic singular Perturbation Problems
Henk A. Van der Vorst and Gerard G.L. Sleijpen, The effect of incomplete decomposition preconditioning on the convergence of conjugate gradients
S.P. Hastings and L.A. Peletier, On the decay of turbulent bursts
Apostolos Hadjidimos and Robert J. Plemmons, Analysis of p-cyclic iterations for Markov chains
ÅBjörck, H. Park and L. Eldén, Accurate downdating of least squares solutions
E.G. Kalnins, Willard Miller, Jr. and G.C. Williams, Recent advances in the use of separation of variables methods in general relativity
G.W. Stewart, On the perturbation of LU, Cholesky and QR factorizations
G.W. Stewart, Gaussian elimination, perturbation theory and Markov chains
G.W. Stewart, On a new way of solving the linear equations that arise in the method of least squares
G.W. Stewart, On the early history of the singular value decomposition
G.W. Stewart, On the perturbation of Markov chains with nearly transient states
Umberto Mosco, Composite media and asymptotic dirichlet forms
Walter F. Mascarenhas, The structure of the eigenvectors of sparse matrices
Walter F. Mascarenhas, A note on Jacobi being more accurate than QR
Raymond H. Chan, James G. Nagy and Robert J. Plemmons, FFT-based preconditioners for Toeplitz-Block least squares problems
Zhaojun Bai, The CSD, GSVD, their applications and computations
D.A. Gregory, S.J. Kirkland and N.J. Pullman, A bound on the exponent of a primitive matrix using Boolean rank
Richard A. Brualdi, Shmuel Friedland and Alex Pothen, Sparse bases, elementary vectors and nonzero minors of compound matrices
J.W. Demmel, Open problems in numerical linear algebra
James W. Demmel and William Gragg, On computing accurate singular values and eigenvalues of acyclic matrices
James W. Demmel, The inherent inaccuracy of implicit tridiagonal QR
J.J.L. Velázquez, Estimates on the \((N - 1)\)-dimensional Hausdorff measure of the blow-up set for a semilinear heat equation
David C. Dobson, Optimal design of periodic antireflective structures for the Helmholtz equation
C.J. van Duijn and Joseph D. Fehribach, Analysis of planar model for the molten carbonate fuel cell
Yongzhi Xu, T. Craig Poling and Trent Brundage, Source localization in a waveguide with unknown large inclusions
J.J.L. Velázquez, Higher dimensional blow up for semilinear parabolic equations
E.G. Kalnins and Willard Miller, Jr., Separable coordinates, integrability and the Niven equations
John M. Chadam and Hong-Ming Yin, A diffusion equation with localized chemical reactions
A. Greenbaum and L. Gurvits, Max-min properties of matrix factor norms
Bei Hu, A free boundary problem arising in smoulder combustion
C.M. Elliott and A.M. Stuart, The global dynamics of discrete semilinear parabolic equations
Avner Friedman and Jianhua Zhang, Swelling of a rubber ball in the presence of good solvent
Avner Friedman and Juan J.L. Velázquez, A time-dependence free boundary problem modeling the visual image in electrophotography
Richard A. Brualdi, Hyung Chan Jung and William T. Trotter, Jr., On the poset of all posets on \(n\) elements
Ricardo D. Fierro and James R. Bunch, Multicollinearity and total least squares
Adam W. Bojanczyk, James G. Nagy and Robert J. Plemmons, Row householder transformations for rank-k Cholesky inverse modifications
Chaocheng Huang, An age-dependent population model with nonlinear diffusion in \(\mathbb{R}^n\)
Emad Fatemi and Faroukh Odeh, Upwind finite difference solution of Boltzmann equation applied to electron transport in semiconductor devices
Esmond G. Ng and Barry W. Peyton, A tight and explicit representation of \(Q\) in sparse \(QR\) factorization
Robert J. Plemmons, A proposal for \(FFT\)-based fast recursive least-squares
Anne Greenbaum and Zdenek Strakos, Matrices that generate the same Krylov residual spaces
Alan Edelman and G.W. Stewart, Scaling for orthogonality
G.W. Stewart, Note on a generalized sylvester equation
G.W. Stewart, Updating URV decompositions in parallel