QUASISTATIC LINEAR THERMOELASTICITY
ON THE UNIT DISK

By

Peter Shi
and
Yongzhi Xu

IMA Preprint Series # 802
May 1991
QUASISTATIC LINEAR THERMOELASTICITY ON THE UNIT DISK

Dedicated to Professor R. P. Gilbert on the Occasion of his 60th Birthday.

PETER SHI* and YONGZHI XU**

Abstract. The quasi-static, linearized thermoelastic system on the unit disk is decoupled, such that the temperature satisfies an integro-differential equation. The result, based on the function theoretic method, is of both theoretical and numerical interest.

Key words. Thermoelasticity, boundary problem, decoupling, functional theoretic methods

1. Introduction.

This paper demonstrates a new application of function theoretic methods to the linear, quasistatic system of thermoelasticity on the unit disk. Using the results in Xu [9], and Gilbert and Lin [2], we show that the temperature is decoupled from the system and satisfies an integro-differential equation independent of the displacement. The existence and the analyticity of the solution is proved for the decoupled problem, and consequently for that of the coupled problem.

We assume that the elastic body in consideration is homogeneous and isotropic, with the reference configuration being the unit disk. The word quasistatic refers to the negligibility of the inertia term in the system, which is usually the case when the acceleration of the system is sufficiently slow. The field equations in the quasi-static approximation of linearized thermoelasticity can be written as

\begin{equation}
\lambda \frac{\partial}{\partial x_i} \frac{\partial u_k}{\partial x_k} + \mu \left(\frac{\partial}{\partial x_j} \frac{\partial u_i}{\partial x_j} + \frac{\partial}{\partial x_j} \frac{\partial u_j}{\partial x_i} \right) = \beta \frac{\partial \theta}{\partial x_i}, \quad i = 1, 2, \tag{1.1}
\end{equation}

and

\begin{equation}
q \Delta \theta = \rho s \frac{\partial \theta}{\partial t} + \beta c \frac{\partial}{\partial t} \text{div} \mathbf{u}. \tag{1.2}
\end{equation}

Here we used the summation convention, with \(\mathbf{u} = (u_1, u_2) \) denoting the displacement and \(\theta \) denoting the temperature. The constants \(\lambda \) and \(\mu \) are Lamé constants, \(\beta \) is the
interaction constant, \(q, \rho, s \) and \(c \) denote, respectively, the heat conductivity, the density, the specific heat, and the absolute reference temperature.

The quasi-static theory of linear thermoelasticity in one space dimension is thoroughly studied in Day [1] via the decoupled temperature equation. In contact problems of one dimensional thermoelasticity, the decoupled temperature equation enjoys an interesting nonlocal nonlinearity (Shi and Shillor [6]). However, the decoupling in two space dimension is much more difficult because of the structure of (1.1) and (1.2). For clarity of exposition, we limit our consideration to the homogeneous Dirichlet boundary data. Since the result of this paper is valid, at this stage, only on the unit disk, it seems worthwhile to extend it to more general configurations, possibly using the conformal mapping technique.

The rest of the paper is organized as follows. In section 2 we review some results in function theory that will be used in our approach. In section 3 we rewrite the system (1.1)-(1.2) in complex form. The detail steps of the decoupling are presented in section 4, where the decoupled temperature equation is obtained. We then briefly discuss the decoupled problem and prove the existence of the solution and the analyticity of the solution in space variables.

We remark that the decoupled equation for the temperature carries some nonstandard features. In this respect, some open questions naturally arise, but it is impossible to address all the questions in detail and it is not the aim of this paper to do so.

2. Some Results on \((\lambda, 1)\) Bi-analytic Functions.

In this section we give a brief account of some relevant results in [9]. The results here are presented less general than the original work for the purpose of clarity. The principle theory used in this paper is quite popular in the east. We refer to the book by Hua, Lin and Wu [3], and Wen and Begehr [8] for a detail account of the theory.

We begin with notation. Any notation that is not explained in the following can be found in Vekua [7] and Ladyzhenskaya, Solonikov and Ural'eva [5]. Let \(\Omega \) be a bounded domain in \(R^2 \) with \(C^2 \) boundary. Consider the elliptic system on the \((x, y)\)–plane in the matrix form
(2.1) \[
\begin{pmatrix}
1 & 0 \\
0 & -\lambda
\end{pmatrix}
\frac{\partial^2}{\partial x^2} + \begin{pmatrix}
0 & \lambda - 1 \\
1 - \lambda & 0
\end{pmatrix}
\frac{\partial^2}{\partial x \partial y} + \begin{pmatrix}
\lambda & 0 \\
0 & -1
\end{pmatrix}
\frac{\partial^2}{\partial y^2}
\begin{pmatrix}
u \\
u
\end{pmatrix}
= \begin{pmatrix} f_1 \\
f_2 \end{pmatrix}, \quad (x, y) \in \Omega.
\]

Here \((f_1, f_2)^T\) is a given vector field on \(\Omega\), \(u\) and \(v\) are unknowns. We introduce the complex notation

(2.2) \[w = u + iv, \quad z = x + iy, \quad f = (f_1 + if_2)/4, \]

(2.3) \[\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right), \quad \frac{\partial}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right), \]

and operators \(D\) and \(D^*\) defined by

(2.4) \[D w = (1 - \lambda) \frac{\partial^2 w}{\partial \bar{z}^2} + (1 + \lambda) \frac{\partial^2 \bar{w}}{\partial \bar{z} \partial z}, \]

(2.4') \[D^* w = (1 - \lambda) \frac{\partial^2 w}{\partial \bar{z} \partial z} + (1 + \lambda) \frac{\partial^2 \bar{w}}{\partial \bar{z}^2}. \]

It turns out that the system of equations (2.1) can be equivalently written in the beautiful form

(2.5) \[Dw = f. \]

In the literature, functions satisfying \(D w = 0\) are called \((\lambda, 1)\) bi-analytic functions, whose theory has been thoroughly studied in [3]. We also refer the reader to [9] and [2] for generalizations and applications. The solution to (2.5) on the unit disk, with the Dirichlet boundary condition on \(w\), can be represented in a closed form. Following [9], we introduce the integral operators

(2.6) \[(\Gamma f)(z) = \frac{\lambda - 1}{4\lambda} \frac{1}{\pi} \iint_{\Omega} \frac{f(\zeta)}{\bar{\zeta} - \bar{z}} d\sigma_\zeta + \frac{\lambda + 1}{4\lambda} \frac{1}{\pi} \iint_{\Omega} \frac{f(\zeta)}{\ln(\bar{\zeta} - \bar{z})(\zeta - z)} d\sigma_\zeta, \]
and
\[
(\Gamma f)(z) = \frac{\lambda - 1}{4\lambda} \int_{\Omega} f(\zeta) \frac{\bar{\zeta} - \bar{z}}{\zeta - 1/\bar{z}} \, d\sigma_\zeta + \frac{\lambda + 1}{4\lambda} \int_{\Omega} \frac{f(\zeta)}{\zeta} \ln(1 - z\bar{\zeta})(1 - \bar{z}\zeta) \, d\sigma_\zeta,
\]
\[
- \frac{\lambda - 1}{\lambda + 1} (1 - z\bar{z}) \left\{ \frac{\lambda - 1}{4\lambda} \int_{\Omega} f(\zeta) \left[\frac{1 - \zeta}{1 - z\zeta} + \frac{1 - \bar{\zeta}}{(1 - z\zeta)^2} \right] \, d\sigma_\zeta \right. \\
- \frac{\lambda + 1}{4\lambda} \int_{\Omega} f(\zeta) \frac{\bar{\zeta}^2}{1 - z\zeta} \, d\sigma_\zeta \left. \right\}.
\]
Here $d\sigma_\zeta$ denotes $d\xi d\eta$ for $\zeta = \xi + i\eta$. Some properties of these operators and their relations to the equation (2.5) are given in the following theorem.

Theorem 1. The operators Γ and Γ_1 are bounded operators from $L^2(\Omega)$ into $H^2(\Omega)$. Suppose now that $f \in L^2(\Omega)$ and in addition, Ω is the unit disk. Then the unique solution to the problem
\[
\mathbf{D}w = f \quad \text{in } \Omega, \quad w|_{\partial \Omega} = 0, \quad (2.8)
\]
is given by
\[
w(z) = (\Gamma f)(z) - (\Gamma_1 f)(z), \quad (2.9)
\]
where (2.8) holds in the Sobolev sense and the sense of trace.

Proof. The result is in fact proved in [9] as an intermediate step in the discussion of the nonlinear problem
\[
\mathbf{D}w = F(z, w, w_z, w_{\bar{z}}, \mathbf{D}^* w) \quad \text{in } \Omega, \quad w|_{\partial \Omega} = g.
\]
The original proof was done in the $L^p(\Omega)$-$W^{2,p}(\Omega)$ framework, with $p > 2$, but this assumption was only used to deal with the nonlinearity. The restriction to $p > 2$ is unnecessary in our case and the same proof is valid.

3. The Complex Form of the Thermoelastic System.

An interesting observation due to Gilbert and Lin [2] is to put the two dimensional elastic system in a matrix form so the analytic function theory applies. In our case for (1.1)-(1.2), one obtains
\[(3.1) \quad \begin{pmatrix} \lambda + 2\mu & 0 \\ 0 & -\mu \end{pmatrix} \frac{\partial^2}{\partial x_1^2} + \begin{pmatrix} 0 & \lambda + \mu \\ \lambda + \mu & 0 \end{pmatrix} \frac{\partial^2}{\partial x_1 \partial x_2} + \begin{pmatrix} \mu & 0 \\ 0 & \lambda + 2\mu \end{pmatrix} \frac{\partial^2}{\partial x_2^2} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \beta \begin{pmatrix} \theta_{x_1} \\ \theta_{x_2} \end{pmatrix}, \quad (x_1, x_2) \in \Omega. \]

Multiplying (3.1) on the left by
\[\begin{pmatrix} \frac{1}{\lambda + 2\mu} & 0 \\ 0 & \frac{1}{\lambda + 2\mu} \end{pmatrix} \]
and letting \(\hat{\lambda} = \mu/(\lambda + 2\mu) \), \(\hat{\beta} = \beta/(\lambda + 2\mu) \), we obtain
\[(3.2) \quad \begin{pmatrix} 1 & 0 \\ 0 & -\hat{\lambda} \end{pmatrix} \frac{\partial^2}{\partial x_1^2} + \begin{pmatrix} 0 & 1 - \hat{\lambda} \\ \hat{\lambda} - 1 & 0 \end{pmatrix} \frac{\partial^2}{\partial x_1 \partial x_2} + \begin{pmatrix} \hat{\lambda} & 0 \\ 0 & -1 \end{pmatrix} \frac{\partial^2}{\partial x_2^2} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \hat{\beta} \begin{pmatrix} \theta_{x_1} \\ -\theta_{x_2} \end{pmatrix}, \quad (x_1, x_2) \in \Omega. \]

We now make a change of variables
\[x = -x_1 \quad u(x, y) = u_1(-x_1, x_2), \]
\[y = x_2 \quad v(x, y) = u_2(-x_1, x_2), \]
and invoke the notation (2.2)-(2.4). This rewrites (3.2) in the form of (2.5) with
\[f_1 = -\theta_x, \quad f_2 = -\theta_y, \quad \text{and} \quad f = -\hat{\beta}(\theta_x + i\theta_y)/4. \]

The only change is that \(\lambda \) in the definition of the operator \(D \) in (2.4) has to be replaced by \(\hat{\lambda} \).

We now summarize our result in this section, taking into account the adaption of the new notation (2.2)-(2.4) and (3.2)-(3.4).
Theorem 2. The thermoelastic system (1.1) and (1.2) can be equivalently written as, respectively,

\begin{align}
(3.5) \quad D_w &= -\frac{\beta}{2} \frac{\partial \theta}{\partial \bar{z}}, \\
(3.6) \quad q \Delta \theta &= \rho_s \frac{\partial \theta}{\partial t} + 2\beta c \frac{\partial}{\partial t} \text{Re} \left\{ \frac{\partial w}{\partial \bar{z}} \right\}.
\end{align}

Proof. To verify (3.6), we utilize the relation

\[2 \text{Re} \left\{ \frac{\partial w(z)}{\partial \bar{z}} \right\} = u_x(x, y) - v_y(x, y) = -u_{1x}(-x_1, x_2) - u_{2x}(-x_1, x_2). \]

The rest of the proof has been derived in this section.

4. The Decoupled Equation for the Temperature.

We are now in a position to decouple the temperature \(\theta \) of the system (3.5) and (3.6), which in turn yields the decoupled equation for \(\theta \) in the original variables \(\{x_1, x_2\} \). Besides Theorem 2.1, we also need the Green’s formula in the complex form (see e.g. Vekua [7])

\begin{align}
(4.1) \quad \iint_{\Omega} \frac{\partial \Theta}{\partial \bar{z}} \Psi \, dx dy &= \frac{1}{2i} \int_{\partial \Omega} \Theta \Psi \, dz - \iint_{\Omega} \frac{\partial \Psi}{\partial \bar{z}} \Theta \, dx dy,
\end{align}

and

\begin{align}
(4.2) \quad \iint_{\Omega} \frac{\partial \Theta}{\partial z} \Psi \, dx dy &= -\frac{1}{2i} \int_{\partial \Omega} \Theta \Psi \, d\bar{z} - \iint_{\Omega} \frac{\partial \Psi}{\partial z} \Theta \, dx dy,
\end{align}

which hold in the Sobolev sense for functions in \(H^1(\Omega) \).

In the following, the time variable \(t \) will be frequently omitted in \(w(z, t) \) and \(\theta(\zeta, t) \) etc., when no confusion is caused. Assuming \(w = 0 \) on \(\partial \Omega \), we now apply Theorem 2.1 to (3.5) to obtain

\begin{align}
(4.3) \quad w(z) &= -\frac{\beta}{2} \left\{ \Gamma \left(\frac{\partial \theta}{\partial \bar{z}} \right)(z) - \Gamma_1 \left(\frac{\partial \theta}{\partial \bar{z}} \right)(z) \right\}.
\end{align}

Thanks to (2.6), (2.7) and the Green’s formula (4.1) and (4.2), we can simplify (4.3) a
great deal under the assumption that \(\theta = 0 \) on \(\partial \Omega \). In fact,

\[
\Gamma_1 \left(\frac{\partial \theta}{\partial \bar{z}} \right) (z) = \frac{\lambda - 1}{4\lambda} \frac{1}{\pi} \int_\Omega \int_\Omega \frac{\partial \theta}{\partial \bar{z}} \frac{\zeta - \bar{z}}{\zeta - 1/\bar{z}} \, d\sigma_\zeta + \frac{\lambda + 1}{4\lambda} \frac{1}{\pi} \int_\Omega \int_\Omega \frac{\partial \theta}{\partial \zeta} \ln(1 - z\bar{\zeta})(1 - \bar{z}\zeta) \, d\sigma_\zeta,
\]

\[
- \frac{\lambda - 1}{\lambda + 1} (1 - \bar{z}z) \left\{ - \frac{\lambda - 1}{4\lambda} \frac{1}{\pi} \int_\Omega \int_\Omega \frac{\partial \theta}{\partial \zeta} \frac{1 - \zeta\bar{z}}{1 - z\bar{\zeta}} + \frac{1 - \zeta\bar{z}}{(1 - z\bar{\zeta})^2} \right\} \, d\sigma_\zeta
\]

\[
- \frac{\lambda + 1}{4\lambda} \frac{1}{\pi} \int_\Omega \int_\Omega \frac{\partial \theta}{\partial \zeta} \frac{\bar{\zeta}^2}{1 - z\bar{\zeta}} \, d\sigma_\zeta \right\}
\]

\[
= \frac{\lambda - 1}{4\lambda} \frac{1}{\pi} \int_\Omega \int_\Omega \theta(\zeta) \frac{\bar{z}}{1 - z\bar{\zeta}} \, d\sigma_\zeta + \frac{\lambda + 1}{4\lambda} \frac{1}{\pi} \int_\Omega \int_\Omega \theta(\zeta) \frac{\bar{z}}{1 - z\bar{\zeta}} \, d\sigma_\zeta
\]

\[
- \frac{\lambda - 1}{\lambda + 1} (1 - \bar{z}z) \left\{ - \frac{\lambda - 1}{4\lambda} \frac{1}{\pi} \int_\Omega \int_\Omega \theta(\zeta) \left[\frac{\bar{\zeta}}{1 - z\bar{\zeta}} + \frac{\bar{\zeta}}{(1 - z\bar{\zeta})^2} \right] \right\} \, d\sigma_\zeta
\]

\[
+ \frac{\lambda + 1}{4\lambda} \frac{1}{\pi} \int_\Omega \int_\Omega \theta(\zeta) \frac{\bar{\zeta}[2 - z\bar{\zeta}]}{(1 - z\bar{\zeta})^2} \, d\sigma_\zeta \right\}
\]

After a straightforward simplification, one obtains

\[
(4.4) \quad \Gamma_1 \left(\frac{\partial \theta}{\partial \bar{z}} \right) (z) = \frac{1}{2\pi} \int_\Omega \int_\Omega \frac{\bar{z} \theta(\zeta)}{1 - z\bar{\zeta}} \, d\sigma_\zeta - \frac{\lambda - 1}{\lambda + 1} \frac{1}{2\pi} \int_\Omega \int_\Omega \frac{\bar{\zeta}[2 - z\bar{\zeta}]}{(1 - z\bar{\zeta})^2} \theta(\zeta) \, d\sigma_\zeta.
\]

Similarly,

\[
(4.5) \quad \Gamma_1 \left(\frac{\partial \theta}{\partial \zeta} \right) (z) = \frac{\lambda - 1}{4\lambda} \frac{1}{\pi} \int_\Omega \int_\Omega \frac{\partial \theta(\zeta)}{\partial \zeta} \frac{\bar{z} - \bar{\zeta}}{\zeta - z} \, d\sigma_\zeta + \frac{\lambda + 1}{4\lambda} \frac{1}{\pi} \int_\Omega \int_\Omega \frac{\partial \theta(\zeta)}{\partial \zeta} \ln(\bar{\zeta} - \bar{z})(\zeta - z) \, d\sigma_\zeta
\]

\[
- \frac{\lambda - 1}{4\lambda} \frac{1}{\pi} \int_\Omega \int_\Omega \frac{\theta(\zeta)}{\zeta - z} \, d\sigma_\zeta - \frac{\lambda + 1}{4\lambda} \frac{1}{\pi} \int_\Omega \int_\Omega \frac{\theta(\zeta)}{\zeta - z} \, d\sigma_\zeta
\]

\[
= - \frac{1}{2\pi} \int_\Omega \int_\Omega \frac{\theta(\zeta)}{\zeta - z} \, d\sigma_\zeta.
\]

Combining (4.4) and (4.5), yields

\[
(4.6) \quad w(z) = \frac{\beta}{2} \left\{ \frac{1}{2\pi} \int_\Omega \int_\Omega \frac{\theta(\zeta)}{\zeta - z} \, d\sigma_\zeta + \frac{1}{2\pi} \int_\Omega \int_\Omega \frac{\bar{z} \theta(\zeta)}{1 - z\bar{\zeta}} \, d\sigma_\zeta
\]

\[
- \frac{\lambda - 1}{\lambda + 1} \frac{1}{2\pi} \int_\Omega \int_\Omega \frac{\bar{\zeta}[2 - z\bar{\zeta}]}{(1 - z\bar{\zeta})^2} \theta(\zeta) \, d\sigma_\zeta \right\}
\]
By now we are able to decouple θ from the system (3.5) and (3.6), simply substituting (4.6) into (3.6) to obtain the desired equation

\[
(\rho s + \beta \hat{\beta} c/2) \frac{\partial \theta}{\partial t} - q \Delta \theta \\
= -2\beta c \frac{\partial}{\partial t} \Re \left\{ \frac{\hat{\beta}}{4\pi} \iint_{\Omega} \left[\frac{1}{(1 - z \zeta)^2} + \frac{\lambda - 1}{\lambda + 1} \frac{z \zeta[2 - z \zeta]}{(1 - z \zeta)^2} \right] \theta(\zeta, t) \, d\sigma \zeta \right\}
\]

where we have used the formula [7]

\[
\frac{\partial}{\partial z} \frac{1}{\pi} \iint_{\Omega} \frac{\theta(\zeta)}{\zeta - z} \, d\sigma \zeta = \theta(z).
\]

Our result so far is based on the formal reduction. However, it is not difficult to verify that all steps are valid with appropriate regularity assumptions on w and θ. To be precise, let

\[
W_{p,1}^2(\Omega_T) = \{ w \in W^{1,p}(\Omega_T); \ w_{xx}, \ w_{xy}, \ w_{yy} \in L^p(\Omega_T) \}
\]

where $\Omega_T = \Omega \times (0, T)$, $T > 0$ is given, and $1 < p < +\infty$. Functions in $W_{p,1}^2(\Omega_T)$ are complex valued. In this aspect, there is no loss of generality to identify $W_{p,1}^2(\Omega_T)$ with the product of two real-valued function spaces with the corresponding degree of differentiability. Therefore, it is legitimate to write

\[
w \in W_{p,1}^2(\Omega_T) \quad \text{or} \quad (u, v) \in W_{p,1}^2(\Omega_T).
\]

Theorem 3. Let θ and $u = (u_1, u_2)$ be functions in the space $W_{p,1}^2(\Omega_T)$. Then the pair \(\{u, \theta\} \) satisfies the thermoelastic system (3.1) and (3.2) subject to the initial-boundary conditions

\[
u = 0, \quad \theta = 0 \quad \text{on } \partial \Omega \times (0, T), \quad \text{and} \quad \theta(\cdot, 0) = \varphi \quad \text{on } \Omega
\]

if and only if the pair \(\{w, \theta\} \) in complex form satisfies (4.6) and (4.7), and

\[
\theta = 0 \quad \text{on } \partial \Omega \times (0, T), \quad \theta(\cdot, 0) = \varphi \quad \text{on } \Omega.
\]

Proof. The necessity has been proved since the our argument leading to (4.6) and (4.7) is valid for functions in $W_{p,1}^2(\Omega_T)$. Conversely, the function $w(z)$ given by (4.6) vanishes
on $\partial \Omega$. Moreover, (4.6) and (4.5) are equivalent for any $\theta \in W_p^{1,0}(\Omega_T)$. Therefore the argument leading to (4.6) and (4.7) is reversible.

In the remaining part of the paper, we address two questions pertaining to (4.7) and (4.9), the existence of the solution in the space $W_2^{2,1}(\Omega_T)$ and the analyticity of the solution in x and y. In fact, many questions considered in Day [1] enjoy similar answers here and the authors believe that many standard properties for the two dimensional heat equation can be analogously carried over to (4.7) and (4.9), while some other properties may not trivially hold. However, we will not pursue all of these aspects in this short note.

Equation (4.7) can be viewed as a perturbation of the heat equation by a nonlocal source term. To establish the existence of the solution, we rewrite (4.7) in a more compact form, and for this, we introduce the operator

\[
(M\theta)(z) = \frac{1}{\pi} \iint_{\Omega} \text{Re} \left[\frac{1}{(1 - \bar{z}\zeta)^2} + \frac{\lambda - 1}{\lambda + 1} \frac{z\bar{z} \zeta[2 - z\zeta]}{(1 - z\zeta)^2} \right] \theta(\zeta) \, d\sigma_\zeta.
\]

Therefore, equation (4.7) can be written as

\[
\frac{\partial \theta}{\partial t} - a\Delta \theta = b \frac{\partial}{\partial t} M\theta,
\]

where

\[
a = \frac{q}{\rho s + \beta \hat{\beta} c / 2}, \quad b = -\frac{\beta \hat{\beta} c}{2\rho s + \beta \hat{\beta} c}.
\]

It is shown in Wen and Begehr [8] that the operator N defined by

\[
(N\theta)(z) = \frac{1}{\pi} \iint_{\Omega} \frac{\theta(\zeta)}{(1 - \bar{z}\zeta)^2} \, d\sigma_\zeta
\]

is bounded from $L^p(\Omega)$ into $L^p(\Omega)$ and the norm of N is estimated by

\[
\|N\|_{L^p(\Omega)}^p \leq \left[4\pi^{1-1/p} \|\theta\|_{L^p(\Omega)} \right]^p + \max\{1, 2^{2p-4}\} \left[\Lambda_p \|\theta\|_{L^p(\Omega)} \right]^p,
\]

where Λ_p depends only on p with $\Lambda_2 = 1$. This yields

\[
\|N\|_{L^2(\Omega)} \leq \sqrt{(4/\pi) + 1} \cdot \|\theta\|.
\]
and in turn, one obtains
\begin{equation}
(4.14) \quad \|M\|_{L^2(\Omega)} \leq C_\lambda \equiv \left(1 + 2\frac{\lambda - 1}{\lambda + 1}\right) \sqrt{(4/\pi) + 1}.
\end{equation}

Theorem 4. Assuming $\varphi \in H^1_0(\Omega)$, there is a unique solution in $W^{2,1}_2(\Omega_T)$ to (4.9) and (4.11), provided that $|b| < C_\lambda$. Moreover, the solution is analytic in the space variables for almost all fixed $t \in (0, T)$.

Proof. We apply the contraction principle. To this end, we define the operator F from $W^{2,1}_2(\Omega_T)$ to $W^{2,1}_2(\Omega_T)$ via $\Theta = F \theta$, such that
\begin{align}
(4.15) \quad & \Theta_t - a\Delta \Theta = b M \theta_t \quad \text{in } \Omega_T, \\
(4.16) \quad & \Theta(\cdot, 0) = \varphi \quad \text{in } \Omega, \\
(4.17) \quad & \Theta = 0 \quad \text{on } \partial \Omega \times (0, T).
\end{align}

Using the standard estimate (see e.g. Ladyzhenskaya [4, p.111]) for (4.15)-(4.17), it can be shown that F defines a contraction mapping from $W^{2,1}_2(\Omega_T)$ into itself, under the assumption that $|b| < C_\lambda$, thus the proof of the existence and uniqueness of the solution is complete. The proof for the analyticity of the solution is based on the following observation. Let θ be the solution to (4.9) and (4.11). Introducing the new function $\theta^* = \theta - b M \theta$ we obtain
\begin{equation}
\theta^*_t = a\Delta \theta^* \quad \text{on } \Omega_T.
\end{equation}

Indeed, the kernel of the integration in the definition of M is harmonic in Ω, which can be verified using the complex form $\Delta = 4\partial^2 / \partial x \partial y$ for the Laplace operator. It is well known that functions satisfying the heat equation are analytic in the space variables x and y. This implies that $\theta = \theta^* + b \cdot M \theta$ is analytic in x and y because $M \theta$ is harmonic on Ω for almost all fixed t. The proof is complete.

In concluding the paper, we would like to propose some questions that may be of interest for further considerations.

(1) The estimate on the norm of the operator M may not be optimal, which led to the restriction $|b| < C_\lambda$. Although it is not restrictive from the point of view of
applications, since \(\beta \) is usually very small, it would be worthwhile to remove it from Theorem 4.

(2) What should be the integral representations for problems under non-Dirichlet boundary conditions?

(3) How should one generalize the result in this paper to a more general domain? How can the decoupled temperature equation be analyzed numerically?

Acknowledgement. The authors would like to thank S. Wright for his help.

The second author’s research is partially supported by Alliant Techsystems Co.

REFERENCES

<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>721</td>
<td>Ian M. Anderson, Niky Kamran and Peter J. Olver</td>
<td>Internal, external and generalized symmetries</td>
</tr>
<tr>
<td>722</td>
<td>C. Foias and J.C. Saut</td>
<td>Asymptotic integration of Navier–Stokes equations with potential forces</td>
</tr>
<tr>
<td>723</td>
<td>Ling Ma</td>
<td>The convergence of semidiscrete methods for a system of reaction-diffusion equations</td>
</tr>
<tr>
<td>724</td>
<td>Adelina Georgescu</td>
<td>Models of asymptotic approximation</td>
</tr>
<tr>
<td>725</td>
<td>A. Makagon and H. Salehi</td>
<td>On bounded and harmonizable solutions on infinite order arma systems</td>
</tr>
<tr>
<td>726</td>
<td>San-Yih Lin and Yan-Shin Chin</td>
<td>An upwind finite-volume scheme with a triangular mesh for conservation laws</td>
</tr>
<tr>
<td>727</td>
<td>J.M. Ball, P.J. Holmes, R.D. James, R.L. Pego & P.J. Swart</td>
<td>On the dynamics of fine structure</td>
</tr>
<tr>
<td>728</td>
<td>KangPing Chen and Daniel D. Joseph</td>
<td>Lubrication theory and long waves</td>
</tr>
<tr>
<td>729</td>
<td>J.L. Ericksen</td>
<td>Local bifurcation theory for thermoelastic Bravais lattices</td>
</tr>
<tr>
<td>730</td>
<td>Mario Taboada and Yuncheng You</td>
<td>Some stability results for perturbed semilinear parabolic equations</td>
</tr>
<tr>
<td>731</td>
<td>A.J. Lawrence</td>
<td>Local and deletion influence</td>
</tr>
<tr>
<td>732</td>
<td>Bogdan Vernescu</td>
<td>Convergence results for the homogenization of flows in fractured porous media</td>
</tr>
<tr>
<td>733</td>
<td>Xinfu Chen and Avner Friedman</td>
<td>Mathematical modeling of semiconductor lasers</td>
</tr>
<tr>
<td>734</td>
<td>Yongzhi Xu</td>
<td>Scattering of acoustic wave by obstacle in stratified medium</td>
</tr>
<tr>
<td>735</td>
<td>Songmu Zheng</td>
<td>Global existence for a thermodynamically consistent model of phase field type</td>
</tr>
<tr>
<td>736</td>
<td>Heinrich Freistühler and E. Bruce Pitman</td>
<td>A numerical study of a rotationally degenerate hyperbolic system part I: the Riemann problem</td>
</tr>
<tr>
<td>737</td>
<td>Epifanio G. Virga</td>
<td>New variational problems in the statics of liquid crystals</td>
</tr>
<tr>
<td>738</td>
<td>Yoshikazu Giga and Shun'ichi Goto</td>
<td>Geometric evolution of phase-boundaries</td>
</tr>
<tr>
<td>739</td>
<td>Ling Ma</td>
<td>Large time study of finite element methods for 2D Navier–Stokes equations</td>
</tr>
<tr>
<td>740</td>
<td>Mitchell Luskin and Ling Ma</td>
<td>Analysis of the finite element approximation of microstructure in micromagnetics</td>
</tr>
<tr>
<td>741</td>
<td>M. Chipot</td>
<td>Numerical analysis of oscillations in nonconvex problems</td>
</tr>
<tr>
<td>742</td>
<td>J. Carrillo and M. Chipot</td>
<td>The dam problem with leaky boundary conditions</td>
</tr>
<tr>
<td>743</td>
<td>Eduard Harabetian and Robert Pego</td>
<td>Efficient hybrid shock capturing schemes</td>
</tr>
<tr>
<td>744</td>
<td>B.L.J. Braaksma</td>
<td>Multisummability and Stokes multipliers of linear meromorphic differential equations</td>
</tr>
<tr>
<td>745</td>
<td>Tae Il Jeon and Tze-Chien Sun</td>
<td>A central limit theorem for non-linear vector functionals of vector Gaussian processes</td>
</tr>
<tr>
<td>746</td>
<td>Chris Grant</td>
<td>Solutions to evolution equations with near-equilibrium initial values</td>
</tr>
<tr>
<td>747</td>
<td>Mario Taboada and Yuncheng You</td>
<td>Invariant manifolds for retarded semilinear wave equations</td>
</tr>
<tr>
<td>748</td>
<td>Peter Rejto and Mario Taboada</td>
<td>Unique solvability of nonlinear Volterra equations in weighted spaces</td>
</tr>
<tr>
<td>749</td>
<td>Hi Jun Choe</td>
<td>Holder regularity for the gradient of solutions of certain singular parabolic equations</td>
</tr>
<tr>
<td>750</td>
<td>Jack D. Dockery</td>
<td>Existence of standing pulse solutions for an excitable activator-inhibitory system</td>
</tr>
<tr>
<td>751</td>
<td>Jack D. Dockery and Roger Lui</td>
<td>Existence of travelling wave solutions for a bistable evolutionary ecology model</td>
</tr>
<tr>
<td>752</td>
<td>Giovanni Alberti, Luigi Ambrosio and Giuseppe Buttazzo</td>
<td>Singular perturbation problems with a compact support semilinear term</td>
</tr>
<tr>
<td>753</td>
<td>Emad A. Fatemi</td>
<td>Numerical schemes for constrained minimization problems</td>
</tr>
<tr>
<td>754</td>
<td>Y. Kuang and H.L. Smith</td>
<td>Slowly oscillating periodic solutions of autonomous state-dependent delay equations</td>
</tr>
<tr>
<td>755</td>
<td>Emad A. Fatemi</td>
<td>A new splitting method for scaler conservation laws with stiff source terms</td>
</tr>
<tr>
<td>756</td>
<td>Hi Jun Choe</td>
<td>A regularity theory for a more general class of quasilinear parabolic partial differential equations and variational inequalities</td>
</tr>
<tr>
<td>757</td>
<td>Haitao Fan</td>
<td>A vanishing viscosity approach on the dynamics of phase transitions in Van Der Waals fluids</td>
</tr>
<tr>
<td>758</td>
<td>T.A. Osborn and F.H. Molzahn</td>
<td>The Wigner–Weyl transform on tori and connected graph propagator representations</td>
</tr>
<tr>
<td>759</td>
<td>Avner Friedman and Bei Hu</td>
<td>A free boundary problem arising in superconductor modeling</td>
</tr>
<tr>
<td>760</td>
<td>Avner Friedman and Wenxiang Liu</td>
<td>An augmented drift-diffusion model in semiconductor device</td>
</tr>
<tr>
<td>761</td>
<td>Avner Friedman and Miguel A. Herrera</td>
<td>Extinction and positivity for a system of semilinear parabolic variational inequalities</td>
</tr>
<tr>
<td>762</td>
<td>David Dobson and Avner Friedman</td>
<td>The time-harmonic Maxwell equations in a doubly periodic structure</td>
</tr>
<tr>
<td>763</td>
<td>Hi Jun Choe</td>
<td>Interior behaviour of minimizers for certain functionals with nonstandard growth</td>
</tr>
<tr>
<td>764</td>
<td>Vincenzo M. Tortorelli and Epifanio G. Virga</td>
<td>Axisymmetric boundary-value problems for nematic liquid crystals with variable degree of orientation</td>
</tr>
<tr>
<td>765</td>
<td>Nikan B. Firoozye and Robert V. Kohn</td>
<td>Geometric parameters and the rates of multilayer energies</td>
</tr>
<tr>
<td>766</td>
<td>Haitao Fan and Marshall Slemrod</td>
<td>The Riemann problem for systems of conservation laws of mixed type</td>
</tr>
<tr>
<td>767</td>
<td>Joseph D. Fehribach</td>
<td>Analysis and application of a continuation method for a self-similar coupled Stefan system</td>
</tr>
<tr>
<td>768</td>
<td>C. Foias, M.S. Jolly, I.G. Kevrekidis and E.S. Titi</td>
<td>Dissipativity of numerical schemes</td>
</tr>
<tr>
<td>769</td>
<td>D.D. Joseph, T.Y.J. Liao and J.-C. Saut</td>
<td>Kelvin–Helmholtz mechanism for side branching in the displacement of light with heavy fluid under gravity</td>
</tr>
</tbody>
</table>
Chris Grant, Solutions to evolution equations with near-equilibrium initial values
B. Cockburn, F. Coquel, Ph. LeFloch and C.W. Shu, Convergence of finite volume methods
N.G. Lloyd and J.M. Pearson, Computing centre conditions for certain cubic systems
João Palhoto Matos, Young measures and the absence of fine microstructures in the $\alpha-\beta$ quartz phase transition
L.A. Peletier & W.C. Troy, Self-similar solutions for infiltration of dopant into semiconductors
H. Scott Dumas and James A. Ellison, Nekhoroshev's theorem, ergodicity, and the motion of energetic charged particles in crystals
Stathis Filippas and Robert V. Kohn, Refined asymptotics for the blowup of $u_t - \Delta u = u^p$.
Patricia Bauman, Nicholas C. Owen and Daniel Phillips, Maximum principles and a priori estimates for an incompressible material in nonlinear elasticity
Patricia Bauman, Nicholas C. Owen and Daniel Phillips, Maximal smoothness of solutions to certain Euler–Lagrange equations from nonlinear elasticity
Jack Carr and Robert Pego, Self-similarity in a coarsening model in one dimension
J.M. Greenberg, The shock generation problem for a discrete gas with short range repulsive forces
George R. Sell and Mario Taboada, Local dissipativity and attractors for the Kuramoto–Sivashinsky equation in thin 2D domains
T. Subba Rao, Analysis of nonlinear time series (and chaos) by bispectral methods
Nicholas Baumann, Daniel D. Joseph, Paul Mohr and Yuriko Renardy, Vortex rings of one fluid in another free fall
Oscar Bruno, Avner Friedman and Fernando Reitich, Asymptotic behavior for a coalescence problem
Johannes C.C. Nitsche, Periodic surfaces which are extremal for energy functionals containing curvature functions
F. Abergel and J.L. Bona, A mathematical theory for viscous, free-surface flows over a perturbed plane
Gunduz Caginalp and Xinfu Chen, Phase field equations in the singular limit of sharp interface problems
Robert P. Gilbert and Yongzhi Xu, An inverse problem for harmonic acoustics in stratified oceans
Roger Fosdick and Eric Volkmann, Normality and convexity of the yield surface in nonlinear plasticity
H.S. Brown, J.G. Kevrekidis and M.S. Jolly, A minimal model for spatio-temporal patterns in thin film flow
Chao-Nien Chen, On the uniqueness of solutions of some second order differential equations
Xinfu Chen and Avner Friedman, The thermistor problem for conductivity which vanishes at large temperature
Xinfu Chen and Avner Friedman, The thermistor problem with one-zero conductivity
E.G. Kalnins and W. Miller, Jr., Separation of variables for the Dirac equation in Kerr Newman space time
E. Knobloch, M.R.E. Proctor and N.O. Weiss, Finite-dimensional description of doubly diffusive convection
V.V. Pukhnachov, Mathematical model of natural convection under low gravity
M.C. Knaap, Existence and non-existence for quasi-linear elliptic equations with the p-laplacian involving critical Sobolev exponents
Stathis Filippas and Wenxiong Liu, On the blowup of multidimensional semilinear heat equations
A.M. Meirmanov, The Stefan problem with surface tension in the three dimensional case with spherical symmetry: non-existence of the classical solution
Bo Guan and Joel Spruck, Interior gradient estimates for solutions of prescribed curvature equations of parabolic type
Hi Jun Choe, Regularity for solutions of nonlinear variational inequalities with gradient constraints
Peter Shi and Yongzhi Xu, Quasistatic linear thermoelasticity on the unit disk
Satyanad Kichenassamy and Peter J. Olver, Existence and non-existence of solitary wave solutions to higher order model evolution equations
Dening Li, Regularity of solutions for a two-phase degenerate Stefan Problem
Marek Fila, Bernhard Kawohl and Howard A. Levine, Quenching for quasilinear equations
Yoshikazu Giga, Shun'ichi Goto and Hitoshi Ishii, Global existence of weak solutions for interface equations coupled with diffusion equations
Mark J. Friedman and Eusebius J. Doedel, Computational methods for global analysis of homoclinic and heteroclinic orbits: a case study
Mark J. Friedman, Numerical analysis and accurate computation of heteroclinic orbits in the case of center manifolds
Peter W. Bates and Songmu Zheng, Inertial manifolds and inertial sets for the phase-field equations
J. López Gómez, V. Márquez and N. Wolanski, Global behavior of positive solutions to a semilinear equation with a nonlinear flux condition
Xinfu Chen and Fahua Yi, Regularity of the free boundary of a continuous casting problem
Eden, A., Foias, C., Nicolaenko, B. and Temam, R., Inertial sets for dissipative evolution equations Part I: Construction and applications
Jose–Francisco Rodrigues and Boris Zaltzman, On classical solutions of the two-phase steady-state Stefan problem in strips
Viorel Barbu and Srdjan Stojanovic, Controlling the free boundary of elliptic variational inequalities on a variable domain