REGULARITY OF THE FREE BOUNDARY
OF A CONTINUOUS CASTING PROBLEM

By

Xinfu Chen
and
Fahuai Yi

IMA Preprint Series # 811
May 1991
REGULARITY OF THE FREE BOUNDARY OF A CONTINUOUS CASTING PROBLEM

XINFU CHEN† AND FAHUAI YI‡

Abstract. We prove the existence and uniqueness of weak solutions of a steady-state, two-phase continuous casting problem under the Dirichlet boundary conditions. In particular, we establish the C^α regularity of the free boundary and, under some stronger conditions, the Lipschitz continuity of the free boundary.

Key words. Casting problem, Stefan problem, free boundary, convection.

1. Introduction. The continuous casting problem is a simplified model describing the solidification of a material being cast continuously in a cylindrical domain $\Omega \times (-\infty, \infty)$, where Ω is a Lipschitz bounded domain in \mathbb{R}^n ($n \geq 1$). Denote by $u(x, z, t)$ the temperature and by $\vec{v}(x, z, t)$ the velocity of the material at position $(x, z) \in \Omega \times (-\infty, \infty)$ and time t. Then the law of the conservation of energy implies that

$$\frac{\partial}{\partial t} \beta(u) + \text{div} (\beta(u) \vec{v}) - \Delta u = 0 \quad (1.1)$$

where $\beta(u)$ is the enthalpy defined by

$$\beta(u) := \begin{cases}
 u + l & \text{if } u > 0 \\
 [0, l] & \text{if } u = 0 \\
 u & \text{if } u < 0
 \end{cases} \quad (1.2)$$

and $l > 0$ is the latent heat.

In this paper, we are interested in the steady-state solutions of (1.1) with a prescribed velocity $\vec{v}(x, z, t) = -\vec{e}_z$ (the unit vector in z–direction) in the cylindrical domain $Q := \Omega \times (0, 1)$. More precisely, we study the boundary value problem:

$$-\Delta u(x, z) - \frac{\partial}{\partial z} \beta(u(x, z)) = 0 \quad \text{in } Q := \Omega \times (0, 1), \quad (1.3)$$

$$u(x, z) = g(x, z) \quad \text{on } \partial Q \quad (1.4)$$

where $g \in H^1(Q)$ is a given function and ∂Q stands for the boundary of Q.

†School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA. The first author is supported by the Sloan Doctoral Dissertation Fellowship for the academic year 1990–1991.

‡Department of Mathematics, Suzhou University, Jiangsu, 215006, PRC. The second author is partially supported by the Institute of Mathematics and its Applications, University of Minnesota.
The continuous casting problem (with a prescribed velocity \(\vec{v} \)) has been studied by several authors; see, for instance, Brière [1], Chipot & Rgdrigues [3], Rodrigues [7, 8], Rulla [14] and the references therein. Recently, Yi [13] and Rodrigues & Yi [12] considered the time dependent problem (1.1) with \(\vec{v} = \vec{c}_z \), subject to the Dirichlet boundary conditions and to the mixed boundary conditions, respectively. They established the existence and uniqueness of weak solutions, as well as the stabilities of the solutions. Their proof of the existence and uniqueness can be, with minor changes, carried out here.

In this paper, we are particularly interested in the regularity of the free boundary defined by

\[
\Gamma_u := \{(x, z) \in \overline{Q} \mid u(x, z) = 0\}.
\]

Towards this direction, Rodrigues [10] and Rodrigues & Zaltzman [11] have recently obtained the Lipschitz regularity of the free boundary in the two dimensional case (i.e., \(\Omega \in \mathbb{R}^1 \)). Here, we shall establish the \(C^\alpha \) regularity of the free boundary under the assumption that

\[
g \in H^1(Q) \cap C^\alpha(\overline{Q}),
\]

\[
g(x, 1) = m^+ > 0, \quad g(x, 0) = -m^- < 0, \quad x \in \Omega,
\]

\[
\inf_{x \in \Omega, 0 \leq z_1 < z_2 \leq 1} \frac{g(x, z_1) - g(x, z_2)}{z_1 - z_2} > 0.
\]

We shall also establish the Lipschitz continuity of the free boundary under some stronger conditions. By doing this, we can apply the results of Caffarelli [2] to conclude that the free boundary is \(C^{1+\alpha} \) and the weak solution is \(C^{1+\alpha} \) up to the free boundary, therefore the weak solution is a classical solution.

All our results hold for any dimension.

The key method used here is the construction of sub- and supersolutions.

In §2 we shall establish the existence and uniqueness of weak solutions of (1.3), (1.4), as well as comparison lemmas which will play an important role in establishing the regularity of the free boundary. We prove the \(C^\alpha \) regularity of the free–boundary in §3 and the Lipschitz regularity in §4.

2. Existence and uniqueness of weak solutions. We begin with defining the weak solution of (1.3), (1.4).

Definition 2.1. A pair \((u, \eta)\) is called a weak solution of (1.3), (1.4) if \(u \in H^1(Q), \eta \in \beta(u), u = g \) on \(\partial Q \), and

\[
\int_Q \left(\nabla u \nabla \zeta + \eta \zeta \right) = 0 \quad \forall \zeta \in H^1_0(Q).
\]
The free boundary of the solution is defined as

\[\Gamma_u := \{(x, z) \in \overline{Q} \mid u(x, z) = 0\}. \quad (2.2) \]

Observe that if \(\Gamma_u \) is smooth and is given by the zero level set of a \(C^1(\overline{Q}) \) function \(\phi \), \(|\nabla \phi| \neq 0 \) on \(\Gamma_u \), then one can easily deduce from (2.1) the jump relation

\[(\nabla u^- - \nabla u^+) \cdot \nabla \phi = l \phi_z \quad \text{on} \quad \Gamma_u \quad (2.3) \]

where "\(u^- \)" and "\(u^+ \)" represent the restriction of \(u \) in the domain \(Q_u^- := \{u < 0\} \) and \(Q_u^+ := \{u > 0\} \), respectively. In particular, if \(\phi = z - \varphi(x) \), then (2.3) can be written as

\[\frac{\partial u^-}{\partial n} - \frac{\partial u^+}{\partial n} = \frac{l}{\sqrt{1 + |\nabla_x \varphi|^2}} \quad \text{on} \quad \Gamma_u \quad (2.4) \]

where \(n \) is the unit vector normal to \(\Gamma_u \), pointing to the region \(Q_u^+ \), and \(\nabla_x \) is the gradient with respect to \(x \in \Omega \subset \mathbb{R}^n \). Noting that the tangential derivatives of \(u \) along \(\Gamma_u \) vanish, one can further write the relation (2.4) as

\[\frac{\partial u^-}{\partial z} - \frac{\partial u^+}{\partial z} = \frac{l}{1 + |\nabla_x \varphi|^2} \quad \text{on} \quad \Gamma_u. \quad (2.5) \]

We call \(u \) a classical solution to (1.3) if

\[u \in C^2(Q \setminus \Gamma_u) \cap C^1(Q_u^+ \cup \Gamma_u) \cap C^1(Q_u^- \cup \Gamma_u), \]

\[-\Delta u - u_z = 0 \quad \text{in} \quad Q \setminus \Gamma_u, \]

and \(u \) satisfies (2.3) for some function \(\phi \in C^1(Q) \) satisfying

\[\phi = 0, \quad |\nabla \phi| \neq 0 \quad \text{on} \quad \Gamma_u. \]

In the sequel, we shall assume that \(\Omega \) is a Lipschitz bounded domain in \(\mathbb{R}^n \), \(n \geq 1 \).

Theorem 1. (Existence and Regularity of Weak Solutions)

1. If \(g \in H^1(Q) \), then there exists at least one weak solution to (1.3), (1.4).

2. If \((u, \eta) \) is a weak solution of (1.3), (1.4), then \(u \in C^{\alpha}(Q) \) for any \(\alpha \in (0, 1) \). In addition, if \(g \in C^{\alpha}(S) \) for some hypersurface \(S \subset \partial Q \), then \(u \in C^{\alpha}(Q \cup S^0) \) where \(S^0 \) is the interior of \(S \) in \(\partial Q \).

Proof. The existence proof is based on a regularization method which is quite standard; see, for instance, Friedman [4, pp 684–692]. We shall only sketch the proof here since most of the details can be deduced from Yi [13] or Rodrigues & Yi [12].
For any $\varepsilon > 0$, consider the nonlinear elliptic problem:

\begin{align}
- \Delta u^\varepsilon - u_z^\varepsilon &= \frac{l}{2} (1 + \tanh \frac{u^\varepsilon}{\varepsilon})_z \quad \text{in } Q, \tag{2.6} \\
u^\varepsilon &= g \quad \text{on } Q \tag{2.7}
\end{align}

where $\tanh s$ is the hyperbolic tangent function $(e^s - e^{-s})/(e^s + e^{-s})$ and it can be replaced by any monotone increasing function approximating the sign function. By the elliptic theory [5], the problem (2.6), (2.7) admits a unique solution $u^\varepsilon \in H^1(Q) \cap C^\infty(Q)$.

Multiplying (2.6) by $u^\varepsilon - g$ and integrating over Q, one can get, after routine calculation (i.e., integration by parts, Hölder inequality, Sobolev embedding theorem), the a priori estimate

\begin{equation}
\iint_Q |\nabla u^\varepsilon|^2 \leq C \left(\iint_Q (|\nabla g|^2 + g^2) + \int_\Omega (g^2(x,1) + g^2(x,0)) + l^2 \right) \tag{2.8}
\end{equation}

where the constant C depends only on n and Ω. Consequently, one can use the standard limit taken process (see Yi [13]) to obtain a weak solution of (1.3), (1.4), thereby establishing the first assertion of the theorem.

Noticing that the integral identity (2.1) implies that

\begin{equation}
- \Delta u - u_z = (f)_z \quad \text{in } H^{-1}(Q) \tag{2.9}
\end{equation}

where $f := \eta - u$ only takes values in $[0, l]$, one can apply the linear elliptic theory [5, p 203] to conclude the second assertion of the theorem. \hfill \Box

To establish the uniqueness of the weak solution, we shall first prove the following:

Lemma 2.1. (First Comparison) Assume that $g \in H^1(Q)$, and let (u, η) be a weak solution of (1.3), (1.4). Let $\overline{u} \in H^1(Q)$, $\overline{\eta} \in \beta(\overline{u})$ be a pair satisfying $\overline{u} \geq g$ on ∂Q and

\begin{equation}
\iint_Q \nabla \overline{u} \nabla \zeta + \overline{\eta} \zeta_z \geq 0 \quad \forall \zeta \in H^1_0(Q), \zeta \geq 0. \tag{2.10}
\end{equation}

Further, assume that there exists a constant $\delta \in (0, 1)$ such that

\begin{equation}
|u| + |\overline{u}| \geq \delta \quad \text{in } \mathcal{S}_\delta := \Omega \times (1 - \delta, 1). \tag{2.11}
\end{equation}

Then, $(\overline{u}, \overline{\eta})$ is a supersolution to (1.3), (1.4), i.e.,

\begin{equation}
u \leq \overline{u}, \quad \eta \leq \overline{\eta} \quad \text{a.e. in } Q. \tag{2.12}
\end{equation}
Remark 2.1. The assumption (2.11), which is called "sufficient condition for stability" in [12], will play a crucial role in the proof. We don’t know if (2.11) can be relaxed by the “natural” condition

$$\eta \leq \bar{\eta} \quad \text{on} \quad \partial Q.$$ \hfill (2.13)

Proof of Lemma 2.1. The following proof is based on the classical method developed by Kamenomostskaja (Kamin) [6].

Subtracting (2.1) from (2.10), one gets

$$\iint_Q \nabla (\v - u) \nabla \zeta + (\bar{\eta} - \eta) \zeta_z \geq 0 \quad \forall \zeta \in H^1_0(Q), \zeta \geq 0. \hfill (2.14)$$

If $\Delta \zeta \in L^2(Q)$, then integrating by parts (see Rodrigues [9, p 76] for a justification) and using the fact that $\frac{\partial \zeta}{\partial n} |_{\partial Q} \leq 0$ (n the outward unit normal), one obtains

$$\iint_Q (\bar{\eta} - \eta) \left(-\alpha \Delta \zeta + \zeta_z\right) \geq 0 \quad \forall \zeta \in H^1_0(Q), \Delta \zeta \in L^2(Q), \zeta \geq 0 \hfill (2.15)$$

where

$$\alpha = \begin{cases} \frac{\v - u}{\bar{\eta} - \eta} & \text{if } \bar{\eta} \neq \eta \\ 1 & \text{if } \bar{\eta} = \eta. \end{cases} \hfill (2.16)$$

It is easy to see that $0 < \alpha \leq 1$.

In order to choose ζ, we shall first make some preparations.

Let $\alpha_n \in C^\infty(Q), n \in \mathbb{N}^+$, be a sequence of smooth functions satisfying

$$\frac{1}{n} \leq \alpha_n \leq 2 \quad \forall n \in \mathbb{N}^+, \hfill (2.17)$$

$$\left\| (\bar{\eta} - \eta) \frac{\alpha_n - \alpha}{\sqrt{\alpha_n}} \right\|_{L^2(Q)} \to 0 \quad \text{as} \quad n \to \infty. \hfill (2.18)$$

(Since $\v, u \in H^1(Q)$, one has $\bar{\eta} - \eta \in L^p$ for some $p > 2$ by the Sobolev embedding theorem, and therefore such a sequence α_n can be constructed.)

Note that (2.11), (2.16) imply $\alpha \geq \frac{\delta}{l + \delta}$ in S_δ, so that we can assume

$$\alpha_n \geq \frac{\delta}{l + \delta} \quad \text{in} \quad S_\delta. \hfill (2.19)$$
For any \(f \in C_0^\infty(Q) \), \(f \geq 0 \), we define \(\zeta^n \) as the unique solution of the linear elliptic problem:

\[
- \alpha_n \Delta \zeta^n + \zeta^n_z = f \quad \text{in } Q, \tag{2.20}
\]
\[
\zeta^n = 0 \quad \text{on } \partial Q. \tag{2.21}
\]

Firstly, one can directly verify that 0 is a subsolution to (2.20), (2.21), and \(z \| \Delta \zeta^n \|_{C^0(Q)} \) is a supersolution, so that one has

\[
0 \leq \zeta^n(x, z) \leq z \| \Delta \zeta^n \|_{C^0(Q)} \quad \forall (x, z) \in Q. \tag{2.22}
\]

Secondly, using the condition (2.19) to compare \(\zeta^n \) with \(\| \Delta \zeta^n \|_{C^0(Q)} \left[1 - \delta^{-2}(z - 1 + \delta)^2 \right] \) in the set \(S_\delta \) where \(\delta := \frac{\delta}{1+\delta} \), one can conclude that

\[
\zeta^n \leq \| \Delta \zeta^n \|_{C^0(Q)} \left[1 - \delta^{-2}(z - 1 + \delta)^2 \right] \quad \text{in } S_\delta.
\]

Consequently,

\[
\left| \frac{\partial \zeta^n}{\partial z} \right| \leq \frac{2}{\delta} \| \Delta \zeta^n \|_{C^0(Q)} \quad \text{on } \Omega \times \{1\}. \tag{2.23}
\]

Finally, multiplying both sides of (2.20) by \(\Delta \zeta^n \) and integrating over \(Q \), we get

\[
\iint_Q \alpha_n |\Delta \zeta^n|^2 = \iint_Q \left(\zeta^n \Delta \zeta^n - f \Delta \zeta^n \right)
\]
\[
= \iint_{\partial Q} \frac{\partial \zeta^n}{\partial n} \zeta^n - \iint_Q \nabla \zeta^n \nabla \zeta^n - \iint_Q \zeta^n \Delta f
\]
\[
= \frac{1}{2} \int_\Omega \zeta^n(x, 1)^2 - \frac{1}{2} \int_\Omega \zeta^n(x, 0)^2 - \iint_Q \zeta^n \Delta f
\]
\[
\leq C(\delta) \left(\| \Delta \zeta^n \|_{C^0(Q)}^2 + \| \Delta f \|_{L^1(Q)}^2 \right) \tag{2.24}
\]

by the estimates (2.22) and (2.23).

Now we can take \(\zeta = \zeta^n \) in (2.15), obtaining

\[
\iint_Q (\eta - \bar{\eta}) f \leq \iint_Q (\bar{\eta} - \eta)(\alpha_n - \alpha) \Delta \zeta^n \leq \iint_Q \| \alpha_n \Delta \zeta^n \|_{L^2(Q)} \| (\bar{\eta} - \eta) \alpha_n - \alpha \|_{L^2(Q)} \rightarrow 0
\]

as \(n \rightarrow \infty \), by (2.24) and (2.18). By the arbitrariness of \(f \), we conclude that \(\eta \leq \bar{\eta} \) and therefore \(u \leq \bar{u} \), thereby proving the lemma. □
Theorem 2. (Uniqueness) Assume that \(g \in H^1(Q) \) and that for some \(\delta > 0 \), \(g \) satisfies

\[
g \geq \delta \quad \text{or} \quad g \leq -\delta \quad \text{in} \quad \partial S_\delta \cap \partial Q.
\]

(2.25)

Then there exists a unique weak solution to (1.3), (1.4).

Proof. We need only to prove the uniqueness since the existence has been established by Theorem 1. In view of Lemma 2.1, it suffices to show that for some \(\tilde{\delta} \in (0, \delta) \), any weak solution to (1.3), (1.4) satisfies the stability condition

\[
u \geq \tilde{\delta} \quad \text{or} \quad \nu \leq -\tilde{\delta} \quad \text{in} \quad S_{\tilde{\delta}}.
\]

(2.26)

We shall only consider the case where \(g \geq \delta \) in \(S_{\delta} \) since the other case can be similarly treated.

Let \(\tilde{u} \) be a weak solution to (1.3) with the boundary condition

\[
\tilde{u} = \min\{g, \delta\} \quad \text{on} \quad \partial Q.
\]

Then by the second assertion of Theorem 1, \(\tilde{u} \in C^\alpha(\overline{S}_{\delta/2}) \), and therefore for some \(\tilde{\delta} \in (0, \delta/2) \),

\[
\tilde{u} \geq \tilde{\delta} > 0 \quad \text{in} \quad S_{\tilde{\delta}}.
\]

(2.27)

Now we can apply Lemma 2.1 to \(u \) and \(\tilde{u} \) to deduce that \(\tilde{u} \leq u \) in \(Q \), and therefore (2.26) holds. This completes the proof of Theorem 2. \(\square \)

We conclude this section with a weaker version of the comparison Lemma 2.1.

Lemma 2.2. (Second Comparison) Let \((u, \eta) \) be a weak solution of (1.3) and (1.4). Assume that \(w \in C^0(\overline{Q}), \varphi \in C^1(\overline{\Omega}) \) satisfy

\[
\Gamma_w := \{(x, z) \in \overline{Q} \mid w(x, z) = 0\} = \{(x, z) \in \overline{Q} \mid z = \varphi(x)\},
\]

(2.27)

\[
Q_w^\pm := \{(x, z) \in \overline{Q} \mid w(x, z) \geq 0\} = \{(x, z) \in \overline{Q} \mid z \geq \varphi(x)\},
\]

(2.28)

\[
w \in C^2(\overline{Q} \setminus \Gamma_w) \cap C^1(\overline{Q}_w^+ \cup \Gamma_w) \cap C^1(\overline{Q}_w^- \cup \Gamma_w),
\]

(2.29)

\[-\Delta w - w_z \geq 0 \quad \text{in} \quad Q \setminus \Gamma_w,
\]

(2.30)

\[
w \geq g \quad \text{on} \quad \partial Q,
\]

(2.31)

\[
\frac{\partial w^-}{\partial z} - \frac{\partial w^+}{\partial z} \geq \frac{l}{1 + |\nabla \varphi|^2} \quad \text{on} \quad \Gamma_w.
\]

(2.32)

Finally, assume that \(u, w \) satisfy, for some \(\delta \in (0, 1) \), the inequality

\[
|u| + |w| \geq \delta \quad \text{in} \quad S_\delta.
\]

(2.33)
Then one has the inequality

$$u \leq w \quad \text{in} \quad Q.$$ \hspace{1cm} (2.34)

If all the inequality signs in (2.30)-(2.32) are reversed, then

$$w \leq u \quad \text{in} \quad Q.$$ \hspace{1cm} (2.35)

Proof. From the differential inequality (2.30), one gets, for any $\zeta \in H_0^1(Q)$ satisfying $\zeta \geq 0$, the inequality

$$0 \leq \int_Q (-\Delta w - w_{z}) \zeta$$
$$= -\int_{\Gamma_w} \zeta \left[\frac{\partial w}{\partial n} \right]_+ + \int_Q \nabla w \nabla \zeta + w \zeta$$
$$= -\int_{\Omega} \zeta \left(\sqrt{1 + |\nabla \varphi|^2} \left[\frac{\partial w}{\partial n} \right]_+ - l \right) \bigg|_{z = \varphi(x)} dx + \int_Q (\nabla w \nabla \zeta + \beta(w) \zeta_z)$$
$$\leq \int_Q (\nabla w \nabla \zeta + \beta(w) \zeta_z)$$

by (2.32). Inequality (2.34) thus follows from the first comparison lemma. Similarly, we can show (2.35) in case when all the inequality signs in (2.30)-(2.32) are reversed. \square

3. C^α regularity of the free boundary. In this section, we shall study the regularity of the free boundary under the conditions:

$$\|g\|_{H^1(Q)} + \|g\|_{C^\alpha(\overline{Q})} \leq C_0,$$ \hspace{1cm} (3.1)

$$g(x,1) = m^+, \quad g(x,0) = -m^-, \quad x \in \Omega,$$ \hspace{1cm} (3.2)

$$\inf_{x \in \Omega, 0 \leq z_1 < z_2 \leq 1} \frac{g(x,z_1) - g(x,z_2)}{z_1 - z_2} > L_0.$$ \hspace{1cm} (3.3)

where $\alpha \in (0,1)$ and C_0, m^+, m^-, L_0 are all given positive constants.

Note that by the second assertion of Theorem 1, the assumption (3.1) implies that

$$\|u\|_{C^\alpha(\overline{Q})} =: M < \infty.$$ \hspace{1cm} (3.5)

In the sequel, we shall always denote by (u, η) the unique solution of (1.3), (1.4) established in §2.
Lemma 3.1. For any \((x_1, z_1), (x_2, z_2) \in Q, (x_1, z_1) \neq (x_2, z_2)\), one has the inequality

\[u(x_1, z_1) \leq u(x_2, z_2) \quad (3.6) \]

provided that

\[z_2 - z_1 \geq \frac{M}{L_0} |x_1 - x_2|^\alpha \quad (3.7) \]

where \(M = M(\Omega, C_0)\) is the constant defined in (3.5).

Proof. The idea of the proof is based on a shifting domain technique; that is, by comparing the functions \(u(x, z)\) with \(u(x + a, z + b)\) \((a \in \mathbb{R}^n, b \in (0, 1))\) in the domain
\[Q_{a,b} := \{(x, z) \in Q \mid (x + a, z + b) \in Q\}, \]
we want to show that

\[u(x, z) \leq u(x + a, z + b) \quad \forall (x, z) \in Q_{a,b} \quad (3.8) \]
as long as

\[b \geq \frac{M}{L_0} |a|^\alpha. \quad (3.9) \]

Using the first comparison lemma, we need only to verify (3.8) on the boundary of \(Q_{a,b}\).

One can easily deduce, via the first comparison lemma and the assumption (3.2), (3.3), that \(-m^-\) and \(m^+\) are the minimum and the maximum of \(u\) respectively, so that (3.8) holds on the top and bottom of \(Q_{a,b}\). It remains to verify (3.8) on the lateral boundary of \(Q_{a,b}\).

When \((x, z)\) belongs to the lateral boundary of \(Q_{a,b}\), there are only two possibilities: (i) \(x \in \partial \Omega\) and (ii) \(x + a \in \partial \Omega\). In the first case, one has \(u(x, z) = g(x, z)\) and \(u(x, z + b) = g(x, z + b)\), so that

\[u(x + a, z + b) - u(x, z) = u(x + a, z + b) - u(x, z + b) + g(x, z + b) - g(x, z) \]
\[\geq -M |a|^\alpha + L_0 b \geq 0 \]

by (3.9) and (3.5). The case (ii) can be similarly treated. Therefore, inequality (3.8) holds for \((x, z) \in \partial Q_{a,b}\), and by the first comparison lemma, (3.8) also holds for all \((x, z) \in Q_{a,b}\). Taking \(a = x_2 - x_1\) and \(b = z_2 - z_1\), the assertion of the lemma follows. \(\square\)

Taking \(a = 0\) in (3.8), one finds that \(u\) is monotone increasing in \(z\), so that there exists two functions \(\varphi^-\) and \(\varphi^+,\ 0 < \varphi^- \leq \varphi^+ < 1\), such that

\[u(x, z) > 0 \quad \text{if} \quad x \in \overline{\Omega}, \ \varphi^+(x) < z \leq 1, \quad (3.10) \]
\[u(x, z) = 0 \quad \text{if} \quad x \in \overline{\Omega}, \ \varphi^-(x) \leq z \leq \varphi^+(x), \quad (3.11) \]
\[u(x, z) < 0 \quad \text{if} \quad x \in \overline{\Omega}, \ 0 \leq z < \varphi^-(x). \quad (3.12) \]
Lemma 3.2. The two functions \(\varphi^- \) and \(\varphi^+ \) are Hölder continuous; more precisely, one has the bounds

\[
\| \varphi^+ \|_{C^\alpha(\overline{\Omega})} \leq 1 + \frac{M}{L_0}, \quad (3.13)
\]
\[
\| \varphi^- \|_{C^\alpha(\overline{\Omega})} \leq 1 + \frac{M}{L_0}. \quad (3.14)
\]

Proof. Note that (3.6) implies that for any \(\varepsilon > 0 \)

\[
u(x_2, z_2) \geq u(x_1, \varphi^+(x_1) + \varepsilon) > 0
\]

if

\[
z_2 \geq \varphi^+(x_1) + \varepsilon + \frac{M}{L_0}|x_1 - x_2|^\alpha.
\]

It follows that

\[
\varphi^+(x_2) \leq \varphi^+(x_1) + \varepsilon + \frac{M}{L_0}|x_1 - x_2|^\alpha,
\]

and, by letting \(\varepsilon \to 0 \), that

\[
\varphi^+(x_2) \leq \varphi^+(x_1) + \frac{M}{L_0}|x_1 - x_2|^\alpha.
\]

Exchanging the roles of \(x_1 \) and \(x_2 \), we then get

\[
|\varphi^+(x_2) - \varphi^+(x_1)| \leq \frac{M}{L_0}|x_1 - x_2|^\alpha.
\]

This proves (3.13). Similarly, one can prove (3.14). \(\Box \)

Theorem 3. (\(C^\alpha \) Regularity of the Free Boundary) Assume that \(g \) satisfies (3.1)–(3.3), and let \((u, \eta)\) be the unique solution of (1.3), (1.4). Then there exists a function \(\varphi \in C^\alpha(\overline{\Omega}) \), \(0 < \varphi < 1 \), such that

\[
u(x, z) > 0 \quad \text{if} \quad x \in \overline{\Omega}, \ \varphi(x) < z \leq 1, \quad (3.15)
\]
\[
u(x, z) = 0 \quad \text{if} \quad x \in \overline{\Omega}, \ z = \varphi(x), \quad (3.16)
\]
\[
u(x, z) < 0 \quad \text{if} \quad x \in \overline{\Omega}, \ 0 \leq z < \varphi(x). \quad (3.17)
\]

Proof. It suffices to show that \(\varphi^- \equiv \varphi^+ \). Assume that this is not true; then there exists a point \(x_0 \in \Omega \) such that

\[
\varphi^-(x_0) < \varphi^+(x_0).
\]
Set $z_0 := \frac{1}{2}(\varphi^+(x_0) + \varphi^-(x_0))$. Since both φ^+ and φ^- are continuous, there exists a ball $B_r(x_0) \in \Omega$ (where $B_r(x_0)$ represents a ball of radius r centered at x_0) such that

$$\varphi^-(x) < z_0 < \varphi^+(x) \quad \forall x \in B_r(x_0). \tag{3.18}$$

Let w be the solution of

$$-\Delta w = 0 \quad \text{in} \quad \tilde{Q} := B_r(x_0) \times (z_0, 1),$$

$$w = u \quad \text{on} \quad \partial \tilde{Q}. $$

Recall that u is monotone in z, so that w is also monotone in z, i.e.,

$$w_z \geq 0 \quad \text{in} \quad \tilde{Q}. $$

Since (3.10), (3.11), and (3.18) imply that

$$w > 0 \quad \text{in} \quad \tilde{Q}, \tag{3.19}$$

one can calculate

$$\iint_{\tilde{Q}} \nabla w \nabla \zeta + \beta(w)\zeta_z = -\iint_{\tilde{Q}} w_z \zeta \leq 0 \quad \forall \zeta \in H^1_0(\tilde{Q}), \zeta \geq 0. $$

By the first comparison lemma, one concludes that

$$w \leq u \quad \text{in} \quad \tilde{Q} = B_r(x_0) \times (z_0, 1).$$

Consequently, by (3.19), $u > 0$ in \tilde{Q}, contradicting to the second inequality in (3.18). This contradiction shows that $\varphi^- = \varphi^+$, thereby establishing Theorem 3. \[\square\]

Remark 3.1. Using the same method as in the proof of Theorem 3, one can also show that the function φ is continuous if (3.3) is replaced by the weaker condition:

$$\inf_{x \in \partial \Omega} (g(x, z_2) - g(x, z_1)) \geq \omega(z_2 - z_1) \quad \text{if} \quad 0 \leq z_1 < z_2 \leq 1$$

where $\omega(\cdot)$ is any monotone increasing function satisfying $\omega(t) > 0$ if $t > 0.$
4. Lipschitz regularity of the free boundary. From Theorem 3, we know that there exists a function \(\varphi \in C^\alpha(\Omega) \) such that the free boundary is given by \(z = \varphi(x) \). We shall now proceed to establish the Lipschitz continuity of \(\varphi \) under some stronger conditions.

Before we state the condition, we shall first deduce a necessary condition for the boundary data \(g \). Assume that \(\varphi \in C^1(\Omega) \), then, from (2.5), we know that \(g \) has to satisfy the equation

\[
\frac{\partial g}{\partial z}(x, \varphi(x) - 0) - \frac{\partial g}{\partial z}(x, \varphi(x) + 0) = \frac{l}{1 + |\nabla \varphi|^2} = \frac{l}{1 + |\nabla_\tau \varphi|^2 + |\partial \varphi / \partial n|^2} \quad \forall x \in \partial \Omega
\]

where \(\nabla_\tau \) stands for the derivatives tangential to \(\partial \Omega \), and \(n \) represents the outward unit normal to \(\partial \Omega \).

Let \(\varphi^0(x), x \in \partial \Omega \), be the function implicitly defined by

\[
g(x, \varphi^0(x)) = 0 \quad \forall x \in \partial \Omega. \tag{4.1}
\]

Clearly, the restriction of \(\varphi \) on \(\partial \Omega \) is \(\varphi^0 \), so that \(\nabla_\tau \varphi = \nabla_\tau \varphi^0 \). Therefore a necessary condition for \(\varphi \) to be in \(C^1(\Omega) \) is that

\[
0 < \frac{\partial g}{\partial z}(x, \varphi^0(x) - 0) - \frac{\partial g}{\partial z}(x, \varphi^0(x) + 0) \leq \frac{l}{1 + |\nabla_\tau \varphi^0|^2} \quad \forall x \in \partial \Omega. \tag{4.2}
\]

Recall that \(\partial \Omega \) is called satisfying the uniform exterior ball condition if there exists a positive constant \(R_0 \) such that at every point \(y \in \partial \Omega \), there exists a ball \(B_{R_0}(y_0) \in \mathbb{R}^n \setminus \Omega \) with \(|y - y_0| = R_0 \).

To prove the Lipschitz continuity of the free boundary, we shall assume that

\[
\partial \Omega \in C^{1+\alpha} \quad \text{and} \quad \partial \Omega \quad \text{satisfies the uniform exterior ball condition,} \tag{4.3}
\]

\[
\frac{\partial g}{\partial z}(x, z) \geq L_0 > 0 \quad \forall x \in \partial \Omega, 0 \leq z \leq 1, \tag{4.4}
\]

\[
||\varphi^0||_{C^{1+\alpha}(\partial \Omega)} + ||g||_{C^{2+\alpha}(Q^+_g)} + ||g||_{C^{2+\alpha}(Q^-_g)} \leq C_0, \tag{4.5}
\]

\[
\frac{\partial g}{\partial z}(x, \varphi^0(x) - 0) - \frac{\partial g}{\partial z}(x, \varphi^0(x) + 0) > \alpha_0 > 0 \quad \forall x \in \partial \Omega \tag{4.6}
\]

and

\[
\frac{\partial g}{\partial z}(x, \varphi^0(x) - 0) - \frac{\partial g}{\partial z}(x, \varphi^0(x) + 0) \leq \frac{l}{1 + 2K^2} \quad \forall x \in \partial \Omega \tag{4.7}
\]

for some \(K = K(C_0, L_0, \Omega) \) given below in (4.25); here \(Q^+_g \) and \(Q^-_g \) denote the regions \(\{ g > 0 \} \) and \(\{ g < 0 \} \), respectively.
Lemma 4.1. Assume that $\partial \Omega$ satisfies (4.3) and g satisfies (3.2), (4.4) and (4.5). Let (u, η) be the unique solution of (1.3), (1.4). Then one has the following:

1. If g satisfies (4.6) for some $\alpha_0 > 0$ then there exists a positive constant $C = C(C_0, L_0, \alpha_0, \Omega)$ such that

$$u(x, z) \leq g(y, z) + C|x - y| \quad \forall (x, z) \in Q, y \in \partial \Omega;$$

(4.8)

2. There exists a constant $K = K(C_0, L_0, \Omega)$ such that if g satisfies (4.7) for such given K, then

$$u(x, z) \geq g(y, z) - C|x - y| \quad \forall (x, z) \in Q, y \in \partial \Omega$$

(4.9)

for some constant C depending on K, C_0, L_0, and Ω.

Remark 4.1. Note that the condition (4.7) is stronger than the necessary condition (4.2) we derived. We do not know what the necessary and sufficient condition is.

Proof of Lemma 4.1. We shall prove this lemma via the construction of sub- and supersolutions. To do this, we first introduce several functions.

Extend φ^0 into Ω such that

$$\Delta_x \varphi^0 = 0 \quad \text{in } \Omega.$$

(4.10)

Since $\partial \Omega \in C^{1+\alpha}$, one has $\varphi^0 \in C^{1+\alpha}(\overline{\Omega}) \cap C^\infty(\Omega)$.

Introduce functions $A^+, A^- \in C^{1+\alpha}(\partial Q)$ satisfying

$$A^+ = \frac{g(x, z)}{z - \varphi^0(x)} \quad \forall x \in \partial \Omega, \varphi^0(x) < z \leq 1,$$

(4.11)

$$A^- = \frac{g(x, z)}{z - \varphi^0(x)} \quad \forall x \in \partial \Omega, 0 \leq z < \varphi^0(x).$$

(4.12)

Since g is $C^{2+\alpha}$ in Q_\pm, such functions A^+ and A^- can be constructed. In addition, we can assume, by the assumption (4.4), that

$$A^\pm(x, z) \geq L_0 \quad \forall (x, z) \in \partial Q.$$

(4.13)

Further, we can assume that A^\pm satisfy

$$A^-(x, z) - A^+(x, z) \geq \alpha_0/2 \quad \forall (x, z) \in \partial Q$$

(4.14a)
under the assumption (4.6), and/or satisfy

\[A^- - A^+ \leq \frac{l}{1 + K^2} \quad \forall (x, z) \in \partial Q \] \hspace{1cm} (4.14b)

under the assumption (4.7). We extend \(A^+, A^- \) into \(Q \) such that they satisfy the equation

\[-\Delta A^\pm - A^\pm_z = 0 \quad \text{in } Q. \] \hspace{1cm} (4.15)

Clearly, \(A^\pm \in C^\infty(Q) \cap C^{1+\alpha}(\overline{Q}), \) and, by (4.13),

\[A^\pm \geq L_0 \quad \text{in } \overline{Q}. \] \hspace{1cm} (4.16)

Furthermore, if (4.6) holds then, by (4.14a),

\[A^- - A^+ \geq \alpha_0 / 2 \quad \text{in } \overline{Q}, \] \hspace{1cm} (4.17a)

and if (4.7) holds then, by (4.14b),

\[A^- - A^+ \leq \frac{l}{1 + K^2} \quad \text{in } \overline{Q}. \] \hspace{1cm} (4.17b)

For any fixed \(y \in \partial \Omega, \) let \(\psi(\cdot, y) \) be a smooth function in \(\overline{\Omega} \) satisfying

\[\psi(y, y) = 0, \] \hspace{1cm} (4.18)

\[\psi(x, y) \geq 0 \quad \forall x \in \Omega, \] \hspace{1cm} (4.19)

\[|\nabla_x \psi(x, y)| \geq 1 \quad \forall x \in \Omega, \] \hspace{1cm} (4.20)

\[-\Delta_x \psi \geq 1 + \tilde{C}_0 |\nabla_x \psi| \quad \forall x \in \Omega \] \hspace{1cm} (4.21)

where

\[\tilde{C}_0 := 2 \max \left\{ \| \nabla A^+ \|_{C^{\alpha}(\overline{Q})}, \| \nabla A^- \|_{C^{\alpha}(\overline{Q})} \right\}. \] \hspace{1cm} (4.22)

For example, one can take

\[\psi(x, y) = M(1 - e^{\tilde{C}_0 |x - y_0|}) \]

for some \(M \) large enough, where \(B_{R_0}(y_0) \) is an exterior ball of \(\Omega \) such that \(R_0 = |y_0 - y|. \)

Now we want to show that the function

\[w^\lambda(x, z) := \begin{cases}
A^+(x, z)(z - \varphi^0(x) + \lambda \psi(x, y)) & \text{if } (x, z) \in Q, \ z \geq \varphi^0(x) - \lambda \psi(x, y) \\
A^-(x, z)(z - \varphi^0(x) + \lambda \psi(x, y)) & \text{if } (x, z) \in Q, \ z \leq \varphi^0(x) - \lambda \psi(x, y)
\end{cases} \]
is a supersolution to (1.3), (1.4) if \(\lambda \) is large enough, and is a subsolution if \(-\lambda\) and \(K\) in (4.7) are large enough.

One can calculate, for \(z \geq \varphi^0(x) - \lambda \psi(x, y) \),

\[
-\Delta w^\lambda - w_z^\lambda = - (\Delta A^+ + A_x^+) (z - \varphi^0 + \lambda \psi) - 2 \nabla A^+ \nabla (z - \varphi^0 + \lambda \psi) - A^+ (1 - \Delta x \varphi^0 + \lambda \Delta x \psi)
\]

\[
= A^+ \left\{ \lambda \left[- \Delta x \psi + \frac{2 \nabla A^+ A_x^+ \nabla \psi}{A^+} \right] - \left[\frac{2 \nabla A^+}{A^+} \nabla (z - \varphi^0) + 1 \right] \right\}
\] \hspace{1cm} (4.23)

by (4.10) and (4.15). Similar calculation also holds for the case when \(z \leq \varphi^0(x) - \lambda \psi(x, y) \).

In view of (4.21) and (4.22), one finds that if

\[
\lambda \geq 1 + 2 \max \left\{ \left\| \frac{\nabla A^+}{A^+} \nabla (z - \varphi^0) \right\|_{C^0(Q)}, \left\| \frac{\nabla A^-}{A^-} \nabla (z - \varphi^0) \right\|_{C^0(Q)} \right\}
\]

then

\[
-\Delta w^\lambda - w_z^\lambda \geq 0 \quad \text{in} \quad Q \setminus \Gamma_{w^\lambda}
\]

where \(\Gamma_w := \{ w = 0 \} = \{(x, z) \mid x \in \overline{\Omega}, z = \varphi^0(x) - \lambda \psi(x, y)\} \). Since \(|\nabla_x \psi| \geq 1 \) (by (4.20)), one can deduce that

\[
\left[\frac{\partial w}{\partial z} \right]_+ = A^- - A^+ \geq \alpha_0 / 2 \geq \frac{l}{1 + |\nabla_x \varphi^0 + \lambda \nabla_x \psi|^2} \quad \text{on} \quad \Gamma_{w^\lambda}
\]

if \(\lambda \) is large enough. Finally, from (4.11), (4.12), and (4.19), one can easily verify that

\[
w^\lambda \geq g = u \quad \text{on} \quad \partial Q,
\]

and hence, by applying the second comparison lemma, we get

\[
u(x, z) \leq w^\lambda(x, z) \quad \text{in} \quad Q
\]

if \(\lambda \) is large enough. Noting that (4.18) implies that \(w^\lambda(y, z) = g(y, z) \) for all \(z \in [0, 1] \), one can use the Lipschitz continuity of the function \(w^\lambda \) to deduce (4.8), thereby establishing the first assertion of the lemma.

To prove the second assertion of the lemma, we take

\[
\lambda = \lambda_- := -2 \max \left\{ \left\| \frac{\nabla A^+}{A^+} \nabla (z - \varphi^0) \right\|_{C^0(Q)}, \left\| \frac{\nabla A^-}{A^-} \nabla (z - \varphi^0) \right\|_{C^0(Q)} \right\}.
\] \hspace{1cm} (4.24)

Then, the last inequality in (4.23) yields

\[
-\Delta w^\lambda - w_z^\lambda \leq 0 \quad \text{in} \quad Q \setminus \Gamma_{w^\lambda}.
\]
Now, if we take
\[K = \sup_{x \in \Omega, y \in \partial \Omega} |\nabla_x \varphi^0(x) + \lambda_+ \nabla_x \psi(x, y)|, \] (4.25)
then by (4.17b),
\[
\left[\frac{\partial w}{\partial z} \right]^- = A^- - A^+ \leq \frac{l}{1 + K^2} \leq \frac{l}{1 + |\nabla_x \varphi^0 + \lambda_+ \nabla_x \psi|^2}
\]
on \Gamma_w^\lambda
and hence we can proceed as before to conclude that \(w^\lambda \) is a subsolution to (1.3), (1.4). The inequality (4.9) thus follows as before. This completes the proof of the lemma. \(\square \)

Remark 4.2. One may notice that the harmonic function with boundary value \(g \) is a subsolution to (1.3), (1.4); however we cannot use it since its zero level surface is not uniformly Lipschitz continuous.

Lemma 4.2. Assume that (3.2), (4.3)-(4.7) hold. Then there exists a positive constant \(C \) such that
\[u(x, z) \leq u(y, z + C|x - y|) \quad \text{if} \quad (x, z) \in Q \text{ and } (y, z + C|x - y|) \in Q. \] (4.26)

The proof is exactly the same as that of Lemma 3.1 except that we use lemma 4.1 at the place where we use the Hölder continuity of \(u \).

Note that lemma 4.2 indicates that \(u \) is monotone along any direction \((e_x, C)\) where \(e_x \) is any vector in \(\mathbb{R}^n \) with \(|e_x| \leq 1 \). Therefore we have the following:

Theorem 4. Assume that (3.2), (4.3)-(4.7) hold. Let \((u, \eta)\) be the unique solution of (1.9), (1.4), and let \(\varphi \) be the function given in Theorem 3. Then \(\varphi \) is Lipschitz continuous.

The proof is similar to that of Theorem 3 and it is omitted.

Now we can use the results of Caffarelli [2] to conclude the following:

Theorem 5. Assume that the conditions of Theorem 4 hold. Then the free boundary of the weak solution to (1.3), (1.4) is a \(C^{1+\alpha} \) \(z \)-graph and the solution is \(C^{1+\alpha} \) in each side of the free boundary, up to the free boundary. Consequently, the weak solution is a classical solution.

Here a \(z \)-graph means that the free boundary \(\Gamma_u \) can be written as \(z = \varphi(x), x \in \overline{\Omega} \).

Remark 4.3. All our results extend to the case when \(\beta(u) \) defined in (1.2) is replaced by \(\alpha(u) + lH(u) \) where \(\alpha(u) \) is any Lipschitz function with \(\alpha' \geq c_0 > 0 \) and \(H(u) \) is the Heaviside function taking value 0 when \(u < 0 \) and value 1 when \(u > 0 \).
REFERENCES

<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>721</td>
<td>Ian M. Anderson, Niky Kamran and Peter J. Olver</td>
<td>Internal, external and generalized symmetries</td>
</tr>
<tr>
<td>722</td>
<td>C. Foias and J.C. Saut</td>
<td>Asymptotic integration of Navier–Stokes equations with potential forces. I</td>
</tr>
<tr>
<td>723</td>
<td>Ling Ma</td>
<td>The convergence of semidiscrete methods for a system of reaction-diffusion equations</td>
</tr>
<tr>
<td>724</td>
<td>Adelina Georgescu</td>
<td>Models of asymptotic approximation</td>
</tr>
<tr>
<td>725</td>
<td>A. Makagon and H. Salehi</td>
<td>On bounded and harmonizable solutions on infinite order arma systems</td>
</tr>
<tr>
<td>726</td>
<td>San-Yih Lin and Yan-Shin Chin</td>
<td>An upwind finite-volume scheme with a triangular mesh for conservation laws</td>
</tr>
<tr>
<td>727</td>
<td>J.M. Ball, P.J. Holmes, R.D. James, R.L. Pego & P.J. Swart</td>
<td>On the dynamics of fine structure</td>
</tr>
<tr>
<td>728</td>
<td>KangPing Chen and Daniel D. Joseph</td>
<td>Lubrication theory and long waves</td>
</tr>
<tr>
<td>729</td>
<td>J.L. Ericksen</td>
<td>Local bifurcation theory for thermoelastic Bravais lattices</td>
</tr>
<tr>
<td>730</td>
<td>Mario Taboada and Yuncheng You</td>
<td>Some stability results for perturbed semilinear parabolic equations</td>
</tr>
<tr>
<td>731</td>
<td>A.J. Lawrence</td>
<td>Local and deletion influence</td>
</tr>
<tr>
<td>732</td>
<td>Bogdan Vernescu</td>
<td>Convergence results for the homogenization of flow in fractured porous media</td>
</tr>
<tr>
<td>733</td>
<td>Xinzhu Chen and Avner Friedman</td>
<td>Mathematical modeling of semiconductor lasers</td>
</tr>
<tr>
<td>734</td>
<td>Yongzh Xu</td>
<td>Scattering of acoustic wave by obstacle in stratified medium</td>
</tr>
<tr>
<td>735</td>
<td>Songmu Zheng</td>
<td>Global existence for a thermodynamically consistent model of phase field type</td>
</tr>
<tr>
<td>736</td>
<td>Heinrich Freistühler and E. Bruce Pitman</td>
<td>A numerical study of a rotationally degenerate hyperbolic system part I: the Riemann problem</td>
</tr>
<tr>
<td>737</td>
<td>Epifanio G. Virga</td>
<td>New variational problems in the statics of liquid crystals</td>
</tr>
<tr>
<td>738</td>
<td>Yoshikazu Giga and Shun’ichi Goto</td>
<td>Geometric evolution of phase-boundaries</td>
</tr>
<tr>
<td>739</td>
<td>Ling Ma</td>
<td>Large time study of finite element methods for 2D Navier–Stokes equations</td>
</tr>
<tr>
<td>740</td>
<td>Mitchell Luskin and Ling Ma</td>
<td>Analysis of the finite element approximation of microstructure in micromagnetics</td>
</tr>
<tr>
<td>741</td>
<td>M. Chipot</td>
<td>Numerical analysis of oscillations in nonconvex problems</td>
</tr>
<tr>
<td>742</td>
<td>J. Carrillo and M. Chipot</td>
<td>The dam problem with leaky boundary conditions</td>
</tr>
<tr>
<td>743</td>
<td>Eduard Harabetian and Robert Pego</td>
<td>Efficient hybrid shock capturing schemes</td>
</tr>
<tr>
<td>744</td>
<td>B.L.J. Braaksma</td>
<td>Multisummability and Stokes multipliers of linear meromorphic differential equations</td>
</tr>
<tr>
<td>745</td>
<td>Tae Il Jeon and Tze-Chien Sun</td>
<td>A central limit theorem for non-linear vector functionals of vector Gaussian processes</td>
</tr>
<tr>
<td>746</td>
<td>Chris Grant</td>
<td>Solutions to evolution equations with near-equilibrium initial values</td>
</tr>
<tr>
<td>747</td>
<td>Mario Taboada and Yuncheng You</td>
<td>Invariant manifolds for retarded semilinear wave equations</td>
</tr>
<tr>
<td>748</td>
<td>Peter Rejto and Mario Taboada</td>
<td>Unique solvability of nonlinear Volterra equations in weighted spaces</td>
</tr>
<tr>
<td>749</td>
<td>Hi Jun Choe</td>
<td>Holder regularity for the gradient of solutions of certain singular parabolic equations</td>
</tr>
<tr>
<td>750</td>
<td>Jack D. Dockery</td>
<td>Existence of standing pulse solutions for an excitable activator-inhibitory system</td>
</tr>
<tr>
<td>751</td>
<td>Jack D. Dockery and Roger Lui</td>
<td>Existence of travelling wave solutions for a bistable evolutionary ecology model</td>
</tr>
<tr>
<td>752</td>
<td>Giovanni Alberti, Luigi Ambrosio and Giuseppe Buttazzo</td>
<td>Singular perturbation problems with a compact support semilinear term</td>
</tr>
<tr>
<td>753</td>
<td>Emad A. Fatemi</td>
<td>Numerical schemes for constrained minimization problems</td>
</tr>
<tr>
<td>754</td>
<td>Y. Kuang and H.L. Smith</td>
<td>Slowly oscillating periodic solutions of autonomous state-dependent delay equations</td>
</tr>
<tr>
<td>755</td>
<td>Emad A. Fatemi</td>
<td>A new splitting method for scalar conservation laws with stiff source terms</td>
</tr>
<tr>
<td>756</td>
<td>Hi Jun Choe</td>
<td>A regularity theory for a more general class of quasilinear parabolic partial differential</td>
</tr>
<tr>
<td>757</td>
<td>Haitao Fan</td>
<td>A vanishing viscosity approach on the dynamics of phase transitions in Van Der Waals fluids</td>
</tr>
<tr>
<td>758</td>
<td>T.A. Osborn and F.H. Molzahn</td>
<td>The Wigner–Weyl transform on tori and connected graph propagator representations</td>
</tr>
<tr>
<td>759</td>
<td>Avner Friedman and Bei Hu</td>
<td>A free boundary problem arising in superconductor modeling</td>
</tr>
<tr>
<td>760</td>
<td>Avner Friedman and Wenxiong Liu</td>
<td>An augmented drift-diffusion model in semiconductor device</td>
</tr>
<tr>
<td>761</td>
<td>Avner Friedman and Miguel A. Herrero</td>
<td>Extinction and positivity for a system of semilinear parabolic variational inequalities</td>
</tr>
<tr>
<td>762</td>
<td>David Dobson and Avner Friedman</td>
<td>The time-harmonic Maxwell equations in a doubly periodic structure</td>
</tr>
<tr>
<td>763</td>
<td>Hi Jun Choe</td>
<td>Interior behaviour of minimizers for certain functionals with nonstandard growth</td>
</tr>
<tr>
<td>764</td>
<td>Vincenzo M. Tortorelli and Epifanio G. Virga</td>
<td>Axis-symmetric boundary-value problems for nematic liquid crystals with variable degree of</td>
</tr>
<tr>
<td>765</td>
<td>Nikan B. Firoozeye and Robert V. Kohn</td>
<td>Geometric parameters and the relaxation of multiwell energies</td>
</tr>
<tr>
<td>766</td>
<td>Haitao Fan and Marshall Slemrod</td>
<td>The Riemann problem for systems of conservation laws of mixed type</td>
</tr>
<tr>
<td>767</td>
<td>Joseph D. Fehribach</td>
<td>Analysis and application of a continuation method for a self-similar coupled Stefan system</td>
</tr>
<tr>
<td>768</td>
<td>C. Foias, M.S. Jolly, I.G. Kevrekidis and E.S. Titi</td>
<td>Dissipativity of numerical schemes</td>
</tr>
<tr>
<td>769</td>
<td>D.D. Joseph, T.Y.J. Liao and J.-C. Saut</td>
<td>Kelvin–Helmholtz mechanism for side branching in the displacement of light with heavy fluid under gravity</td>
</tr>
</tbody>
</table>
Chris Grant, Solutions to evolution equations with near-equilibrium initial values
B. Cockburn, F. Coquel, Ph. LeFloch and C.W. Shu, Convergence of finite volume methods
N.G. Lloyd and J.M. Pearson, Computing centre conditions for certain cubic systems
João Palhoto Matos, Young measures and the absence of fine microstructures in the $\alpha - \beta$ quartz phase transition
L.A. Peletier & W.C. Troy, Self-similar solutions for infiltration of dopant into semiconductors
H. Scott Dumas and James A. Ellison, Nekhoroshev's theorem, ergodicity, and the motion of energetic charged particles in crystals
Stathis Filippas and Robert V. Kohn, Refined asymptotics for the blowup of $u_t - \Delta u = u^q$.
Patricia Bauman, Nicholas C. Owen and Daniel Phillips, Maximum principles and a priori estimates for an incompressible material in nonlinear elasticity
Patricia Bauman, Nicholas C. Owen and Daniel Phillips, Maximal smoothness of solutions to certain Euler–Lagrange equations from nonlinear elasticity
Jack Carr and Robert Pego, Self-similarity in a coarsening model in one dimension
J.M. Greenberg, The shock generation problem for a discrete gas with short range repulsive forces
George R. Sell and Mario Taboada, Local dissipativity and attractors for the Kuramoto–Sivashinsky equation in thin 2D domains
T. Subba Rao, Analysis of nonlinear time series (and chaos) by bispectral methods
Nicholas Baumann, Daniel D. Joseph, Paul Mohr and Yuriko Renardy, Vortex rings of one fluid in another free fall
Oscar Bruno, Avner Friedman and Fernando Reitich, Asymptotic behavior for a coalescence problem
Johannes C.C. Nitsche, Periodic surfaces which are extremal for energy functionals containing curvature functions
F. Abergel and J.L. Bona, A mathematical theory for viscous, free-surface flows over a perturbed plane
Gunduz Caginalp and Xinfu Chen, Phase field equations in the singular limit of sharp interface problems
Robert P. Gilbert and Yongzhi Xu, An inverse problem for harmonic acoustics in stratified oceans
Roger Fosdick and Eric Volkman, Normality and convexity of the yield surface in nonlinear plasticity
H.S. Brown, I.G. Kevrekidis and M.S. Jolly, A minimal model for spatio-temporal patterns in thin film flow
Chao–Nien Chen, On the uniqueness of solutions of some second order differential equations
Xinfu Chen and Avner Friedman, The thermistor problem for conductivity which vanishes at large temperature
Xinfu Chen and Avner Friedman, The thermistor problem with one-zero conductivity
E.G. Kalnins and W. Miller, Jr., Separation of variables for the Dirac equation in Kerr Newman space time
E. Knobloch, M.R.E. Proctor and N.O. Weiss, Finite-dimensional description of doubly diffusive convection
V.V. Pukhnamov, Mathematical model of natural convection under low gravity
M.C. Knaap, Existence and non-existence for quasi-linear elliptic equations with the p-laplacian involving critical Sobolev exponents
Stathis Filippas and Wenxiong Liu, On the blowup of multidimensional semilinear heat equations
A.M. Meirmanov, The Stefan problem with surface tension in the three dimensional case with spherical symmetry: non-existence of the classical solution
Bo Guan and Joel Spruck, Interior gradient estimates for solutions of prescribed curvature equations of parabolic type
Hi Jun Choe, Regularity for solutions of nonlinear variational inequalities with gradient constraints
Peter Shi and Yongzhi Xu, Quasistatic linear thermoelasticity on the unit disk
Satyanan Kichenassamy and Peter J. Olver, Existence and non-existence of solitary wave solutions to higher order model evolution equations
Dening Li, Regularity of solutions for a two-phase degenerate Stefan Problem
Marek Fila, Bernhard Kawohl and Howard A. Levine, Quenching for quasilinear equations
Yoshikazu Giga, Shun'ichi Goto and Hitoshi Ishii, Global existence of weak solutions for interface equations coupled with diffusion equations
Mark J. Friedman and Eusebius J. Doedel, Computational methods for global analysis of homoclinic and heteroclinic orbits: a case study
Mark J. Friedman, Numerical analysis and accurate computation of heteroclinic orbits in the case of center manifolds
Peter W. Bates and Songmuu Zheng, Inertial manifolds and inertial sets for the phase-field equations
J. López Gómez, V. Márquez and N. Wolanski, Global behavior of positive solutions to a semilinear equation with a nonlinear flux condition
Xinfu Chen and Fahuai Yi, Regularity of the free boundary of a continuous casting problem
Eden, A., Foias, C., Nicolaenko, B. and Temam, R., Inertial sets for dissipative evolution equations Part I: Construction and applications
José–Francisco Rodrigues and Boris Zaltzman, On classical solutions of the two-phase steady-state Stefan problem in strips
Viorel Barbu and Srdjan Stojanovic, Controlling the free boundary of elliptic variational inequalities on a variable domain